Noncommutative Geometry Chapter 9: Spectral Triples and Dirac Operators

Sichuan University, Spring 2025

Definition

Definition

A spectral triple is a triple (A, \mathcal{H}, D) , where

• \mathcal{H} is a Hilbert space with a \mathbb{Z}_2 -grading $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.

Definition

- \mathcal{H} is a Hilbert space with a \mathbb{Z}_2 -grading $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- \mathcal{A} is a *-subalgebra of $\mathcal{L}(\mathcal{H})$.

Definition

- \mathcal{H} is a Hilbert space with a \mathbb{Z}_2 -grading $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- \mathcal{A} is a *-subalgebra of $\mathcal{L}(\mathcal{H})$.
- *D* is a selfadjoint (unbounded) operator such that:

Definition

- \mathcal{H} is a Hilbert space with a \mathbb{Z}_2 -grading $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- \mathcal{A} is a *-subalgebra of $\mathcal{L}(\mathcal{H})$.
- *D* is a selfadjoint (unbounded) operator such that:
 - D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .

Definition

- \mathcal{H} is a Hilbert space with a \mathbb{Z}_2 -grading $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- \mathcal{A} is a *-subalgebra of $\mathcal{L}(\mathcal{H})$.
- D is a selfadjoint (unbounded) operator such that:
 - D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
 - [D, a] is bounded for all $a \in A$.

Definition

- \mathcal{H} is a Hilbert space with a \mathbb{Z}_2 -grading $\mathcal{H} = \mathcal{H}^+ \oplus \mathcal{H}^-$.
- \mathcal{A} is a *-subalgebra of $\mathcal{L}(\mathcal{H})$.
- D is a selfadjoint (unbounded) operator such that:
 - D maps \mathcal{H}^{\pm} to \mathcal{H}^{\mp} .
 - [D, a] is bounded for all $a \in A$.
 - $(D+i)^{-1}$ is a *compact* operator.

```
Setup
```

Setup

• M^n is a compact oriented Riemannian manifold (n even).

Setup

- M^n is a compact oriented Riemannian manifold (n even).
- $d: C^{\infty}(M, \Lambda^k T^*M) \to C^{\infty}(M, \Lambda^{k+1} T^*M)$ is the de Rham differential with adjoint d^* .

Setup

- M^n is a compact oriented Riemannian manifold (n even).
- $d: C^{\infty}(M, \Lambda^k T^*M) \to C^{\infty}(M, \Lambda^{k+1} T^*M)$ is the de Rham differential with adjoint d^* .

Remark

$$\Lambda^* T^* M = \Lambda^{\text{even}} T^* M \oplus \Lambda^{\text{odd}} T^* M.$$

Setup

- M^n is a compact oriented Riemannian manifold (n even).
- $d: C^{\infty}(M, \Lambda^k T^*M) \to C^{\infty}(M, \Lambda^{k+1} T^*M)$ is the de Rham differential with adjoint d^* .

Remark

$$\Lambda^* T^* M = \Lambda^{\text{even}} T^* M \oplus \Lambda^{\text{odd}} T^* M.$$

Proposition

The following is a spectral triple,

$$\left(C^{\infty}(M),L^{2}(M,\Lambda^{*}T^{*}M),d+d^{*}\right),$$

with $L^2(M, \Lambda^*T^*M) = L^2(M, \Lambda^{\text{even}}T^*M) \oplus L^2(M, \Lambda^{\text{odd}}T^*M)$.

Definition

The Fredholm index of the operator $d + d^*$ is

$$\operatorname{ind}(d+d^*) := \dim \ker \left[\left(d+d^*\right)_{\mid \Lambda^{\operatorname{even}}} \right] - \dim \ker \left[\left(d+d^*\right)_{\mid \Lambda^{\operatorname{odd}}} \right].$$

Definition

The Fredholm index of the operator $d + d^*$ is

$$\operatorname{ind}(d+d^*) := \dim \ker \left[\left(d+d^*\right)_{\mid \Lambda^{\operatorname{even}}} \right] - \dim \ker \left[\left(d+d^*\right)_{\mid \Lambda^{\operatorname{odd}}} \right].$$

Definition (Euler Characteristic $\chi(M)$)

$$\chi(M) := \sum_{k=0}^{n} (-1)^k \dim H^k(M),$$

where $H^k(M)$ is the de Rham cohomology of M.

