Introduction to Noncommutative Geometry
Chapter 9:
Quantized Calculus on Manifolds.
Noncommutative Residue, and Lower Dimensional
Volumes

Sichuan University, Summer 2025

Main References

Main References

- Slides of my lectures on the noncommutative residue for my 2022 online course on NCG.
- Ponge, R.: Noncommutative geometry and lower dimensional volumes in Riemannian geometry. Lett. Math. Phys. 83 (2008), 19–32.

Theorem (Schwartz's Kernel Theorem)

Let $P: C_c^{\infty}(U) \to \mathcal{D}'(U)$ be a linear operator, where $U \subseteq \mathbb{R}^n$ is an open set. TFAE:

- (i) P is continuous.
- (ii) There is $k_P(x, y) \in \mathcal{D}'(U \times V)$ such that

$$\langle Pu, v \rangle = \langle k_P(x, y), u(x)v(y) \rangle \quad \forall u, v \in C_c^{\infty}(U).$$

Remark

If P is continuous, then $k_P(x, y)$ is unique and is called the Schwartz kernel of P.

Remark

The above result continues to hold if U is a manifold.

Lemma

Let $\sigma(x,\xi) \in S^m(U \times \mathbb{R}^n)$, $m \in \mathbb{R}$, and set $P = \sigma(x,D)$. Then the the Schwartz kernel of P is

$$k_P(x,y) = \check{\sigma}_{\xi \to y}(x,x-y).$$

Namely,

$$\langle k_P(x,y), u(x)v(y)\rangle = \langle \check{\sigma}_{\xi\to y}(x,y), u(x)v(x-y)\rangle.$$

Remark

• If m < -n, then

$$\check{\sigma}_{\xi \to y}(x,y) = \int_{\mathbb{R}^n} e^{ix \cdot y} \sigma(x,\xi) d\xi \in C(U \times \mathbb{R}^n).$$

• In particular, on the diagonal x = y we have

$$k_P(x,x) = \check{\sigma}_{\xi \to y}(x,0) = \int_{\mathbb{R}^n} \sigma(x,\xi) d\xi \in C^{\infty}(U).$$

• In general, $\check{\sigma}_{\xi \to y}(x, y)$ makes sense as a distribution,

$$\langle \check{\sigma}_{\xi \to y}(x,y), v(y) \rangle := \langle \sigma(x,\xi), \check{v}(\xi) \rangle = \int_{\mathbb{R}^n} \sigma(x,\xi) \check{v}(\xi) d\xi.$$

Lemma

Let $\sigma(x,\xi) \in S^m(U \times \mathbb{R}^n)$, $m \in \mathbb{R}$. Then $\check{\sigma}_{\xi \to y}(x,y)$ is C^{∞} on $U \times (\mathbb{R}^n \setminus 0)$.

Notation

 $\Gamma = \{(x, x); x \in U\}$ (diagonal of $U \times U$).

Proposition

Let $P \in \Psi^m(U)$, $m \in \mathbb{C}$, have Schwartz kernel $k_P(x, y)$.

- **1** $k_P(x,y)$ is C^{∞} on $(U \times U) \setminus \Gamma$.
- 2 If m < -n, then

$$k_P(x,y) \in C(U \times U)$$
 and $k_P(x,x) \in C^{\infty}(U)$.

Setup

- M = smooth manifold of dimension n.
- $\Gamma = \{(x, x); x \in M\}.$

Proposition

Let $P \in \Psi^m(M)$, $m \in \mathbb{R}$, have Schwartz kernel $k_P(x,x)$.

- **1** $k_P(x,y)$ is C^{∞} on $(M \times M) \setminus \Gamma$.
- ② If m < -n, then $k_P(x, y)$ is continuous on $M \times M$, and $k_P(x, x)$ is a smooth density on M.

Remark

Let $\phi: M' \to M$ be a diffeomorphism.

