Introduction to Noncommutative Geometry
Chapter 7:
Connes' Trace Theorem on Euclidean Spaces
Part 1:
Pseudodifferential Operators

Sichuan University, Summer 2025

Additional References

- Taylor, M.E.: Pseudodifferential operators. Princeton University Press, Princeton, NJ, 1981.
- Slides of my 2022 online course.

Notation

- If $\alpha \in \mathbb{N}_0^n$, then $|\alpha| = \alpha_1 + \cdots + \alpha_n$.
- $D_{x_i} = \frac{1}{i} \partial_{x_i}$, $j = 1, \ldots, n$.
- If $\alpha \in \mathbb{N}_0^n$, then $D_x^{\alpha} = D_{x_1}^{\alpha_1} \cdots D_{x_n}^{\alpha_n}$.

Differential Operators

Setup

 $U \subset \mathbb{R}^n$ is an open set.

Definition

A differential operator $P: C^{\infty}(U) \to C^{\infty}(U)$ of order m is of the form, $P = \sum a_{\alpha}(x)D_{x}^{\alpha}, \qquad a_{\alpha}(x) \in C^{\infty}(U).$

Example

Laplace operator $\Delta := -(\partial_{x_1}^2 + \cdots + \partial_{x_n}^2) = D_{x_1}^2 + \cdots + D_{x_n}^2$.

 $|\alpha| \leq m$

Differential Operators on *U*

Definition

Let $P = \sum_{|\alpha| < m} a_{\alpha}(x) D_{x}^{\alpha}$ be a differential operator.

Its symbol is

$$\sigma(x,\xi) := \sum_{|\alpha| \le m} a_{\alpha} \xi^{\alpha}, \qquad (x,\xi) \in U \times \mathbb{R}^{n}.$$

• The principal part is the *m*-th degree part,

$$\sigma(x,\xi) := \sum_{|\alpha|=m} a_{\alpha} \xi^{\alpha}, \qquad (x,\xi) \in U \times \mathbb{R}^{n}.$$

Example

For the Laplace operator $\Delta = D_{x_1}^2 + \cdots + D_{x_n}^2$, we have

$$\sigma(x,\xi) = \sigma_2(x,\xi) = \xi_1^2 + \dots + \xi_n^2 = |\xi|^2.$$

Differential Operators on *U*

Notation

• If $u \in L^1(\mathbb{R}^n)$, then its Fourier transform is

$$\hat{u}(\xi) = \int e^{-ix\cdot\xi} u(x) dx, \qquad x \in \mathbb{R}^n.$$

Its inverse Fourier transform is

$$\check{u}(\xi) = \int e^{ix\cdot\xi} u(\xi) d\xi, \qquad d\xi := (2\pi)^{-n} d\xi.$$

Remark

If u is in the Schwartz's class $\mathcal{S}(\mathbb{R}^n)$, then

$$(D_{\mathsf{x}}^{\alpha}u)^{\alpha}=\xi^{\alpha}\hat{u}.$$

Differential Operators on U

Fact

Let $P = \sum_{|\alpha| \le m} a_{\alpha}(x) D_{x}^{\alpha}$ be a differential operator on U. If $\sigma(x, \xi)$ is the symbol of P, then

$$Pu(x) = \int e^{ix\cdot\xi}\sigma(x,\xi)\hat{u}(\xi)d\xi \qquad \forall u\in C_c^\infty(U).$$

Proof.

• As $(D_x^{\alpha} u)^{\wedge} = \xi^{\alpha} \hat{u}$, we have

$$D_x^{\alpha}u=\left((D_x^{\alpha}u)^{\wedge}\right)^{\vee}=(\xi^{\alpha}\hat{u})^{\vee}=\int e^{ix\cdot\xi}\xi^{\alpha}\hat{u}(\xi)d\xi.$$

Thus,

$$Pu = \sum a_{\alpha}(x)D_{x}^{\alpha}u = \sum a_{\alpha}(x)\int e^{ix\cdot\xi}\xi^{\alpha}\hat{u}(\xi)d\xi$$
$$= \int e^{ix\cdot\xi}\left(\sum a_{\alpha}(x)\xi^{\alpha}\right)\hat{u}(\xi)d\xi$$
$$= \int e^{ix\cdot\xi}\sigma(x,\xi)\hat{u}(\xi)d\xi.$$

Symbols on $U \times \mathbb{R}^n$

Definition (Classical Symbols)

