Noncommutative Geometry
Chapter 8:
Connes' Trace Theorem
and Lower Dimensional Volumes

Sichuan University, Spring 2025

Connes's Trace Theorem and Lower Dimensional Volumes

Additional References

• Slides of my 2022 online course.

Definition (Weak Schatten Classes $\mathcal{L}_{p,\infty}$)

Let p > 0.

① The weak Schatten class $\mathcal{L}_{p,\infty}$ consists of all $T \in \mathcal{L}(\mathcal{H})$ such that

$$\mu_j(T) = O\left(j^{-\frac{1}{p}}\right)$$
 as $j \to \infty$.

Definition (Weak Schatten Classes $\mathcal{L}_{p,\infty}$)

Let p > 0.

① The weak Schatten class $\mathcal{L}_{p,\infty}$ consists of all $T \in \mathcal{L}(\mathcal{H})$ such that

$$\mu_j(T) = O\left(j^{-\frac{1}{p}}\right)$$
 as $j \to \infty$.

2 For $T \in \mathcal{L}(\mathcal{H})$, we set

$$\|T\|_{p,\infty} := \sup_{j\geq 0} (n+1)^{\frac{1}{p}} \mu_j(T).$$

Proposition

- **1** $\mathcal{L}_{p,\infty}$ is a two-sided ideal of $\mathcal{L}(\mathcal{H})$.
- $\|\cdot\|_{p,\infty}$ is a quasi-norm which respect to which $\mathcal{L}_{p,\infty}$ is a quasi-Banach ideal.

Proposition

- **1** $\mathcal{L}_{p,\infty}$ is a two-sided ideal of $\mathcal{L}(\mathcal{H})$.
- $\|\cdot\|_{p,\infty}$ is a quasi-norm which respect to which $\mathcal{L}_{p,\infty}$ is a quasi-Banach ideal.

Remark

• If p > 1, then $\|\cdot\|_{p,\infty}$ is equivalent to the norm,

$$\|T\|'_{p,\infty} = \sup_{N\geq 1} \left\{ N^{-1+\frac{1}{p}} \sum_{j< N} \mu_j(T) \right\}, \qquad T \in \mathcal{L}_{p,\infty}.$$

2 In this case, $\mathcal{L}_{p,\infty}$ is a Banach ideal (w.r.t. that norm).

Notation

 $(\mathcal{L}_{p,\infty})_0$ is the closure in $\mathcal{L}_{p,\infty}$ of finite-rank operators.

Notation

 $(\mathcal{L}_{p,\infty})_0$ is the closure in $\mathcal{L}_{p,\infty}$ of finite-rank operators.

Proposition

We have

$$(\mathcal{L}_{\rho,\infty})_0 = \left\{ T \in \mathcal{L}(\mathcal{H}); \ \mu_j(T) = o\left(j^{-\frac{1}{p}}\right) \right\}.$$

Notation

 $(\mathcal{L}_{p,\infty})_0$ is the closure in $\mathcal{L}_{p,\infty}$ of finite-rank operators.

Proposition

We have

$$(\mathcal{L}_{
ho,\infty})_0 = \left\{ T \in \mathcal{L}(\mathcal{H}); \ \mu_j(T) = \mathrm{o}\left(j^{-\frac{1}{p}}\right) \right\}.$$

Remark

For 0 we have strict inclusions,

$$\mathcal{L}_p \subsetneq (\mathcal{L}_{p,\infty})_0 \subsetneq \mathcal{L}_{p,\infty} \subsetneq \mathcal{L}_q$$
.

Reminder: Quantized Calculus

Classical	Quantum (Connes)
Complex variable	Operator on Hilbert space ${\cal H}$
Real variable	Selfadjoint operator on ${\cal H}$
Infinitesimal variable	Compact operator on ${\cal H}$
Infinitesimal of $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Compact operator s.t. $\mu_j(T) = \mathrm{O}(j^{-\alpha})$
Integral $\int f(x)dx$	NC integral f

Reminder: Quantized Calculus

Classical	Quantum (Connes)
Complex variable	Operator on Hilbert space ${\cal H}$
Real variable	Selfadjoint operator on ${\cal H}$
Infinitesimal variable	Compact operator on ${\cal H}$
Infinitesimal of $\ $ order $lpha$	Compact operator s.t. $\mu_j(\mathcal{T}) = O(j^{-lpha})$
Integral $\int f(x)dx$	NC integral <i>∱ T</i>

Remarks

- $\mu_0(T) \ge \mu_1(T) \ge \cdots$ are the singular values of T.
- T is infinitesimal of order α iff $T \in \mathcal{L}_{p,\infty}$, with $p = \alpha^{-1}$.

Ansatz for a NC Integral (Connes)

Ansatz for a NC Integral (Connes)

The NC integral should have the following properties:

• It is defined on infinitesimals of order 1, i.e., on the weak trace class $\mathcal{L}_{1,\infty}$.

Ansatz for a NC Integral (Connes)

- It is defined on infinitesimals of order 1, i.e., on the weak trace class $\mathcal{L}_{1,\infty}$.
- 2 It should take non-negative values on positive operators.

Ansatz for a NC Integral (Connes)

- ① It is defined on infinitesimals of order 1, i.e., on the weak trace class $\mathcal{L}_{1,\infty}$.
- ② It should take non-negative values on positive operators.
- 3 It vanishes on infinitesimals of order > 1.