Theorem (Chern-Gauss-<u>Bonnet)</u>

$$\chi(M) = \operatorname{ind}(d + d^*) = \int_M \operatorname{Pf}\left(R^M\right),$$

where Pf (R^M) is the Pfaffian form of the curvature R^M of M.

Setup

• (M^n, g) compact oriented Riemannian manifold (n even).

Setup

• (M^n, g) compact oriented Riemannian manifold (n even).

Definition (Hodge Operator)

The operator $\star: \Lambda^k T^*M \to \Lambda^{n-k} T^*M$ is defined by

$$\star \alpha \wedge \beta = \langle \alpha, \beta \rangle \operatorname{Vol}_{g}(x) \quad \forall \alpha, \beta \in \Lambda^{k} T_{x}^{*} M,$$

where $Vol_g(x)$ is the volume form of M.

Setup

• (M^n, g) compact oriented Riemannian manifold (n even).

Definition (Hodge Operator)

The operator $\star : \Lambda^k T^*M \to \Lambda^{n-k} T^*M$ is defined by

$$\star \alpha \wedge \beta = \langle \alpha, \beta \rangle \operatorname{Vol}_{\mathbf{g}}(\mathbf{x}) \quad \forall \alpha, \beta \in \Lambda^k T_{\mathbf{x}}^* M,$$

where $Vol_g(x)$ is the volume form of M.

Remark

As $\star^2 = 1$, there is a splitting

$$\Lambda^* T^* M = \Lambda^+ \oplus \Lambda^-$$
, with $\Lambda^{\pm} := \{\alpha; \star \alpha = \pm \alpha\}$.

Proposition

The following is a spectral triple,

$$(C^{\infty}(M), L^2(M, \Lambda^*T^*M), d - \star d\star),$$

with
$$L^2(M, \Lambda^* T^* M) = L^2(M, \Lambda^+) \oplus L^2(M, \Lambda^-)$$
.

<u>Definition</u>

The Fedholm index of $d - \star d \star$ is

$$\operatorname{ind}(d - \star d \star) := \operatorname{dim} \operatorname{ker} \left[(d - \star d \star)_{|\Lambda^+} \right] - \operatorname{dim} \operatorname{ker} \left[(d - \star d \star)_{|\Lambda^-} \right].$$

Definition

The Fedholm index of $d - \star d \star$ is

$$\operatorname{ind}(d-\star d\star) := \dim \ker \left[(d-\star d\star)_{|\Lambda^+} \right] - \dim \ker \left[(d-\star d\star)_{|\Lambda^-} \right].$$

Definition (Signature $\sigma(M)$)

If n = 4p, then $\sigma(M)$ of M is the signature of the bilinear form,

$$H^{\frac{n}{2}}(M) \times H^{\frac{n}{2}}(M) \ni (\alpha, \beta) \to \int_{M} \alpha \wedge \beta.$$

Theorem (Hirzebruch)

$$\sigma(M) = \operatorname{ind}(d - \star d\star) \quad \text{if } n = 4p,$$
$$= 2^{\frac{n}{2}} \int_{M} L\left(R^{M}\right),$$

Theorem (Hirzebruch)

$$\sigma(M) = \operatorname{ind}(d - \star d\star) \quad \text{if } n = 4p,$$
$$= 2^{\frac{n}{2}} \int_{M} L\left(R^{M}\right),$$

where $L(R^M) := \det^{\frac{1}{2}} \left[\frac{R^M/2}{\tanh(R^M/2)} \right]$ is called the L-form of the curvature R^M .

Setup

• M^n compact Kälher manifold (n = complex dimension).

Setup

- M^n compact Kälher manifold (n = complex dimension).
- $\Lambda^{0,q} T^* M := \operatorname{Span} \left\{ d\overline{z_{k_1}} \wedge \cdots \wedge d\overline{z_{k_q}} \right\}$ is the bundle of anti-holomorphic q-forms.

Setup

- M^n compact Kälher manifold (n = complex dimension).
- $\Lambda^{0,q} T^* M := \operatorname{Span} \left\{ d\overline{z_{k_1}} \wedge \cdots \wedge d\overline{z_{k_q}} \right\}$ is the bundle of anti-holomorphic q-forms.
- $\overline{\partial}: C^{\infty}(M, \Lambda^{0,q}T^*M) \to C^{\infty}(M, \Lambda^{0,q+1}T^*M)$ is the Dolbeault differential with adjoint $\overline{\partial}^*$.