 $S^m(U \times \mathbb{R}^n)$, $m \in \mathbb{R}$, consists $\sigma(x, \xi) \in C^\infty(U \times \mathbb{R}^n)$ that admit an expansion,

$$\sigma(x,\xi) \sim \sum_{j\geq 0} \sigma_{m-j}(x,\xi), \quad \sigma_{m-j} \in C^{\infty}(U \times (\mathbb{R}^n \setminus 0))$$
$$\sigma_{m-j}(x,\lambda\xi) = \lambda^{m-j}\sigma_{m-j}(x,\xi) \quad \forall \lambda > 0.$$

Here \sim means that, for all $N \geq 0$, compact $K \subset U$, and $\alpha, \beta \in \mathbb{N}_0^n$, there is $C_{NK\alpha\beta} > 0$ such that

$$\left|\partial_x^{\alpha}\partial_{\xi}^{\beta}\left(\sigma(x,\xi)-\sum_{i\leq N}\sigma_{m-j}(x,\xi)\right)\right|\leq C_{NK\alpha\beta}|\xi|^{m-N-|\beta|},$$

for all $x \in K$ and all $\xi \in \mathbb{R}^n$, $|\xi| \ge 1$.

Symbols

Remark

For N = 0, we get the estimates,

$$\left|\partial_x^\alpha\partial_\xi^\beta\sigma(x,\xi)\right|\leq C_{K\alpha\beta}(1+|\xi|)^{m-|\beta|}\qquad\forall (x,\xi)\in K\times\mathbb{R}^n.$$

Remark

- The homogeneous symbol $\sigma_m(x,\xi)$ is called the principal symbol of $\sigma(x,\xi)$.
- We have

$$\sigma_m(x,\xi) = \lim_{\lambda \to \infty} \lambda^{-m} \sigma(x,\lambda\xi) \qquad \forall \xi \neq 0.$$

Symbols on $U \times \mathbb{R}^n$

Example

Let $P = \sum_{|\alpha| < m} a_{\alpha}(x) D_{x}^{\alpha}$ be a differential operator of order m.

• Its symbol is

$$\sigma(x,\xi) = \sum_{|\alpha| < m} a_{\alpha}(x) \xi^{\alpha}.$$

• We have

$$\sigma(x,\xi) = \sum_{0 \le j \le m} \sigma_{m-j}(x,\xi), \quad \sigma_{m-j}(x,\xi) := \sum_{|\alpha| = m-j} a_{\alpha}(x)\xi^{\alpha}.$$

- Here $\sigma_{m-j}(x, \lambda \xi) = \lambda^{m-j} \sigma_{m-j}(x, \xi)$
- It then follows that $\sigma(x,\xi) \in S^m(U \times \mathbb{R}^n)$.

Symbols on $U \times \mathbb{R}^n$

Example

- Set $\langle \xi \rangle := (1 + |\xi|^2)^{\frac{1}{2}}, \ \xi \in \mathbb{R}^n$ (Russian bracket).
- For any $s \in \mathbb{R}$, the binomial formula implies that

$$\langle \xi \rangle^{\mathfrak{s}} = |\xi|^{\mathfrak{s}} (|\xi|^{-2} + 1)^{\frac{\mathfrak{s}}{2}} \sim \sum_{j \geq 0} {s \choose j} |\xi|^{\mathfrak{s} - 2j}.$$

• It follows that $\langle \xi \rangle^s$ is a symbol of order s whose principal symbol is $|\xi|^s$.

Definition

If $\sigma \in S^m(U \times \mathbb{R}^n)$, $m \in \mathbb{R}$, then $\sigma(x, D) : C_c^{\infty}(U) \to C^{\infty}(U)$ is the linear operator defined by

$$\sigma(x,D)u(x) = \int e^{ix\cdot\xi}\sigma(x,\xi)\hat{u}(\xi)d\xi, \quad u\in C_c^\infty(U).$$

Example (Differential Operators)

If
$$\sigma(x,\xi) = \sum_{|\alpha| \le m} a_{\alpha}(x) \xi^{\alpha}$$
, then

$$\sigma(x,D) = \sum_{|\alpha| \le m} a_{\alpha}(x) D_{x}^{\alpha}.$$

Example

Assume $U = \mathbb{R}^n$, and let $\Delta = D_{x_1}^2 + \cdots + D_{x_n}^2$ be its Laplacian.