We have

$$k_{\phi^*P}(x,y) = |\phi'(y)|k_P(\phi(x),\phi(y)), \qquad x,y \in M'.$$

• In particular, on the diagonal y = x we get

$$k_{\phi^*P}(x,x) = |\phi'(x)|k_P(\phi(x),\phi(x)), \qquad x \in M'.$$

This is the transformation law for densities.

Trace Formula

Proposition

Assume M is compact. Every operator $P \in \Psi^m(M)$, m < -n, is trace-class, and

$$Tr[P] = \int_M k_P(x, x).$$

Setup

- $U \subseteq \mathbb{R}^n$ open set.
- $P \in \Psi^m(U)$, $m \in \mathbb{Z}$, with symbol $\sigma(x,\xi) \sim \sum \sigma_{m-i}(x,\xi)$.
- $k_P(x, y) =$ Schwartz kernel of P.

Reminder

- **1** $k_P(x, y)$ is C^{∞} for $x \neq y$.
- ② If m < -n, then $k_P(x, y)$ is continuous on $U \times U$.

Question

If $m \ge -n$, then what is the behaviour of $k_P(x, y)$ near x = y?

Proposition

Let $P \in \Psi^m(U)$, $m \in \mathbb{Z}$, $m \ge -n$. Near x = y its Schwartz kernel $k_P(x,y)$ has a behaviour of the form,

$$k_P(x,y) = \sum_{1 \le k \le m+n} a_k(x, \frac{x-y}{|x-y|}) |x-y|^{-k} - c_P(x) \log |x-y| + O(1).$$

Here
$$a_k(x,\theta) \in C^{\infty}(U \times \mathbb{S}^{n-1})$$
, and $c_P(x) \in C^{\infty}(U)$ is given by
$$c_P(x) = (2\pi)^{-n} \int_{\mathbb{S}^{n-1}} \sigma_{-n}(x,\xi) d\xi,$$

where $\sigma_{-n}(x,\xi)$ is the symbol of degree -n of P.

Remark

 $a_k(x,\theta)$ only depends on the homogeneous symbol $\sigma_{m-k}(x,\xi)$ of degree m-k of P.

Setup

- $U_1 \subseteq \mathbb{R}^n$ open set.
- $\phi: U_1 \to U$ is a C^{∞} -diffeomorphism.

Fact

$$\phi^*P := (\phi^{-1})_* \in \Psi^m(U_1).$$

Proposition

We have

$$c_{\phi^*P}(x) = |\phi'(x)|c_P(\phi(x)) \quad \forall x \in U_1.$$

Remark

In other words the logarithmic singularities $c_P(x)$ satisfy the transformation law of densities.

Setup

M is a smooth manifold of dimension n.

Reminder

If $P \in \Psi^m(M)$, then, $\kappa_*(P_{|U}) \in \Psi^m(V)$ for every chart $\kappa : U \to V$.

Proposition

Let $P \in \Psi^m(M)$, $m \in \mathbb{Z}$, $m \ge -n$. There is a unique smooth density $c_P(x)$ on M such that, for every chart $\kappa : U \to V$, we have

$$(c_P)_{\kappa}(x) = c_{\kappa_*(P_{|U})}(x) = (2\pi)^{-n} \int_{\mathbb{S}^{n-1}} \sigma_{-n}^{\kappa}(x,\xi) d\xi,$$

where $\sigma_{-n}^{\kappa}(x,\xi)$ is the symbol of degree -n of $\kappa_*(P_{|U})$.

Remark

If P is a differential operator on M, then $c_P(x) = 0$ everywhere, since P has no symbols of negative degree.

Remark

- In case $P \in \Psi^{-n}(M)$, i.e., P has order m = -n, then its symbol of degree -n agrees with its principal symbol.
- It thus makes sense as a function $\sigma_{-n}(x,\xi) \in C^{\infty}(T^*M \setminus 0)$.
- It then can be shown that, if $u \in C_c(M)$, then

$$\int_{M} u(x)c_{P}(x) = (2\pi)^{-n} \iint_{S^{*}M} f(x)\sigma_{-n}(x,\xi)dxd\xi,$$

where $S^*M = (T^*M \setminus 0)/\mathbb{R}_+^*$ is the cosphere bundle and $dxd\xi$ is its Liouville measure.