Setup

- M^n compact Kälher manifold (n = complex dimension).
- $\Lambda^{0,q} T^* M := \operatorname{Span} \left\{ d\overline{z_{k_1}} \wedge \cdots \wedge d\overline{z_{k_q}} \right\}$ is the bundle of anti-holomorphic q-forms.
- $\overline{\partial}: C^{\infty}(M, \Lambda^{0,q}T^*M) \to C^{\infty}(M, \Lambda^{0,q+1}T^*M)$ is the Dolbeault differential with adjoint $\overline{\partial}^*$.

Remark

$$\Lambda^{0,*}T^*M=\Lambda^{0,\text{even}}T^*M\oplus\Lambda^{0,\text{odd}}T^*M.$$

The Dolbeault Spectral Triple

Proposition

The following is a spectral triple,

$$\left(\mathit{C}^{\infty}(\mathit{M}),\mathit{L}^{2}\left(\mathit{M},\Lambda^{0,*}\mathit{T}^{*}\mathit{M}\right),\overline{\partial}+\overline{\partial}^{*}\right),$$

with
$$L^{2}\left(M, \Lambda^{0,*}T^{*}M\right) = L^{2}\left(M, \Lambda^{0,\mathsf{even}}T^{*}M\right) \oplus L^{2}\left(M, \Lambda^{0,\mathsf{odd}}T^{*}M\right)$$

Definition

The Fredholm index of the operator $\overline{\partial} + \overline{\partial}^*$ is

$$\mathsf{ind}(\overline{\partial} + \overline{\partial}^*) := \mathsf{dim} \, \mathsf{ker} \left[(\overline{\partial} + \overline{\partial}^*)_{|\Lambda^{0,\mathsf{even}}} \right] - \mathsf{dim} \, \mathsf{ker} \left[(\overline{\partial} + \overline{\partial}^*)_{|\Lambda^{0,\mathsf{odd}}} \right].$$

Definition

The *Fredholm index* of the operator $\overline{\partial} + \overline{\partial}^*$ is

$$\mathsf{ind}(\overline{\partial} + \overline{\partial}^*) := \mathsf{dim} \, \mathsf{ker} \left[(\overline{\partial} + \overline{\partial}^*)_{|\Lambda^{0,\mathsf{even}}} \right] - \mathsf{dim} \, \mathsf{ker} \left[(\overline{\partial} + \overline{\partial}^*)_{|\Lambda^{0,\mathsf{odd}}} \right].$$

Definition (Holomorphic Euler Characteristic)

$$\chi(M) := \sum_{q=0}^{n} (-1)^q \dim H^{0,q}(M),$$

where $H^{0,q}(M)$ is the Dolbeault cohomology of M.

Theorem (Hirzebruch-Riemann-Roch)

$$\chi(M) = \operatorname{ind}\left(\overline{\partial} + \overline{\partial}^*\right) = \int_M \operatorname{Td}\left(R^{1,0}\right),$$

Theorem (Hirzebruch-Riemann-Roch)

$$\chi(M) = \operatorname{ind}\left(\overline{\partial} + \overline{\partial}^*\right) = \int_M \operatorname{Td}\left(R^{1,0}\right),$$

where $\operatorname{Td}\left(R^{1,0}\right):=\operatorname{det}\left[\frac{R^{1,0}}{e^{R^{1,0}}-1}\right]$ is called the Todd form of the holomorphic curvature $R^{1,0}$ of M.

Fact

On \mathbb{R}^n the square root $\sqrt{\Delta}$ is a ΨDO , but not a differential operator.

Fact

On \mathbb{R}^n the square root $\sqrt{\Delta}$ is a ΨDO , but not a differential operator.

Dirac's Idea

Fact

On \mathbb{R}^n the square root $\sqrt{\Delta}$ is a ΨDO , but not a differential operator.