- We have $\Delta = \sigma(x, D)$, with $\sigma(x, \xi) = |\xi|^2$.
- That is,

$$(\Delta u)(x) = \int e^{ix\cdot\xi} |\xi|^2 \hat{u}(\xi) d\xi = \left(|\xi|^2 \hat{u}\right)^{\vee}(x).$$

- Define $V: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ by $Vu = (2\pi)^{-n}\hat{u}$.
- This is a unitary operator, with $V^{-1}u = V^*u = (2\pi)^n \check{u}$.
- We then have

$$\Delta = V^* M_{|\xi|^2} V,$$

where $M_{|\xi|^2}$ is the operator of multiplication by $|\xi|^2$.

• This is precisely the spectral theorem for Δ .

Example (Continued)

Let $s \in \mathbb{R}$.

The Borel functional calculus for △ gives:

$$(1+\Delta)^{\frac{s}{2}} = V^* M_{(1+|\xi|^2)^{\frac{s}{2}}} V.$$

 For s > 0 this is a selfadjoint unbounded operator whose domain is the Sobolev space,

$$W^{2,s}(\mathbb{R}^n) := \{ u \in L^2(\mathbb{R}^n); \ (1+|\xi|^2)^{\frac{s}{2}} \hat{u} \in L^2(\mathbb{R}^n) \}.$$

• In terms of the Fourier transform, we have

$$(1+\Delta)^{\frac{s}{2}}u(x)=\int e^{ix\cdot\xi}(1+|\xi|^2)^{\frac{s}{2}}\hat{u}(\xi)d\xi.$$

• We saw that $(1+|\xi|^2)^{s/2} \in S^s(\mathbb{R}^n \times \mathbb{R}^n)$. Thus,

$$(1+\Delta)^{\frac{s}{2}} = \sigma^{(s)}(x,D), \text{ with } \sigma^{(s)}(x,\xi) = (1+|\xi|^2)^{\frac{s}{2}}.$$

Smoothing Operators

Definition (Smoothing Operators)

• An operator $R: C_c^\infty(U) \to C^\infty(U)$ is called smoothing if it is given by a kernel $k_R(x,y) \in C^\infty(U \times U)$, i.e.,

$$Ru(x) = \int_U k_R(x, y)u(y)dy, \qquad u \in C_c^{\infty}(U).$$

• The space of smoothing operators is denoted $\Psi^{-\infty}(U)$.

Proposition

Let $R: C_c^{\infty}(U) \to C^{\infty}(U)$ be a continuous linear operator. TFAE:

- (i) R is smoothing.
- (ii) It uniquely extends to a continuous operator $\mathcal{E}'(U) \to C^{\infty}(U)$.

Definition

$$S^{-\infty}(U\times\mathbb{R}^n):=\bigcap_{m\in\mathbb{R}}S^m(U\times\mathbb{R}^n).$$

Remark

If $\sigma(x,\xi) \in C^{\infty}(U \times \mathbb{R}^n)$, then $\sigma(x,\xi) \in S^{-\infty}(U \times \mathbb{R}^n)$ if and only if, for every $N \geq 0$, we have the estimates,

$$\left|\partial_x^\alpha\partial_\xi^\beta\sigma(x,\xi)\right|\leq C_{NK\alpha\beta}(1+|\xi|)^{-N}\qquad\forall (x,\xi)\in K\times\mathbb{R}^n.$$

Example

If
$$\sigma(x,\xi) \in S^m(U \times \mathbb{R}^n)$$
, then
$$\sigma(x,D) \in \Psi^{-\infty}(U) \Longleftrightarrow \sigma(x,\xi) \in S^{-\infty}(U \times \mathbb{R}^n).$$

Definition (Pseudodifferential Operators (ΨDOs))

 $\Psi^m(U)$, $m \in \mathbb{R}$, consists of linear operators $P: C_c^\infty(U) \to C^\infty(U)$ of the form,

$$P = \sigma(x, D) + R,$$

with $\sigma(x,\xi) \in S^m(U \times \mathbb{R}^n)$, $\sigma(x,\xi) \sim \sum \sigma_{m-j}(x,\xi)$, and $R \in \Psi^{-\infty}(U)$.

Remark

- The symbol $\sigma_m(x,\xi)$ is called the principal symbol of P.
- The homogeneous symbols $\sigma_{m-j}(x,\xi)$ depends only on P.