Ansatz for a NC Integral (Connes)

- It is defined on infinitesimals of order 1, i.e., on the weak trace class $\mathcal{L}_{1,\infty}$.
- 2 It should take non-negative values on positive operators.
- 3 It vanishes on infinitesimals of order > 1.
- It vanishes on the commutator space,

$$\mathsf{Com}(\mathcal{L}_{1,\infty}) := \mathsf{Span}\left\{[A,T]; \ A \in \mathcal{L}(\mathcal{H}), \ T \in \mathcal{L}_{1,\infty}\right\}.$$

Ansatz for a NC Integral (Connes)

The NC integral should have the following properties:

- It is defined on infinitesimals of order 1, i.e., on the weak trace class $\mathcal{L}_{1,\infty}$.
- It should take non-negative values on positive operators.
- 3 It vanishes on infinitesimals of order > 1.
- It vanishes on the commutator space,

$$\mathsf{Com}(\mathcal{L}_{1,\infty}) := \mathsf{Span}\,\big\{[A,\,T];\ A\in\mathcal{L}(\mathcal{H}),\ T\in\mathcal{L}_{1,\infty}\big\}.$$

In other words, it should be a positive trace on $\mathcal{L}_{1,\infty}$ vanishing on infinitesimals of order > 1.

Definition

If T is a compact operator, then by an eigenvalue sequence $\lambda(T) = \{\lambda_j(T)\}_{j \geq 0}$ it is meant any sequence such that:

- $\lambda_j(T)$ is an eigenvalue of T and is repeated according to (algebraic) multiplicity.
- $\bullet |\lambda_0(T)| \geq |\lambda_1(T)| \geq \cdots.$

Definition

If T is a compact operator, then by an eigenvalue sequence $\lambda(T) = \{\lambda_j(T)\}_{j \geq 0}$ it is meant any sequence such that:

- $\lambda_j(T)$ is an eigenvalue of T and is repeated according to (algebraic) multiplicity.
- $|\lambda_0(T)| \geq |\lambda_1(T)| \geq \cdots$

Facts

1 If $T \in \mathcal{L}_{1,\infty}$, and $\{\lambda_j(T)\}_{j\geq 0}$ is any eigenvalue sequence, then

$$\frac{1}{\log N} \sum_{j < N} \lambda_j(T) = O(1).$$

Definition

If T is a compact operator, then by an eigenvalue sequence $\lambda(T) = \{\lambda_j(T)\}_{j \geq 0}$ it is meant any sequence such that:

- $\lambda_j(T)$ is an eigenvalue of T and is repeated according to (algebraic) multiplicity.
- $|\lambda_0(T)| \geq |\lambda_1(T)| \geq \cdots$

Facts

1 If $T \in \mathcal{L}_{1,\infty}$, and $\{\lambda_j(T)\}_{j\geq 0}$ is any eigenvalue sequence, then

$$\frac{1}{\log N} \sum_{j < N} \lambda_j(T) = O(1).$$

② If $T \in (\mathcal{L}_{1,\infty})_0$, then we further have

$$\frac{1}{\log N} \sum_{j < N} \lambda_j(T) \longrightarrow 0.$$

Notation

- $\ell_{\infty} = C^*$ -algebra of bounded complex-valued sequences.
- c_0 = closed ideal of sequences converging to 0.

Notation

- $\ell_{\infty} = C^*$ -algebra of bounded complex-valued sequences.
- c_0 = closed ideal of sequences converging to 0.

Definition

An extended limit is any positive linear map $\lim_{\omega} : \ell_{\infty} \to \mathbb{C}$ s.t.:

- (i) $\lim_{\omega} 1 = 1$.
- (ii) $\lim_{\omega} a_j = 0$ if $(a_j) \in \mathfrak{c}_0$.

Notation

- $\ell_{\infty} = C^*$ -algebra of bounded complex-valued sequences.
- c_0 = closed ideal of sequences converging to 0.

Definition

An extended limit is any positive linear map $\lim_{\omega}: \ell_{\infty} \to \mathbb{C}$ s.t.:

- (i) $\lim_{\omega} 1 = 1$.
- (ii) $\lim_{\omega} a_j = 0$ if $(a_j) \in \mathfrak{c}_0$.

Remark

If $(a_i) \in \ell_{\infty}$, then

$$(\lim a_i = L) \iff (\lim_{\omega} a_i = L \quad \forall \lim_{\omega}).$$

Definition

If \lim_{ω} is an extended limit, then $\operatorname{Tr}_{\omega}:\mathcal{L}_{1,\infty}\to\mathbb{C}$ is given by

$$\mathsf{Tr}_\omega(T) := \mathsf{lim}_\omega \left\{ rac{1}{\log N} \sum_{i < N} \lambda_j(T)
ight\}, \qquad T \in \mathcal{L}_{1,\infty}.$$

Definition

If \lim_{ω} is an extended limit, then $\operatorname{Tr}_{\omega}:\mathcal{L}_{1,\infty}\to\mathbb{C}$ is given by

$$\mathsf{Tr}_\omega(\mathcal{T}) := \mathsf{lim}_\omega \, \Big\{ rac{1}{\log N} \sum_{j < N} \lambda_j(\mathcal{T}) \Big\}, \qquad \mathcal{T} \in \mathcal{L}_{1,\infty}.$$

Proposition (Dixmier)

- **1** Tr_{ω} is a positive linear trace on $\mathcal{L}_{1,\infty}$.
- 2 It is annihilated by $(\mathcal{L}_{1,\infty})_0$, and hence it vanishes on infinitesimals of order > 1.