Setup

M is a compact manifold of dimension n.

Definition (Noncommutative Residue)

If $P \in \Psi^m(M)$, $m \in \mathbb{Z}$, then its noncommutative residue is

$$\operatorname{\mathsf{Res}}(P) := \int_M c_P(x).$$

Remar<u>ks</u>

- Res(P) = 0 if P is a differential operator or if P has order < -n.
- 2 If P has order -n, then

$$\operatorname{Res}(P) = (2\pi)^{-n} \iint_{S^*M} \sigma_{-n}(x,\xi) dx d\xi,$$

where $\sigma_{-n}(x,\xi)$ is the principal symbol of P.

Notation

$$\Psi^{\mathbb{Z}}(M) := \bigcup_{m \in \mathbb{Z}} \Psi^m(M).$$

Remark

As M is compact, $\Psi^{\mathbb{Z}}(M)$ is an algebra:

• If $P_1 \in \Psi^{m_1}(M)$ and $P_2 \in \Psi^{m_2}(M)$ with $m_1, m_2 \in \mathbb{Z}$, then $m_1 + m_2 \in \mathbb{Z}$, and so

$$P_1P_2 \in \Psi^{m_1+m_2}(M) \subseteq \Psi^{\mathbb{Z}}(M).$$

• If $m_2 \geq m_1$, then $\Psi^{m_1}(M) \subseteq \Psi^{m_2}(M)$, and so we have

$$P_1 + P_2 \in \Psi^{m_1}(M) + \Psi^{m_2}(M) \subseteq \Psi^{m_2}(M) \subseteq \Psi^{\mathbb{Z}}(M).$$

Remark

We then can regard the noncommutative residue as a linear functional Res : $\Psi^{\mathbb{Z}}(M) \to \mathbb{C}$.

Proposition

• If $P_1 \in \Psi^{m_1}(M)$ and $P_2 \in \Psi^{m_2}(M)$ are such that $m_1 + m_2 \in \mathbb{Z}$, then

$$Res(P_1P_2) = Res(P_2P_1).$$

② In particular, the noncommutative residue Res : $\Psi^{\mathbb{Z}}(M) \to \mathbb{C}$ is a linear trace on the algebra $\Psi^{\mathbb{Z}}(M)$.

Theorem (Wodzicki, Guillemin)

Every linear trace on $\Psi^{\mathbb{Z}}(M)$ is a constant multiple of the noncommutative residue.

Example

 Δ_g = Laplacian on M associated with some Riemannian metric g.

- The principal symbol of Δ_g is $\sigma_2(x,\xi) = |\xi|_g^2$, where $|\xi|_g^2 = \sum g^{ij} \xi_i \xi_j$ is the Riemannian metric on T^*M .
- $\Delta_g^{-n/2}$ is in $\Psi^{-n}(M)$, and its principal symbol is $\sigma_{-n}(x,\xi) = |\xi|_g^{-n}$.
- It then can be shown that

$$c_{\Delta_g^{-n/2}}(x) = (2\pi)^{-n} \int_{S_v^*M} |\xi|_g^{-n} d\xi = (2\pi)^{-n} |\mathbb{S}^{n-1}| \nu(g)(x),$$

where $\nu(g)$ is the Riemannian density.

• Thus, if we set $c(n) := (2\pi)^{-n} |\mathbb{B}^{n-1}| = n^{-1} (2\pi)^{-n} |\mathbb{S}^{n-1}|$, then

$$\frac{1}{n}\operatorname{Res}\left(\Delta_g^{-\frac{n}{2}}\right) = c(n)\int_M \nu(g) = c(n)\operatorname{Vol}_g(M).$$

Meromorphic Extension of the Trace

Setup

- M = compact manifold of dimension n.
- $\mu =$ positive smooth measure on M.
- $P \in \Psi^m(M)$, m > 0, is positive-elliptic.
- $\sigma_m(x,\xi)$ = principal symbol of P.