Dirac's Idea

Seek for a square root of Δ as a differential operator with *matrix* coefficients,

$$\not \! D = \sum c^j \partial_j.$$

Definition

The Clifford algebra of \mathbb{R}^n is the \mathbb{C} -algebra $\mathrm{Cl}(\mathbb{R}^n)$ generated by the canonical basis vectors e^1, \dots, e^n of \mathbb{R}^n with relations,

$$e^i e^j + e^j e^i = -2\delta^{ij}.$$

Definition

The Clifford algebra of \mathbb{R}^n is the \mathbb{C} -algebra $\mathsf{Cl}(\mathbb{R}^n)$ generated by the canonical basis vectors e^1, \dots, e^n of \mathbb{R}^n with relations,

$$e^i e^j + e^j e^i = -2\delta^{ij}.$$

Remark

Any Euclidean space $(V, \langle \cdot, \cdot \rangle)$ defines a Clifford algebra.

Denote by $\Lambda^{\bullet}_{\mathbb{C}}\mathbb{R}^n$ the complexified exterior algebra of \mathbb{R}^n .

Denote by $\bigwedge_{\mathbb{C}}^{n} \mathbb{R}^{n}$ the complexified exterior algebra of \mathbb{R}^{n} .

Proposition

There is a linear isomorphism $c: \Lambda^{\bullet}_{\mathbb{C}}\mathbb{R}^n \to \mathsf{Cl}(\mathbb{R}^n)$ given by

Denote by $\bigwedge_{\mathbb{C}}^{n} \mathbb{R}^{n}$ the complexified exterior algebra of \mathbb{R}^{n} .

Proposition

There is a linear isomorphism $c: \Lambda_{\mathbb{C}}^{\bullet}\mathbb{R}^n \to \mathsf{Cl}(\mathbb{R}^n)$ given by

$$c(e^{i_1} \wedge \cdots \wedge e^{i_k}) = e^{i_1} \cdots e^{i_k}, \qquad 1 \leq i_1 < \cdots < i_k \leq n.$$

Denote by $\bigwedge_{\mathbb{C}}^{\bullet} \mathbb{R}^n$ the complexified exterior algebra of \mathbb{R}^n .

Proposition

There is a linear isomorphism $c: \Lambda_{\mathbb{C}}^{\bullet}\mathbb{R}^n \to \mathsf{Cl}(\mathbb{R}^n)$ given by

$$c(e^{i_1} \wedge \cdots \wedge e^{i_k}) = e^{i_1} \cdots e^{i_k}, \qquad 1 \leq i_1 < \cdots < i_k \leq n.$$

Remark

This is not an isomorphism of algebras,

Denote by $\Lambda^{\bullet}_{\mathbb{C}}\mathbb{R}^n$ the complexified exterior algebra of \mathbb{R}^n .

Proposition

There is a linear isomorphism $c: \Lambda_{\mathbb{C}}^{\bullet}\mathbb{R}^n \to \mathsf{Cl}(\mathbb{R}^n)$ given by

$$c(e^{i_1} \wedge \cdots \wedge e^{i_k}) = e^{i_1} \cdots e^{i_k}, \qquad 1 \leq i_1 < \cdots < i_k \leq n.$$

Remark

This is not an isomorphism of algebras, e.g., for all $\xi, \eta \in \mathbb{R}^n$, we have $c^{-1}(c(\xi)c(\eta)) = \xi \wedge \eta - \langle \xi, \eta \rangle$.

Corollary

There is a \mathbb{Z}_2 -grading,

$$\mathsf{CI}(\mathbb{R}^n) = \mathsf{CI}^+(\mathbb{R}^n) \oplus \mathsf{CI}^-(\mathbb{R}^n), \quad \mathsf{CI}^\pm(\mathbb{R}^n) := c(\Lambda_\mathbb{C}^{\mathsf{even}/odd}\mathbb{R}^n).$$

Corollary

There is a \mathbb{Z}_2 -grading,

$$\mathsf{CI}(\mathbb{R}^n) = \mathsf{CI}^+(\mathbb{R}^n) \oplus \mathsf{CI}^-(\mathbb{R}^n), \quad \mathsf{CI}^\pm(\mathbb{R}^n) := c(\Lambda^{\mathsf{even}/odd}_\mathbb{C}\mathbb{R}^n).$$

Remark

 $\mathsf{Cl}^+(\mathbb{R}^n)$ is a sub-algebra of $\mathsf{Cl}(\mathbb{R}^n)$.