Example

Let $P = \sum_{|\alpha| < m} a_{\alpha}(x) D_{x}^{\alpha}$ be a differential operator.

- If $\sigma(x,\xi) = \sum a_{\alpha}(x)\xi^{\alpha}$, then $\sigma(x,\xi) \in S^{m}(U \times \mathbb{R}^{n})$.
- We then have

$$P = \sigma(x, D) \in \Psi^m(U).$$

Example

Assume $U = \mathbb{R}$, and let $s \in \mathbb{R}$.

- We saw that $\sigma^{(s)} := (1 + |\xi|^2)^{\frac{s}{2}} \in S^s(\mathbb{R}^n \times \mathbb{R}^n).$
- We also saw that

$$(1+\Delta)^{\frac{s}{2}}=\sigma^{(s)}(x,D).$$

Thus,

$$(1+\Delta)^{\frac{s}{2}}\in \Psi^s(\mathbb{R}^n) \qquad \forall s\in \mathbb{R}.$$

Remark

Let $\sigma(x,\xi) \in S^m(U \times \mathbb{R}^n)$ with m < -n.

• For any compact $K \subset U$,

$$|\sigma(x,\xi)| \le C_K (1+|\xi|)^m, \quad (x,\xi) \in K \times \mathbb{R}^n.$$

• As m < -n, the function $(1 + |\xi|)^m$ is in $L^1(\mathbb{R}^n)$, and so we may define

$$\check{\sigma}_{\xi \to y}(x,y) := \int e^{ix \cdot y} \sigma(x,\xi) d\xi \in C(K \times \mathbb{R}^n).$$

Therefore, we obtain:

Lemma

If
$$\sigma(x,\xi) \in S^m(U \times \mathbb{R}^n)$$
, $m < -n$, then
$$\check{\sigma}_{\xi \to y}(x,y) := \int e^{ix \cdot y} \sigma(x,\xi) d\xi \in C(U \times \mathbb{R}^n).$$

Lemma

Let $\sigma(x,\xi) \in S^m(U \times \mathbb{R}^n)$ with m < -n, and set $P = \sigma(x,D)$.

We have

$$Pu(x) = \int_U k_P(x,y)u(y)dy$$
, with $k_P(x,y) := \check{p}_{\xi \to y}(x,x-y)$.

Proof.

If $u \in C_c^{\infty}(U)$, then

$$Pu(x) = \int e^{ix \cdot y} \sigma(x, \xi) \hat{u}(\xi) d\xi$$

$$= \int e^{ix \cdot y} \sigma(x, \xi) \left(\int e^{-iy \cdot \xi} u(y) dy \right) d\xi$$

$$= \int \left(\int e^{i(x-y) \cdot \xi} \sigma(x, \xi) d\xi \right) u(y) dy$$

$$= \int \check{p}_{\xi \to y}(x, x - y) u(y) dy.$$

This gives the result.

Remark

- In general, if $\sigma(x,\xi) \in S^m(U \times \mathbb{R}^n)$, $m \ge -n$, then $\check{\sigma}_{\xi \to y}(x,y)$ makes sense as a distribution.
- Namely, if $v \in C_c^{\infty}(\mathbb{R}^n)$, then

$$\langle \check{\sigma}_{\xi \to y}(x, y), v(y) \rangle := \langle \sigma(x, \xi), \check{v}(\xi) \rangle = \int \sigma(x, \xi) \check{v}(\xi).$$

Lemma

Let $\sigma(x,\xi) \in S^m(U \times \mathbb{R}^n)$, $m \in \mathbb{R}$, and set $P = \sigma(x,D)$. Then

$$Pu(x) = \langle k_P(x,y), u(y) \rangle, \quad k_P(x,y) := \check{\sigma}_{\xi \to y}(x,x-y).$$

More precisely, for all $u \in C_c^{\infty}(U)$,

$$Pu(x) = \langle k_P(x, y), u(y) \rangle = \langle \check{\sigma}_{\xi \to y}(x, y), u(x - y) \rangle.$$

Definition

 $k_P(x, y)$ is called the Schwartz kernel of P.

Lemma

Let $\sigma(x,\xi) \in \mathbb{S}^m(U \times \mathbb{R}^n)$, $m \in \mathbb{R}$. Then $\check{\sigma}_{\xi \to y}(x,y)$ is C^{∞} on $U \times (\mathbb{R}^n \setminus 0)$.

