Introduction to Noncommutative Geometry
Chapter 7:
Connes' Trace Theorem on Euclidean Spaces
Part 3:
Integration Formula

Sichuan University, Summer 2025

Semi-Compactly Supported ΨDOs

Definition

We say that $P \in \Psi^m(U)$, $m \in \mathbb{R}$, is (left) semi-compactly supported if there is a compact $K \subseteq U$ such that

$$\operatorname{supp} Pu \subseteq K \qquad \forall u \in C_c^{\infty}(U).$$

Remark

If P is semi-compactly supported, then there is $\varphi \in C_c^{\infty}(U)$ such that $\varphi P = P$.

Remark

If $U = \mathbb{R}^n$ and $f \in C_c^{\infty}(\mathbb{R}^n)$, then $f(1 + \Delta)^q$, $q \in \mathbb{R}$, is semi-compactly supported.

Semi-Compactly Supported ΨDOs

Proposition (Calderon-Vaillancourt)

If $P \in \Psi^m(U)$, $m \le 0$, is semi-compactly supported, then it uniquely extends to a continuous linear operator,

$$P: L^2(U) \longrightarrow L^2(U).$$

Proposition

Every $P \in \Psi^{-m}(U)$, m > 0, that is semi-compactly supported is in the weak Schatten class $\mathcal{L}^{\frac{n}{m},\infty}$.

Connes' Trace Theorem

Theorem (Connes's Trace Theorem)

If $P \in \Psi^{-n}(U)$ is semi-compactly supported, then P is strongly measureable, and

$$\int P = \frac{1}{n} (2\pi)^{-n} \iint_{U \times \mathbb{S}^{n-1}} \sigma_{-n}(x,\xi) dx d\xi,$$

 $\sigma_{-n}(x,\xi)$ is the principal symbol of P.

Connes' Integration Formula

Theorem

If $f \in C_c^{\infty}(\mathbb{R}^n)$, then $f(1+\Delta)^{-n/2}$ is strongly measurable, and

$$\int f(1+\Delta)^{-\frac{n}{2}} = c(n) \int_{\mathbb{R}^n} f(x) dx.$$

This shows that the NC integral recovers Lebesgue measure on \mathbb{R}^n .

Remark

- If $f \in C_c^{\infty}(\mathbb{R}^n)$, then $(1+\Delta)^{-n/4}f(1+\Delta)^{-n/4}$ is weak-trace class and agrees with $f(1+\Delta)^{-n/2}$ modulo $Com(\mathcal{L}^{1,\infty})$.
- ullet Thus, $(1+\Delta)^{-n/4}f(1+\Delta)^{-n/4}$ is strongly measurable, and

$$\int (1+\Delta)^{-\frac{n}{4}}f(1+\Delta)^{-\frac{n}{4}}=c(n)\int_{\mathbb{R}^n}f(x)dx.$$

Zygmund Space

Definition (Zygmund)

 $L\log L(\mathbb{R}^n)$ consists of measurable functions $f:M\to\mathbb{C}$ such that

$$\int_{M} |f(x)| \log(1+|f(x)|) dx < \infty.$$

Proposition

 $L\log L(\mathbb{R}^n)$ is a Banach space with respect to the norm,

$$||f||_{L\log L} := \inf \left\{ \lambda > 0; \int_{M} |\lambda^{-1}f(x)| \log(1+\lambda^{-1}|f(x)|) dx < 1 \right\}.$$

Connes' Integration Formula

Theorem (Solomyak, Sukochev-Zanin)

- If $f \in L \log L(\mathbb{R}^n)$, then $(1 + \Delta)^{-n/4} f(1 + \Delta)^{-n/4} \in \mathcal{L}^{1,\infty}$.
- 2 There is C > 0 such that

$$\left\|(1+\Delta)^{-\frac{n}{4}}f(1+\Delta)^{-\frac{n}{4}}\right\|_{1,\infty} \leq C\|f\|_{L\log L} \qquad \forall f \in L\log L(\mathbb{R}^n).$$

Connes' Integration Formula

Theorem

If $f \in LlogL(\mathbb{R}^n)$, then $(1+\Delta)^{-n/4}f(1+\Delta)^{-n/4}$ is strongly measurable, and

$$\int (1+\Delta)^{-\frac{n}{4}}f(1+\Delta)^{-\frac{n}{4}}=c(n)\int_{\mathbb{D}^n}f(x)dx.$$