Remark

The positive-elliptic assumption means that

- $\sigma_m(x,\xi) > 0$ for all $(x,\xi) \in T^*M \setminus 0$.
- $P^* = P$ and $Sp(P) \subseteq [0, \infty)$.

Meromorphic Extension of the Trace

Reminder

- Each operator P^{-z} , $z \in \mathbb{C}$, is in $\Psi^{-mz}(M)$.
- Its principal symbol is $\sigma_m m(x, \xi)^{-z}$.

Facts

Let $A \in \Psi^a(M)$, $a \in \mathbb{R}$.

- The operator AP^{-z} is in $\Psi^{a-mz}(M)$.
- In particular AP^{-z} is trace-class for $a m\Re z > -n$, i.e., $\Re z > m^{-1}(n+a)$.
- Thus, $\text{Tr}[AP^{-z}]$ is well defined for $\Re z > m^{-1}(n+a)$.

Meromorphic Extension of the Trace

Proposition (Wodzkicki, Guillemin)

Let $A \in \Psi^a(M)$, $a \in \mathbb{R}$, and set $\Sigma := \{m^{-1}(n+a-j); j \in \mathbb{N}_0\}$.

- The function $z \to \text{Tr}[AP^{-z}]$ has a meromorphic extension to $\mathbb C$ with at worst simple pole singularities on Σ .
- **2** If $\sigma \in \Sigma$, then

$$m\operatorname{\mathsf{Res}}_{\mathsf{z}=\sigma}\operatorname{\mathsf{Tr}}\left[\mathsf{A}\mathsf{P}^{-\mathsf{z}}\right]=\operatorname{\mathsf{Res}}\left[\mathsf{A}\mathsf{P}^{-\sigma}\right].$$

• In particular, if $a \in \mathbb{Z}$, $a \ge -n$, then for $\sigma = 0$ we get $m\operatorname{Res}_{z=0}\operatorname{Tr}\left[AP^{-z}\right] = \operatorname{Res}(A).$

Remark

$$\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}.$$

Setup

- M = compact manifold with positive smooth density μ .
- $P \in \Psi^m(M)$, m > 0, is positive-elliptic.
- $\sigma_m(x,\xi)$ = principal symbol of P.

Reminder

The positive-ellipticity of *P* ensures the following:

1 Its spectrum of P can be arranged as a sequence,

$$0 \leq \lambda_0(P) \leq \lambda_1(P) \leq \lambda_2(P) \leq \cdots$$

where each eigenvalue is repeated according to multiplicity.

② For every $z \in \mathbb{C}$, the power P^z is in $\Psi^{mz}(M)$ and has $\sigma_m(x,\xi)^z$ as principal symbol.

Reminder (Weyl's Law)

• By Weyl's law, as $j \to \infty$ we have

$$\lambda_j(P) \sim \left(\frac{j}{\gamma(P)}\right)^{\frac{m}{n}},$$

where

$$\gamma(P) = \frac{(2\pi)^{-n}}{n} \iint_{S^*M} \sigma_m(x,\xi)^{-\frac{n}{m}} dx d\xi.$$

- Note that $P^{-m/m}$ is an operator in $\Psi^{-n}(M)$ whose principal symbol is $\sigma_m(x,\xi)^{-n/m}$.
- Thus,

$$\operatorname{Res}\left[P^{-\frac{n}{m}}\right] = (2\pi)^{-n} \iint_{S^*M} \sigma_m(x,\xi)^{-\frac{n}{m}} dx d\xi.$$

It then follows that

$$\gamma(P) = \frac{1}{n} \operatorname{Res}\left[P^{-\frac{n}{m}}\right].$$

Facts

Assume that $\ker P = \{0\}$.