Definition

If \lim_{ω} is an extended limit, then $\operatorname{Tr}_{\omega}:\mathcal{L}_{1,\infty}\to\mathbb{C}$ is given by

$$\mathsf{Tr}_\omega(\mathcal{T}) := \mathsf{lim}_\omega \, \Big\{ rac{1}{\log N} \sum_{j < N} \lambda_j(\mathcal{T}) \Big\}, \qquad \mathcal{T} \in \mathcal{L}_{1,\infty}.$$

Proposition (Dixmier)

- **1** Tr_{ω} is a positive linear trace on $\mathcal{L}_{1,\infty}$.
- ② It is annihilated by $(\mathcal{L}_{1,\infty})_0$, and hence it vanishes on infinitesimals of order > 1.

Definition

 Tr_{ω} is called the Dixmier trace associated with \lim_{ω} .

Definition (Connes)

• An operator $T \in \mathcal{L}_{1,\infty}$ is called measurable if the value of $\operatorname{Tr}_{\omega}(T)$ does not depend on the extended limit.

Definition (Connes)

- An operator $T \in \mathcal{L}_{1,\infty}$ is called measurable if the value of $\mathsf{Tr}_{\omega}(T)$ does not depend on the extended limit.
- $oldsymbol{2}$ We denote by ${\cal M}$ the class of measurable operators.

Definition (Connes)

- **●** An operator $T \in \mathcal{L}_{1,\infty}$ is called measurable if the value of $\mathsf{Tr}_{\omega}(T)$ does not depend on the extended limit.
- $oldsymbol{2}$ We denote by ${\cal M}$ the class of measurable operators.
- **3** If $T \in \mathcal{M}$, we define its NC integral by

$$\int T := \mathrm{Tr}_{\omega}(A),$$

where Tr_{ω} is any Dixmier trace.

Definition (Connes)

- **①** An operator $T \in \mathcal{L}_{1,\infty}$ is called measurable if the value of $\mathsf{Tr}_{\omega}(T)$ does not depend on the extended limit.
- $oldsymbol{2}$ We denote by ${\cal M}$ the class of measurable operators.
- **3** If $T \in \mathcal{M}$, we define its NC integral by

$$\int T := \operatorname{Tr}_{\omega}(A),$$

where Tr_{ω} is any Dixmier trace.

Proposition (Connes, Lord-Sukochev-Zanin)

Let $T \in \mathcal{L}_{1,\infty}$. Then TFAE:

- **1** T is measurable and $\int T = L$.
- We have

$$\lim_{N\to\infty}\frac{1}{\log N}\sum_{j< N}\lambda_j(T)=L.$$

Proposition

1 \mathcal{M} is a closed subspace of $\mathcal{L}_{1,\infty}$ that contains $\mathsf{Com}(\mathcal{L}_{1,\infty})$ and $(\mathcal{L}_{1,\infty})_0$.

Proposition

- ① \mathcal{M} is a closed subspace of $\mathcal{L}_{1,\infty}$ that contains $\mathsf{Com}(\mathcal{L}_{1,\infty})$ and $(\mathcal{L}_{1,\infty})_0$.
- ② $f: \mathcal{M} \to \mathbb{C}$ is a positive linear functional that vanishes on $\mathsf{Com}(\mathcal{L}_{1,\infty})$ and $(\mathcal{L}_{1,\infty})_0$.

Proposition

- **1** \mathcal{M} is a closed subspace of $\mathcal{L}_{1,\infty}$ that contains $\mathsf{Com}(\mathcal{L}_{1,\infty})$ and $(\mathcal{L}_{1,\infty})_0$.
- ② $f: \mathcal{M} \to \mathbb{C}$ is a positive linear functional that vanishes on $\mathsf{Com}(\mathcal{L}_{1,\infty})$ and $(\mathcal{L}_{1,\infty})_0$.
- **1** In particular, this is a positive trace that annihilates infinitesimals of order > 1.

Strong Measurability

Definition

A trace $\varphi: \mathcal{L}_{1,\infty} \to \mathbb{C}$ is called normalized if

$$(T \ge 0 \text{ and } \lambda_j(T) = (j+1)^{-1}) \Longrightarrow \varphi(T) = 1.$$

Strong Measurability

Definition

A trace $\varphi: \mathcal{L}_{1,\infty} \to \mathbb{C}$ is called normalized if

$$(T \ge 0 \text{ and } \lambda_j(T) = (j+1)^{-1}) \Longrightarrow \varphi(T) = 1.$$

Remarks

1 Every Dixmier trace Tr_{ω} is a normalized trace.

Strong Measurability

Definition

A trace $\varphi: \mathcal{L}_{1,\infty} \to \mathbb{C}$ is called normalized if

$$(T \ge 0 \text{ and } \lambda_j(T) = (j+1)^{-1}) \Longrightarrow \varphi(T) = 1.$$

Remarks

- **1** Every Dixmier trace Tr_{ω} is a normalized trace.
- **2** There are (uncountably) many normalized positive traces on $\mathcal{L}_{1,\infty}$ that are not Dixmier traces.