Notation

 $\Gamma = \{(x, x); x \in U\}$ (diagonal of $U \times U$).

Proposition

Let $P \in \Psi^m(U)$, $m \in \mathbb{R}$, have Schwartz kernel $k_P(x, y)$.

- $k_P(x, y)$ is C^{∞} on $(U \times U) \setminus \Gamma$.
- ② If $\Re m < -n$, then $k_P(x,y) \in C(U \times U)$.

Compactly Supported ΨDOs

Setup

• $K \subseteq U$ is compact.

Definition

 $\Psi_K^m(U)$, $m \in \mathbb{R}$, consists of all $P \in \Psi^m(U)$ whose Schwartz kernels $k_P(x,y)$ (seen as distributions on $U \times U$) are supported on $K \times K$.

Remark

This means that the following two properties are satisfied:

- **1** supp $Pu \subseteq K$ for all $u \in C_c^{\infty}(U)$.
- 2 If supp $u \cap K = \emptyset$, then Pu = 0.

Example

If $P \in \Psi^m(U)$ and $\varphi, \psi \in C^{\infty}_{\kappa}(U)$, then $\varphi P \psi \in \Psi^m_{\kappa}(U)$.

Compactly Supported ΨDOs

Remarks

1 If $P \in \Psi_K(U)$, then it induces a linear operator,

$$P: C_K^{\infty}(U) \longrightarrow C_K^{\infty}(U)$$

2 If $V \subseteq \mathbb{R}^n$ is any other open set containing K, then

$$\Psi_K^m(U) = \Psi_K^m(V) = \Psi_K^m(\mathbb{R}^n).$$

3 If $P \in \Psi_K(U)$, then $P = \sigma(x, D)$, with

$$\sigma(x,\xi) = e^{-ix\cdot\xi}P(e_{\xi}), \quad e_{\xi}(x) := e^{ix\cdot\xi}.$$

Compactly Supported ΨDOs

Proposition

For j = 1, 2 let $P_j \in \Psi_K^{m_j}(U)$ have principal symbol $\sigma_{m_1}(x, \xi)$.

- **1** $P_1P_2 \in \Psi_K^{m_1+m_2}(U)$.
- 2 Its principal symbol is $\sigma_{m_1}(x,\xi)\sigma_{m_2}(x,\xi)$.

Proposition (Calderon-Vaillancourt)

If $P \in \Psi_K^m(U)$, $m \leq 0$, then P uniquely extends to a continuous linear operator, $P: L^2(U) \longrightarrow L^2(U).$

Weak Schatten Class Properties

Fact

As explained during lecture and in the handwritten notes, the singular values properties of ΨDOs on \mathbb{T}^n extends to compactly supported ΨDOs on U.

In particular, we have:

Proposition

Every $P \in \Psi_K^{-m}(U)$, m > 0, is in the weak Schatten class $\mathcal{L}^{\frac{n}{m},\infty}$.

Trace Formula

Reminder

Let $P = \sigma(x, D)$ with $\sigma \in S^m(U \times \mathbb{R}^n)$, m < -n. Then:

• P has a Schwartz kernel $k_P(x,y) \in C(U \times U)$, i.e.,

$$Pu(x) = \int_U k_P(x, y)u(y)dy, \qquad u \in C_c^{\infty}(U).$$

Namely,

$$k_P(x,y) = \sigma_{\xi \to y}(x,x-y) = \int_{\mathbb{R}^n} e^{i\xi \cdot (x-y)} \sigma(x,\xi) d\xi.$$

In particular,

$$k_P(x,x) = \int_{\mathbb{D}^n} \sigma(x,\xi) d\xi.$$

• If in addition $P \in \Psi_{\kappa}^{m}(U)$, then

$$k_P(x,y) \in C_{K \times K}(U \times U)$$

Trace Formula

Proposition (Trace Formula)

Let $P \in \Psi_K^m(U)$, m < -n. Then:

- P is trace-class.
- ② If $k_P(x, y)$ is the Schwartz kernel of P, then

$$Tr[P] = \int_{U} k_{P}(x, x) dx.$$

Remark

If $P = \sigma(x, D)$, then

$$k_P(x,x) = \int_{\mathbb{R}^n} \sigma(x,\xi) d\xi.$$

Thus,

$$Tr[P] = \iint_{U \times \mathbb{R}^n} \sigma(x, \xi) dx d\xi.$$