We then have

$$\lambda_j(P^{-1}) = \lambda_j(P)^{-1} \sim \left(\frac{j}{\gamma(P)}\right)^{-\frac{m}{n}}.$$

Thus,

$$\mu_j(P^{-1}) = \lambda_j(P^{-1}) = O\left(j^{-\frac{m}{n}}\right).$$

That is, $P^{-1} \in \mathcal{L}^{m^{-1}n,\infty}$.

 \bullet In particular, if g is a Riemannian metric, then

$$(1+\Delta_{\sigma})^{-rac{m}{2}}\in \mathcal{L}^{m^{-1}n,\infty} \qquad orall m>0.$$

Proposition

Every $P \in \Psi^{-m}(M)$, m > 0, is in the weak Schatten class $\mathcal{L}^{nm^{-1},\infty}$

In particular, for m = n we obtain:

Corollary

Every $P \in \Psi^{-n}(M)$ is in the weak trace-class $\mathcal{L}^{1,\infty}$.

Proof of the Proposition.

Let m > 0 and $P \in \Psi^{-m}(M)$.

• Pick a Riemannian metric g on M, and write

$$P = P\left(1 + \Delta_g\right)^{\frac{m}{2}} \cdot \left(1 + \Delta_g\right)^{-\frac{m}{2}}$$

- We already know that $(1 + \Delta_g)^{-m/2} \in \mathcal{L}^{nm^{-1},\infty}$.
- As $P \in \Psi^{-m}(M)$ and $(1 + \Delta_g)^{m/2} \in \Psi^m(M)$, we see that $P(1 + \Delta_g)^{m/2} \in \Psi^0(M)$.
- This ensures that $P(1 + \Delta_g)^{m/2}$ is bounded, i.e., it is contained in $\mathcal{L}(L^2(M))$.
- As $\mathcal{L}^{nm^{-1},\infty}$ is an ideal of $\mathcal{L}(L^2(M))$, it follows that

$$P = P\left(1 + \Delta_{\mathbf{g}}\right)^{\frac{m}{2}} \cdot \left(1 + \Delta_{\mathbf{g}}\right)^{-\frac{m}{2}} \in \mathcal{L}^{nm^{-1},\infty}.$$

The proof is complete.

Facts

Let $P \in \Psi^n(M)$ be positive-elliptic with ker $P = \{0\}$ (e.g., $P = (1 + \Delta_g)^{n/2}$).

• In this case the Weyl's law gives

$$\lambda_j(P^{-1}) = \lambda_j(P)^{-1} \sim \left(\frac{j}{\gamma(P)}\right)^{-1},$$

where
$$\gamma(P) = \frac{1}{n} \operatorname{Res}(P^{-1})$$
.

• It then follows that P^{-1} is strongly measurable, and we have

$$\int P^{-1} = \gamma(P) = \frac{1}{n} \operatorname{Res} (P^{-1}).$$

More generally, we have:

Theorem (Connes' Trace Theorem)

If $P \in \Psi^{-n}(M)$, then P is strongly measurable, and we have

$$\int P = \frac{1}{n} \operatorname{Res}(P).$$

Remark

- Connes (CMP '88) established measurability and derived the trace formula.
- 2 Lord-Potapov-Sukochev (Adv. Math. '13) obtained strong measurability.

Proof.

Step 1: $P \in \Psi^{-(n+1)}(M)$.

- In this case Res(P) = 0.
- Moreover, P is in the weak Schatten class $\mathcal{L}^{p,\infty}$, with $p = n(n+1)^{-1} < 1$.
- Thus, P is in $\mathcal{L}^1 \subseteq \mathcal{L}_0^{1,\infty}$.
- It follows that P is strongly measurable, and we have

$$\int P = 0 = \frac{1}{n} \operatorname{Res}(P).$$

Proof.

Step 2: $P = Q^{-1}$, where $Q \in \Psi^n(M)$ is positive-elliptic.