Definition

A trace $\varphi: \mathcal{L}_{1,\infty} \to \mathbb{C}$ is called normalized if

$$(T \ge 0 \text{ and } \lambda_j(T) = (j+1)^{-1}) \Longrightarrow \varphi(T) = 1.$$

Remarks

- **1** Every Dixmier trace Tr_{ω} is a normalized trace.
- **2** There are (uncountably) many normalized positive traces on $\mathcal{L}_{1,\infty}$ that are not Dixmier traces.

Definition

An operator $T\in\mathcal{L}_{1,\infty}$ is called strongly measurable (or positively measurable) if $\varphi(T)$ takes the same value as φ ranges over all normalized positive traces.

Notation

 $\mathcal{M}_s = \text{class of strongly measurable operators.}$

Notation

 $\mathcal{M}_s = \text{class of strongly measurable operators}.$

Proposition

1 \mathcal{M}_s is a closed subspace of $\mathcal{L}_{1,\infty}$.

Notation

 \mathcal{M}_s = class of strongly measurable operators.

Proposition

- **1** \mathcal{M}_s is a closed subspace of $\mathcal{L}_{1,\infty}$.
- ② It contains $Com(\mathcal{L}_{1,\infty})$ and $(\mathcal{L}_{1,\infty})_0$. In particular, it contains all infinitesimals of order > 1.

Notation

 \mathcal{M}_s = class of strongly measurable operators.

Proposition

- **1** \mathcal{M}_s is a closed subspace of $\mathcal{L}_{1,\infty}$.
- ② It contains $Com(\mathcal{L}_{1,\infty})$ and $(\mathcal{L}_{1,\infty})_0$. In particular, it contains all infinitesimals of order > 1.
- **3** It does not depend on the inner product of $\mathcal{L}(\mathcal{H})$.

Notation

 \mathcal{M}_s = class of strongly measurable operators.

Proposition

- **1** \mathcal{M}_s is a closed subspace of $\mathcal{L}_{1,\infty}$.
- ② It contains $Com(\mathcal{L}_{1,\infty})$ and $(\mathcal{L}_{1,\infty})_0$. In particular, it contains all infinitesimals of order > 1.
- **3** It does not depend on the inner product of $\mathcal{L}(\mathcal{H})$.

Proposition

Let $T \in \mathcal{L}_{1,\infty}$, $T \geq 0$, be such that

$$\lim_{j\to\infty} j\lambda_j(T) = L.$$

Notation

 \mathcal{M}_s = class of strongly measurable operators.

Proposition

- **1** \mathcal{M}_s is a closed subspace of $\mathcal{L}_{1,\infty}$.
- ② It contains $Com(\mathcal{L}_{1,\infty})$ and $(\mathcal{L}_{1,\infty})_0$. In particular, it contains all infinitesimals of order > 1.
- **3** It does not depend on the inner product of $\mathcal{L}(\mathcal{H})$.

Proposition

Let $T \in \mathcal{L}_{1,\infty}$, $T \geq 0$, be such that

$$\lim_{j\to\infty} j\lambda_j(T) = L.$$

Then T is strongly measurable and $\int T = L$.

Setup

• M = compact manifold with positive smooth density μ .

Setup

- M = compact manifold with positive smooth density μ .
- $P \in \Psi^m(M)$, m > 0, is positive-elliptic.

Setup

- M = compact manifold with positive smooth density μ .
- $P \in \Psi^m(M)$, m > 0, is positive-elliptic.
- $p_m(x,\xi)$ = principal symbol of P.

Setup

- M = compact manifold with positive smooth density μ .
- $P \in \Psi^m(M)$, m > 0, is positive-elliptic.
- $p_m(x,\xi)$ = principal symbol of P.

Remark

Positive-ellipticity means that $p_m(x,\xi) > 0$ & P is selfadjoint with non-negative spectrum.

Reminder

• The spectrum of *P* can be arranged as a sequence,

$$0 \leq \lambda_0(P) \leq \lambda_1(P) \leq \lambda_2(P) \leq \cdots,$$

where each eigenvalue is repeated according to multiplicity.

Reminder

• The spectrum of P can be arranged as a sequence,

$$0 \leq \lambda_0(P) \leq \lambda_1(P) \leq \lambda_2(P) \leq \cdots$$

where each eigenvalue is repeated according to multiplicity.

• By Weyl's law, as $j \to \infty$ we have

$$\lambda_j(P) \sim \left(\frac{j}{\gamma(P)}\right)^{\frac{m}{n}},$$

where

$$\gamma(P) = \frac{(2\pi)^{-n}}{n} \iint_{S^*M} p_m(x,\xi)^{-\frac{n}{m}} dx d\xi = \frac{1}{n} \operatorname{Res} \left[P^{-\frac{n}{m}} \right].$$

Facts

Assume that $\ker P = \{0\}$.

Facts

Assume that $\ker P = \{0\}$.

We then have

$$\lambda_j(P^{-1}) = \lambda_j(P)^{-1} \sim \left(\frac{j}{\gamma(P)}\right)^{-\frac{m}{n}}.$$

Facts

Assume that $\ker P = \{0\}$.