Theorem

① $Cl(\mathbb{R}^n)$ has a unique irreducible representation,

$$\rho: \mathsf{Cl}(\mathbb{R}^n) \to \mathsf{End}(\mathfrak{Z}_n),$$

where \mathfrak{z}_n is the space of spinors of \mathbb{R}^n .

$\mathsf{Theorem}$

• $Cl(\mathbb{R}^n)$ has a unique irreducible representation,

$$\rho: \mathsf{Cl}(\mathbb{R}^n) \to \mathsf{End}(\mathfrak{Z}_n),$$

where \mathfrak{z}_n is the space of spinors of \mathbb{R}^n .

② If n is even, then \$ has a splitting $\$_n = \$_n^+ \oplus \$_n^-$, which is preserved by the action of $Cl^+(\mathbb{R}^n)$.

Theorem

 \bigcirc Cl(\mathbb{R}^n) has a unique irreducible representation,

$$\rho: \mathsf{Cl}(\mathbb{R}^n) \to \mathsf{End}(\mathfrak{z}_n),$$

where \mathfrak{z}_n is the space of spinors of \mathbb{R}^n .

- ② If n is even, then \$ has a splitting $\$_n = \$_n^+ \oplus \$_n^-$, which is preserved by the action of $Cl^+(\mathbb{R}^n)$.
- If n is even, the spinor representation gives rise to an isomorphism, $\operatorname{Cl}(\mathbb{R}^n) \simeq \operatorname{End} \mathfrak{S}_n$.

19/23

Definition

The spin group Spin(n) is the double cover of SO(n),

$$\{\pm 1\} \to \mathsf{Spin}(n) \to \mathsf{SO}(n) \to \{1\}.$$

Definition

The spin group Spin(n) is the double cover of SO(n),

$$\{\pm 1\} \to \operatorname{\mathsf{Spin}}(n) \to \operatorname{\mathsf{SO}}(n) \to \{1\}.$$

Remark

The spin group Spin(n) can be realized as the Lie group of some Lie algebra contained in $Cl^+(\mathbb{R}^n)$.

Definition

The spin group Spin(n) is the double cover of SO(n),

$$\{\pm 1\} \rightarrow \mathsf{Spin}(n) \rightarrow \mathsf{SO}(n) \rightarrow \{1\}.$$

Remark

The spin group Spin(n) can be realized as the Lie group of some Lie algebra contained in $Cl^+(\mathbb{R}^n)$.

Proposition

The spinor representation splits into the half-spin representations,

$$\rho_{\pm}: \mathsf{Spin}(n) \longrightarrow \mathsf{End}(\mathfrak{F}_n^{\pm}).$$

Setup

 (M^n, g) is a compact oriented Riemannian manifold (n even).

Setup

 (M^n, g) is a compact oriented Riemannian manifold (n even).

Definition

The Clifford bundle of M is the bundle of algebras,

$$CI(M) = \bigsqcup_{x \in M} CI(T_x^*M),$$

where $Cl(T_x^*M)$ is the Clifford algebra of (T_x^*M, g^{-1}) .

Remarks

• There is a quantization map,

$$c: \Lambda^{\bullet}_{\mathbb{C}} T^*M \longrightarrow Cl(M).$$

• This an isomorphism of vector bundles, but not an isomorphism of algebra bundles.

Remarks

• There is a quantization map,

$$c: \Lambda^{\bullet}_{\mathbb{C}} T^*M \longrightarrow Cl(M).$$

- This an isomorphism of vector bundles, but not an isomorphism of algebra bundles.
- There is also a splitting,

$$\mathsf{CI}(M) = \mathsf{CI}^+(M) \oplus \mathsf{CI}^-(M), \quad \mathsf{CI}^\pm(M) = c \left(\Lambda^{\mathsf{even/odd}} \, \mathcal{T}_\mathbb{C}^* M \right).$$

Remarks

• There is a quantization map,

$$c: \Lambda_{\mathbb{C}}^{\bullet} T^*M \longrightarrow Cl(M).$$

- This an isomorphism of vector bundles, but not an isomorphism of algebra bundles.
- There is also a splitting,

$$\mathsf{CI}(M) = \mathsf{CI}^+(M) \oplus \mathsf{CI}^-(M), \quad \mathsf{CI}^\pm(M) = c \left(\Lambda^{\mathsf{even/odd}} \, \mathcal{T}_\mathbb{C}^* M \right).$$

• Here $Cl^+(M)$ is a sub-bundle of algebras of Cl(M).