• In this case we saw that P is strongly measurable, and we have

$$\int P = \frac{1}{n} \int_{S^*M} \sigma_n(Q)(x,\xi)^{-1} dx d\xi.$$

- Here $\sigma_n(Q)(x,\xi)^{-1} = \sigma_{-n}(Q^{-1})(x,\xi) = \sigma_{-n}(P)(x,\xi)$.
- Thus,

$$\int P = \frac{1}{n} \int_{S^*M} \sigma_{-n}(P)(x,\xi) dx d\xi = \frac{1}{n} \operatorname{Res}(P).$$

30 / 48

Proof.

Step 3: $\sigma_{-n}(P)(x,\xi) > 0$.

- Let $Q \in \Psi^n(M)$ be pos.-ellipt. w/ $\sigma_n(Q) = \sigma_{-n}(P)(x,\xi)^{-1}$.
- Here Q^{-1} is an operator in $\Psi^{-n}(M)$ with

$$\sigma_{-n}\left(Q^{-1}\right)(x,\xi) = \sigma_{n}\left(Q\right)(x,\xi)^{-1} = \sigma_{-n}(P)(x,\xi).$$

- This ensures that $R := P Q^{-1}$ is in $\Psi^{-(n+1)}(M)$.
- In particular $Res(P) = Res(Q^{-1})$.
- By Step 2 Q^{-1} is strongly meas. and $\oint Q^{-1} = \frac{1}{n} \operatorname{Res}(Q^{-1})$.
- As $R \in \Psi^{-(n+1)}(M)$, by Step 1 it is strongly measurable and f = 0.
- It follows that $P = Q^{-1} + R$ is strongly measurable, and

$$\int P = \int Q^{-1} + \int R = \frac{1}{n} \text{Res}(Q^{-1}) = \frac{1}{n} \text{Res}(P).$$

Proof.

Step 4: $P^* = P$.

- Here $\sigma_{-n}(P)(x,\xi)$ is Hermitian for all $(x,\xi) \in T^*M \setminus 0$.
- Bearing in mind that S*M is compact, set

$$c:=\sup\left\{|\sigma_{-n}(P)(x,\xi);(x,\xi)\in S^*M\right\}<\infty.$$

• For $(x, \xi) \in T^*M \setminus 0$, we then have

$$\sigma_{-n}(P)(x,\xi) \le |\sigma_{-n}(P)(x,\xi)| \le |\xi|_{g}^{-n}|\sigma_{-n}(P)(x,|\xi|_{g}^{-n}\xi)| \le c|\xi|_{g}^{-n}.$$

32 / 48

Proof.

• Let $P_1 \in \Psi^{-n}(M)$ have principal symbol

$$\sigma_{-n}(P_1)(x,\xi) = (c+\epsilon)|\xi|_g \operatorname{id}_{\mathcal{E}_x}, \quad \epsilon > 0.$$

• Set $P_2 = P_1 - P$. Then $P_2 \in \Psi^{-n}(M)$, and

$$\sigma_{-n}(P_2)(x,\xi) = \sigma_{-n}(P_1)(x,\xi) - \sigma_{-n}(P)(x,\xi)$$

$$\geq (c+\epsilon)|\xi|_g^{-n} - c|\xi|_g^{-n}$$

$$\geq \epsilon|\xi|_g^{-n} > 0.$$

- As $\sigma_{-n}(P_j)(x,\xi)$, Step 3 ensures that each P_j is strongly measurable and $\oint P_j = \frac{1}{n} \operatorname{Res}(P_j)$.
- It then follows that $P = P_1 P_2$ is strongly measurable, and

$$\int P = \int P_1 - \int P_2 = \frac{1}{n} \operatorname{Res}(P_1) - \frac{1}{n} \operatorname{Res}(P_2) = \frac{1}{n} \operatorname{Res}(P).$$

Proof.

Step 5: General case $P \in \Psi^{-n}(M)$.