We then have

$$\lambda_j(P^{-1}) = \lambda_j(P)^{-1} \sim \left(\frac{j}{\gamma(P)}\right)^{-\frac{m}{n}}.$$

Thus,

$$\mu_j(P^{-1}) = \lambda_j(P^{-1}) = O\left(j^{-\frac{m}{n}}\right).$$

Facts

Assume that $\ker P = \{0\}$.

We then have

$$\lambda_j(P^{-1}) = \lambda_j(P)^{-1} \sim \left(\frac{j}{\gamma(P)}\right)^{-\frac{m}{n}}.$$

Thus,

$$\mu_j(P^{-1}) = \lambda_j(P^{-1}) = O\left(j^{-\frac{m}{n}}\right).$$

That is, $P^{-1} \in \mathcal{L}_{m^{-1}n,\infty}$.

Facts

Assume that $\ker P = \{0\}$.

We then have

$$\lambda_j(P^{-1}) = \lambda_j(P)^{-1} \sim \left(\frac{j}{\gamma(P)}\right)^{-\frac{m}{n}}.$$

Thus,

$$\mu_j(P^{-1}) = \lambda_j(P^{-1}) = O\left(j^{-\frac{m}{n}}\right).$$

That is, $P^{-1} \in \mathcal{L}_{m^{-1}n,\infty}$.

 \bullet In particular, if g is a Riemannian metric, then

$$(1+\Delta_g)^{-rac{m}{2}}\in \mathcal{L}_{m^{-1}n,\infty} \qquad orall m>0.$$

Proposition

If $P \in \Psi^{-m}(M)$, m > 0, then P is in the weak Schatten class $\mathcal{L}_{nm^{-1},\infty}$.

Proposition

If $P \in \Psi^{-m}(M)$, m > 0, then P is in the weak Schatten class $\mathcal{L}_{nm^{-1},\infty}$. That is, P is an infinitesimal of order mn^{-1} .

Proposition

If $P \in \Psi^{-m}(M)$, m > 0, then P is in the weak Schatten class $\mathcal{L}_{nm^{-1},\infty}$. That is, P is an infinitesimal of order mn^{-1} .

In particular, for m = n we obtain:

Corollary

If $P \in \Psi^{-n}(M)$, then $P \in \mathcal{L}_{1,\infty}$, i.e., P is an infinitesimal of order 1.

Proof of the Proposition.

Let m > 0 and $P \in \Psi^{-m}(M)$.

Proof of the Proposition.

Let m > 0 and $P \in \Psi^{-m}(M)$.

• Pick a Riemannian metric g on M, and write

$$P = P\left(1 + \Delta_{g}\right)^{\frac{m}{2}} \cdot \left(1 + \Delta_{g}\right)^{-\frac{m}{2}}$$

Proof of the Proposition.

Let m > 0 and $P \in \Psi^{-m}(M)$.

• Pick a Riemannian metric g on M, and write

$$P = P\left(1 + \Delta_{g}\right)^{\frac{m}{2}} \cdot \left(1 + \Delta_{g}\right)^{-\frac{m}{2}}$$

ullet We already know that $(1+\Delta_{g})^{-m/2}\in \mathcal{L}_{nm^{-1},\infty}.$

Proof of the Proposition.

Let m > 0 and $P \in \Psi^{-m}(M)$.

• Pick a Riemannian metric g on M, and write

$$P = P\left(1 + \Delta_{g}\right)^{\frac{m}{2}} \cdot \left(1 + \Delta_{g}\right)^{-\frac{m}{2}}$$

- We already know that $(1+\Delta_g)^{-m/2}\in \mathcal{L}_{nm^{-1},\infty}.$
- As $P \in \Psi^{-m}(M)$ and $(1 + \Delta_g)^{m/2} \in \Psi^{-m}(M)$, we see that $A(1 + \Delta_g)^{m/2} \in \Psi^0(M)$.

Proof of the Proposition.

Let m > 0 and $P \in \Psi^{-m}(M)$.

• Pick a Riemannian metric g on M, and write

$$P = P\left(1 + \Delta_{g}\right)^{\frac{m}{2}} \cdot \left(1 + \Delta_{g}\right)^{-\frac{m}{2}}$$

- We already know that $(1+\Delta_g)^{-m/2}\in \mathcal{L}_{nm^{-1},\infty}.$
- As $P \in \Psi^{-m}(M)$ and $(1 + \Delta_g)^{m/2} \in \Psi^{-m}(M)$, we see that $A(1 + \Delta_g)^{m/2} \in \Psi^0(M)$.
- This ensures that $P(1 + \Delta_g)^{m/2}$ is bounded, i.e., it is contained in $\mathcal{L}(L^2(M))$.

Proof of the Proposition.

Let m > 0 and $P \in \Psi^{-m}(M)$.