Definition

A *spin structure* on M is a reduction of its structure group from SO(n) to Spin(n).

Definition

A *spin structure* on M is a reduction of its structure group from SO(n) to Spin(n).

Theorem

Definition

A *spin structure* on M is a reduction of its structure group from SO(n) to Spin(n).

Theorem

If M has a spin structure, then there is an associated spinor bundle $\$ = \$^+ \oplus \$^-$ such that

Definition

A *spin structure* on M is a reduction of its structure group from SO(n) to Spin(n).

Theorem

If M has a spin structure, then there is an associated spinor bundle $\$ = \$^+ \oplus \$^-$ such that

• $Cl(M) \simeq End$ \$

Definition

A *spin structure* on M is a reduction of its structure group from SO(n) to Spin(n).

Theorem

If M has a spin structure, then there is an associated spinor bundle $\$ = \$^+ \oplus \$^-$ such that

• $Cl(M) \simeq End \$$ and the action of $Cl^+(M)$ preserves the \mathbb{Z}_2 -grading $\$ = \$^+ \oplus \$^-$.

Definition

A *spin structure* on M is a reduction of its structure group from SO(n) to Spin(n).

Theorem

If M has a spin structure, then there is an associated spinor bundle $\$ = \$^+ \oplus \$^-$ such that

- $Cl(M) \simeq End \$$ and the action of $Cl^+(M)$ preserves the \mathbb{Z}_2 -grading $\$ = \$^+ \oplus \$^-$.
- 2 The Riemannian metric lifts to a Hermitian metric on \$.

Definition

A *spin structure* on M is a reduction of its structure group from SO(n) to Spin(n).

Theorem

If M has a spin structure, then there is an associated spinor bundle $\$ = \$^+ \oplus \$^-$ such that

- CI(M) \simeq End \$ and the action of CI⁺(M) preserves the \mathbb{Z}_2 -grading \$ = \$^+ \oplus \$^-.
- 2 The Riemannian metric lifts to a Hermitian metric on \$.
- **3** The Levi-Civita connection lifts to a connection $\nabla^{\$}$ on \$ preserving its \mathbb{Z}_2 -grading and Hermitian metric.

Setup

 (M^n, g) is a compact spin oriented Riemannian manifold (n even).

Setup

 (M^n, g) is a compact spin oriented Riemannian manifold (n even).

Definition (Dirac operator)

The Dirac operator $D: C^{\infty}(M,\$) \to C^{\infty}(M,\$)$ is the composition,

Setup

 (M^n, g) is a compact spin oriented Riemannian manifold (n even).

Definition (Dirac operator)

The Dirac operator $\not D: C^{\infty}(M, \$) \to C^{\infty}(M, \$)$ is the composition,

$$\emptyset: C^{\infty}(M, \$) \xrightarrow{\nabla^{\$}} C^{\infty}(M, \$ \otimes T^{*}M) \longrightarrow C^{\infty}(M, \$)
\sigma \otimes \xi \longrightarrow c(\xi)\sigma,$$

Setup

 (M^n, g) is a compact spin oriented Riemannian manifold (n even).

Definition (Dirac operator)

The Dirac operator $\not D: C^{\infty}(M, \$) \to C^{\infty}(M, \$)$ is the composition,

$$\emptyset: C^{\infty}(M, \$) \xrightarrow{\nabla^{\$}} C^{\infty}(M, \$ \otimes T^{*}M) \longrightarrow C^{\infty}(M, \$)
\sigma \otimes \xi \longrightarrow c(\xi)\sigma,$$

where $c(\xi) \in Cl_x(M)$ is identified with an element of End S_x .

Setup

 (M^n, g) is a compact spin oriented Riemannian manifold (n even).

Definition (Dirac operator)

The Dirac operator $ot \!\!\!\!/ : C^\infty(M, \$) \to C^\infty(M, \$)$ is the composition,

where $c(\xi) \in Cl_x(M)$ is identified with an element of End \mathcal{S}_x .

Proposition

The following is a spectral triple,

$$(C^{\infty}(M), L^{2}(M, \$), \not D),$$

with
$$L^2(M, \$) = L^2(M, \$^+) \oplus L^2(M, \$^-)$$
.