• Put $P = \Re P + i \Im P$, with

$$P_1 = \Re P = \frac{1}{2} (P + P^*), \qquad P_2 = \Im P = \frac{1}{2i} (P - P^*).$$

- Here P_1 and P_2 are selfadjoint operators in $\Psi^{-n}(M)$.
- By Step 4 each operator P_j is is strongly measurable and $\int P_j = \frac{1}{n} \operatorname{Res}(P_j)$.
- It then follows that $P = P_1 + iP_2$ is strongly measurable, and

$$\int P = \int P_1 + i \int P_2 = \frac{1}{n} \operatorname{Res}(P_1) + \frac{i}{n} \operatorname{Res}(P_2) = \frac{1}{n} \operatorname{Res}(P).$$

Consequence

- The NC integral makes sense for Ψ DOs of order $\leq -n$
- The NC residue, however, makes sense for all integer order ΨDOs.
- Therefore, the equality between the NC integral and the NC residue enables us to extend the NC integral to all ΨDOs.
- This includes ΨDOs that are not infinitesimals or even bounded!

Definition

For any $P \in \Psi^{\mathbb{Z}}(M)$ we set

$$\int P := \frac{1}{n} \operatorname{Res}(P) = \frac{1}{n} \int_{M} c_{P}(x).$$

Connes' Integration Formula

Setup

- $(M^n, g) = \text{compact Riemannian manifold.}$
- $\nu(g) = \text{Riemannian density}$.
- Δ_g = Laplacian associated with g.

Theorem (Connes' Integration Formula)

For every $f \in C^{\infty}(M)$, the operator $f\Delta_g^{-n/2}$ is strongly measurable, and we have

$$\int f\Delta_g^{-\frac{n}{2}} = c(n) \int_M f(x) \nu(g)(x),$$

where we have set $c(n) := (2\pi)^{-n} |\mathbb{B}^n|$.

Proof.

- $\Delta_g^{-n/2}$ is Ψ DOs of order -n whose principal symbol is $|\xi|_g^{-n}$.
- As $f \in C^{\infty}(M)$, this is a ΨDO of order 0.
- Thus $f\Delta_g^{-n/2}$ is in $\Psi^{-n}(M)$ and it has $f(x)|\xi|_g^{-n}$ as principal symbol.
- Thus, by Connes' trace theorem $f\Delta_g^{-n/2}$ is strongly measurable, and we have

$$\int f \Delta_g^{-\frac{n}{2}} = \frac{1}{n} \operatorname{Res} \left(f \Delta_g^{-\frac{n}{2}} \right) = \frac{(2\pi)^{-n}}{n} \iint_{S^*M} f(x) |\xi|_g^{-n} dx d\xi$$
$$= \frac{1}{n} (2\pi)^{-n} |\mathbb{S}^{n-1}| \int_M f(x) \nu(g)(x).$$

This proves the result.

Remark

- The integration formula actually holds for all $f \in C(M)$.
- It can rewritten as

$$\int \Delta_g^{-\frac{n}{4}} f \Delta_g^{-\frac{n}{4}} = c(n) \int_M f(x) \nu(g)(x) \qquad \forall f \in C(M).$$

Definition (Zygmund)

 $L\log L(M)$ consists of measurable functions $f:M\to\mathbb{C}$ such that

$$\int_{M} |f(x)| \log(1+|f(x)|)\nu(g)(x) < \infty.$$

Proposition

LlogL(M) is a Banach space with respect to the norm,

$$\|f\|_{L\log L} := \inf \left\{ \lambda > 0; \int_M |\lambda^{-1} f(x)| \log(1 + \lambda^{-1} |f(x)|) \nu(g)(x) < 1
ight\}.$$

Theorem (Solomyak, Sukochev-Zanin)

- If $f \in LlogL(M)$, then $(1 + \Delta)^{-n/4} f(1 + \Delta)^{-n/4} \in \mathcal{L}^{1,\infty}$.
- 2 There is C > 0 such that

$$\left\|(1+\Delta)^{-\frac{n}{4}}f(1+\Delta)^{-\frac{n}{4}}\right\|_{1,\infty} \leq C\|f\|_{L\log L} \qquad \forall f \in L\log L(M).$$