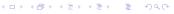
• Pick a Riemannian metric g on M, and write

$$P = P\left(1 + \Delta_{g}\right)^{\frac{m}{2}} \cdot \left(1 + \Delta_{g}\right)^{-\frac{m}{2}}$$

- ullet We already know that $(1+\Delta_g)^{-m/2}\in \mathcal{L}_{nm^{-1},\infty}.$
- As $P \in \Psi^{-m}(M)$ and $(1 + \Delta_g)^{m/2} \in \Psi^{-m}(M)$, we see that $A(1 + \Delta_g)^{m/2} \in \Psi^0(M)$.
- This ensures that $P(1 + \Delta_g)^{m/2}$ is bounded, i.e., it is contained in $\mathcal{L}(L^2(M))$.
- As $\mathcal{L}_{nm^{-1},\infty}$ is an ideal of $\mathcal{L}(L^2(M))$, it follows that

$$P = P\left(1 + \Delta_g\right)^{\frac{m}{2}} \cdot \left(1 + \Delta_g\right)^{-\frac{m}{2}} \in \mathcal{L}_{nm^{-1},\infty}.$$

The proof is complete.



Facts

Let $P \in \Psi^n(M)$ be positive-elliptic with ker $P = \{0\}$ (e.g., $P = (1 + \Delta_g)^{n/2}$).

Facts

Let $P \in \Psi^n(M)$ be positive-elliptic with ker $P = \{0\}$ (e.g., $P = (1 + \Delta_g)^{n/2}$).

In this case the Weyl's law gives

$$\lambda_j(P^{-1}) = \lambda_j(P)^{-1} \sim \left(\frac{j}{\gamma(P)}\right)^{-1},$$

where $\gamma(P) = \frac{1}{n} \operatorname{Res}(P^{-1})$.

Facts

Let $P \in \Psi^n(M)$ be positive-elliptic with ker $P = \{0\}$ (e.g., $P = (1 + \Delta_g)^{n/2}$).

• In this case the Weyl's law gives

$$\lambda_j(P^{-1}) = \lambda_j(P)^{-1} \sim \left(\frac{j}{\gamma(P)}\right)^{-1},$$

where $\gamma(P) = \frac{1}{n} \operatorname{Res}(P^{-1})$.

• It then follows that P^{-1} is strongly measurable, and we have

$$\int P^{-1} = \gamma(P) = \frac{1}{n} \operatorname{Res}(P).$$

More generally, we have:

More generally, we have:

Theorem (Connes' Trace Theorem)

If $P \in \Psi^{-n}(M)$, then P is strongly measurable, and we have

$$\int P = \frac{1}{n} \operatorname{Res}(P).$$

More generally, we have:

Theorem (Connes' Trace Theorem)

If $P \in \Psi^{-n}(M)$, then P is strongly measurable, and we have

$$\int P = \frac{1}{n} \operatorname{Res}(P).$$

Remark

• Connes (CMP '88) established measurability and derived the trace formula.

More generally, we have:

Theorem (Connes' Trace Theorem)

If $P \in \Psi^{-n}(M)$, then P is strongly measurable, and we have

$$\int P = \frac{1}{n} \operatorname{Res}(P).$$

Remark

- Connes (CMP '88) established measurability and derived the trace formula.
- 2 Lord-Potapov-Sukochev (Adv. Math. '13) obtained strong measurability.

Consequence

• The NC integral makes sense for Ψ DOs of order $\leq -n$

Consequence

- The NC integral makes sense for Ψ DOs of order $\leq -n$
- \bullet The NC residue, however, makes sense for all integer order ΨDOs .

Consequence

- The NC integral makes sense for Ψ DOs of order $\leq -n$
- The NC residue, however, makes sense for all integer order ΨDOs.
- Therefore, the equality between the NC integral and the NC residue enables us to extend the NC integral to all ΨDOs .

Consequence

- The NC integral makes sense for Ψ DOs of order $\leq -n$
- The NC residue, however, makes sense for all integer order ΨDOs.
- Therefore, the equality between the NC integral and the NC residue enables us to extend the NC integral to all ΨDOs.
- This includes ΨDOs that are not infinitesimals or even bounded!

Consequence

- The NC integral makes sense for Ψ DOs of order $\leq -n$
- The NC residue, however, makes sense for all integer order ΨDOs.
- Therefore, the equality between the NC integral and the NC residue enables us to extend the NC integral to all ΨDOs.
- This includes ΨDOs that are not infinitesimals or even bounded!

Definition

For any $P \in \Psi^{\mathbb{Z}}(M)$ we set

$$\int P := \frac{1}{n} \operatorname{Res}(P) = \frac{1}{n} \int_{M} c_{P}(x).$$

Setup

• $(M^n, g) = \text{compact Riemannian manifold.}$

Setup

- $(M^n, g) = \text{compact Riemannian manifold.}$
- $\nu(g) = \text{Riemannian density}$.

Setup

- $(M^n, g) = \text{compact Riemannian manifold.}$
- $\nu(g) = \text{Riemannian density}$.
- Δ_g = Laplacian associated with g,

Setup

- $(M^n, g) = \text{compact Riemannian manifold.}$
- $\nu(g) = \text{Riemannian density}$.
- Δ_g = Laplacian associated with g,

Theorem (Connes' Integration Formula)

For every $f \in C^{\infty}(M)$, the operator $f\Delta_g^{-n/2}$ is strongly measurable, and we have

$$\int f\Delta_g^{-\frac{n}{2}} = c(n) \int_M f(x) \nu(g)(x),$$

where we have set $c(n) := \frac{1}{n}(2\pi)^{-n}|\mathbb{S}^{n-1}| = (2\pi)^{-n}|\mathbb{B}^n|$.

Proof.

ullet $\Delta_g^{-n/2}$ is Ψ DOs of order -n whose principal symbol is $|\xi|_g^{-n}$.

- $\Delta_g^{-n/2}$ is Ψ DOs of order -n whose principal symbol is $|\xi|_g^{-n}$.
- As $f \in C^{\infty}(M)$, this is a ΨDO of order 0.

- $\Delta_g^{-n/2}$ is Ψ DOs of order -n whose principal symbol is $|\xi|_g^{-n}$.
- As $f \in C^{\infty}(M)$, this is a ΨDO of order 0.
- Thus $f\Delta_g^{-n/2}$ is in $\Psi^{-n}(M)$ and it has $f(x)|\xi|_g^{-n}$ as principal symbol.

- $\Delta_g^{-n/2}$ is Ψ DOs of order -n whose principal symbol is $|\xi|_g^{-n}$.
- As $f \in C^{\infty}(M)$, this is a ΨDO of order 0.
- Thus $f\Delta_g^{-n/2}$ is in $\Psi^{-n}(M)$ and it has $f(x)|\xi|_g^{-n}$ as principal symbol.
- Thus, by Connes' trace theorem $f\Delta_g^{-n/2}$ is strongly measurable,

- $\Delta_g^{-n/2}$ is Ψ DOs of order -n whose principal symbol is $|\xi|_g^{-n}$.
- As $f \in C^{\infty}(M)$, this is a Ψ DO of order 0.
- Thus $f\Delta_g^{-n/2}$ is in $\Psi^{-n}(M)$ and it has $f(x)|\xi|_g^{-n}$ as principal symbol.
- Thus, by Connes' trace theorem $f\Delta_g^{-n/2}$ is strongly measurable, and we have

$$\int f \Delta_g^{-\frac{n}{2}} = \frac{1}{n} \operatorname{Res} \left(f \Delta_g^{-\frac{n}{2}} \right) = \frac{(2\pi)^{-n}}{n} \iint_{S^*M} f(x) |\xi|_g^{-n} dx d\xi$$
$$= \frac{1}{n} (2\pi)^{-n} |\mathbb{S}^{n-1}| \int_M f(x) \nu(g)(x).$$

Proof.

- $\Delta_g^{-n/2}$ is Ψ DOs of order -n whose principal symbol is $|\xi|_g^{-n}$.
- As $f \in C^{\infty}(M)$, this is a Ψ DO of order 0.
- Thus $f\Delta_g^{-n/2}$ is in $\Psi^{-n}(M)$ and it has $f(x)|\xi|_g^{-n}$ as principal symbol.
- Thus, by Connes' trace theorem $f\Delta_g^{-n/2}$ is strongly measurable, and we have

$$\int f \Delta_g^{-\frac{n}{2}} = \frac{1}{n} \operatorname{Res} \left(f \Delta_g^{-\frac{n}{2}} \right) = \frac{(2\pi)^{-n}}{n} \iint_{S^*M} f(x) |\xi|_g^{-n} dx d\xi$$
$$= \frac{1}{n} (2\pi)^{-n} |\mathbb{S}^{n-1}| \int_M f(x) \nu(g)(x).$$

This proves the result.

Setup

• M = compact manifold with positive smooth density μ .

Setup

- M = compact manifold with positive smooth density μ .
- $P \in \Psi^m(M)$, m > 0, is positive-elliptic.

Setup

- M = compact manifold with positive smooth density μ .
- $P \in \Psi^m(M)$, m > 0, is positive-elliptic.
- $p_m(x,\xi)$ = principal symbol of P.

Setup

- M = compact manifold with positive smooth density μ .
- $P \in \Psi^m(M)$, m > 0, is positive-elliptic.
- $p_m(x,\xi)$ = principal symbol of P.

Remark

Positive-ellipticity means that $p_m(x,\xi) > 0$ and $P^* = P \ge 0$.

Reminder

• The spectrum of *P* can be arranged as a sequence,

$$0 \leq \lambda_0(P) \leq \lambda_1(P) \leq \lambda_2(P) \leq \cdots$$

where each eigenvalue is repeated according to multiplicity.

Reminder

• The spectrum of P can be arranged as a sequence,

$$0 \leq \lambda_0(P) \leq \lambda_1(P) \leq \lambda_2(P) \leq \cdots$$

where each eigenvalue is repeated according to multiplicity.

• By Weyl's law, as $j \to \infty$ we have

$$\lambda_j(P) \sim \left(\frac{j}{\gamma(P)}\right)^{\frac{m}{n}},$$

where

$$\gamma(P) = \frac{(2\pi)^{-n}}{n} \iint_{S^*M} p_m(x,\xi)^{-\frac{n}{m}} dx d\xi = \frac{1}{n} \operatorname{Res} \left[P^{-\frac{n}{m}} \right].$$

Facts

Assume that $\ker P = \{0\}$.

Facts

Assume that $\ker P = \{0\}$.

We then have

$$\lambda_j(P^{-1}) = \lambda_j(P)^{-1} \sim \left(\frac{j}{\gamma(P)}\right)^{-\frac{m}{n}}.$$

Facts

Assume that $\ker P = \{0\}$.