Theorem

If $f \in LlogL(M)$, then $(1 + \Delta)^{-n/4}f(1 + \Delta)^{-n/4}$ is strongly measurable, and

$$\int (1+\Delta)^{-\frac{n}{4}} f(1+\Delta)^{-\frac{n}{4}} = c(n) \int_{M} f(x) \nu(g)(x).$$

Consequence

 Connes' integration formula shows that the NC integral recaptures the Riemannian volume density. Namely,

$$\int_{M} f(x)\nu(g)(x) = c(n)^{-1} \int f\Delta_{g}^{-\frac{n}{2}} \qquad \forall f \in C(M).$$

- We regard $c(n)^{-1}\Delta_g^{-n/2}$ as the NC volume element.
- The volume element is ds^n , where ds is the length element.
- Thus, ds is the n-th root of the volume element.

Definition

The NC length element of (M^n, g) is the operator,

$$ds := \left(c(n)^{-1}\Delta_g^{-\frac{n}{2}}\right)^{\frac{1}{n}} = c(n)^{-\frac{1}{n}}\Delta_g^{-\frac{1}{2}}.$$

Remark

ds is a Ψ DO of order -1.

Facts

- For k = 1, ..., n the k-th dimensional volume is meant to be the integral of ds^k .
- Here ds^k is a Ψ DO of order -k.
- The NC integral has been extended to all ΨDOs .
- This enables us to define k-dimensional volumes for all k = 1, ..., n 1.

Definition

For k = 1, ..., n, the k-th dimensional volume of (M^n, g) is

$$\operatorname{Vol}_{g}^{(k)}(M) := \int ds^{k} = c(n)^{-\frac{k}{n}} \int \Delta_{g}^{-\frac{k}{2}}.$$

In particular, the length and area of (M^n, g) are

$$\operatorname{Length}_{g}(M) := \int ds = c(n)^{-\frac{1}{n}} \int \Delta_{g}^{-\frac{1}{2}},$$

$$\operatorname{Area}_{g}(M) := \int ds^{2} = c(n)^{-\frac{2}{n}} \int \Delta_{g}^{-1}.$$

Proposition

- If k and n have opposite parities (i.e., n k is odd), then $\operatorname{Vol}_g^{(k)}(M) = 0$.
- 2 If k = n 2, then

$$\operatorname{Vol}_{g}^{(n-2)}(M) = c(n,2) \int_{M} \kappa_{g}(x) \nu(g)(x),$$

where $\kappa_g(x)$ is the scalar curvature of (M, g).

3 In general, we have

$$Vol_{g}^{(n-k)}(M) = c(n,k) \int_{M} I_{g}^{(k)}(x) \nu(g)(x),$$

where $l_g^{(k)}(x)$ is a universal polynomial in the curvature tensor and its covariant derivatives.

Remark

- The definition of the *k*-th dimensional volumes involved noncommutative geometry.
- However, the formulas in the previous slide provide purely differential-geometric expressions for the k-th dimensional volumes.

Remark

- The functional $g \to \int_M \kappa_g \nu(g)$ is called the Einstein-Hilbert action.
- It accounts for the contribution of gravity forces in the Standard Model from theoretical physics.
- We have

$$\begin{split} \int_{M} \kappa_{g} \nu(g) &= c(n,2)^{-1} \int \Delta_{g}^{-n+2} \\ &= \frac{1}{n} c(n,2)^{-1} \operatorname{Res} \left(\Delta_{g}^{-n+2} \right) \\ &= \frac{2}{n} c(n,2)^{-1} \operatorname{Res}_{s=\frac{n}{2}-1} \operatorname{Tr} \left[\Delta_{g}^{-s} \right]. \end{split}$$

- This yields a spectral theoretic interpretation of the Einstein-Hilbert action.
- This an important ingredient in the spectral action formalism of Connes-Chamseddine-Marcolli.