We then have

$$\lambda_j(P^{-1}) = \lambda_j(P)^{-1} \sim \left(\frac{j}{\gamma(P)}\right)^{-\frac{m}{n}}.$$

Thus,

$$\mu_j(P^{-1}) = \lambda_j(P^{-1}) = O\left(j^{-\frac{m}{n}}\right).$$

Facts

Assume that $\ker P = \{0\}$.

We then have

$$\lambda_j(P^{-1}) = \lambda_j(P)^{-1} \sim \left(\frac{j}{\gamma(P)}\right)^{-\frac{m}{n}}.$$

Thus,

$$\mu_j(P^{-1}) = \lambda_j(P^{-1}) = O\left(j^{-\frac{m}{n}}\right).$$

That is, $P^{-1} \in \mathcal{L}_{m^{-1}n,\infty}$.

Facts

Assume that $\ker P = \{0\}$.

We then have

$$\lambda_j(P^{-1}) = \lambda_j(P)^{-1} \sim \left(\frac{j}{\gamma(P)}\right)^{-\frac{m}{n}}.$$

Thus,

$$\mu_j(P^{-1}) = \lambda_j(P^{-1}) = O\left(j^{-\frac{m}{n}}\right).$$

That is, $P^{-1} \in \mathcal{L}_{m^{-1}n,\infty}$.

 \bullet In particular, if g is a Riemannian metric, then

$$(1+\Delta_g)^{-\frac{m}{2}}\in\mathcal{L}_{m^{-1}n,\infty}\qquad orall m>0.$$

Proposition

If $P \in \Psi^{-m}(M)$, m > 0, then P is in the weak Schatten class $\mathcal{L}_{nm^{-1},\infty}$. That is, P is an infinitesimal of order mn^{-1} .

Proposition

If $P \in \Psi^{-m}(M)$, m > 0, then P is in the weak Schatten class $\mathcal{L}_{nm^{-1},\infty}$. That is, P is an infinitesimal of order mn^{-1} .

In particular, for m = n we obtain:

Corollary

If $P \in \Psi^{-n}(M)$, then $P \in \mathcal{L}_{1,\infty}$, i.e., P is an infinitesimal of order 1.

Proof of the Proposition.

Let m > 0 and $P \in \Psi^{-m}(M)$.

• Pick a Riemannian metric g on M, and write

$$P = P\left(1 + \Delta_{g}\right)^{\frac{m}{2}} \cdot \left(1 + \Delta_{g}\right)^{-\frac{m}{2}}$$

Proof of the Proposition.

Let m > 0 and $P \in \Psi^{-m}(M)$.

• Pick a Riemannian metric g on M, and write

$$P = P\left(1 + \Delta_{g}\right)^{\frac{m}{2}} \cdot \left(1 + \Delta_{g}\right)^{-\frac{m}{2}}$$

ullet We already know that $(1+\Delta_{g})^{-m/2}\in \mathcal{L}_{nm^{-1},\infty}.$

Proof of the Proposition.

Let m > 0 and $P \in \Psi^{-m}(M)$.

• Pick a Riemannian metric g on M, and write

$$P = P\left(1 + \Delta_{g}\right)^{\frac{m}{2}} \cdot \left(1 + \Delta_{g}\right)^{-\frac{m}{2}}$$

- We already know that $(1+\Delta_g)^{-m/2}\in \mathcal{L}_{nm^{-1},\infty}.$
- As $P \in \Psi^{-m}(M)$ and $(1 + \Delta_g)^{m/2} \in \Psi^{-m}(M)$, we see that $A(1 + \Delta_g)^{m/2} \in \Psi^0(M)$.

Proof of the Proposition.

Let m > 0 and $P \in \Psi^{-m}(M)$.

• Pick a Riemannian metric g on M, and write

$$P = P\left(1 + \Delta_{g}\right)^{\frac{m}{2}} \cdot \left(1 + \Delta_{g}\right)^{-\frac{m}{2}}$$

- ullet We already know that $(1+\Delta_g)^{-m/2}\in \mathcal{L}_{nm^{-1},\infty}.$
- As $P \in \Psi^{-m}(M)$ and $(1 + \Delta_g)^{m/2} \in \Psi^{-m}(M)$, we see that $A(1 + \Delta_g)^{m/2} \in \Psi^0(M)$.
- This ensures that $P(1 + \Delta_g)^{m/2}$ is bounded, i.e., it is contained in $\mathcal{L}(L^2(M))$.

Proof of the Proposition.

Let m > 0 and $P \in \Psi^{-m}(M)$.

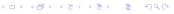
• Pick a Riemannian metric g on M, and write

$$P = P\left(1 + \Delta_{g}\right)^{\frac{m}{2}} \cdot \left(1 + \Delta_{g}\right)^{-\frac{m}{2}}$$

- We already know that $(1+\Delta_g)^{-m/2}\in\mathcal{L}_{nm^{-1},\infty}$.
- As $P \in \Psi^{-m}(M)$ and $(1 + \Delta_g)^{m/2} \in \Psi^{-m}(M)$, we see that $A(1 + \Delta_g)^{m/2} \in \Psi^0(M)$.
- This ensures that $P(1 + \Delta_g)^{m/2}$ is bounded, i.e., it is contained in $\mathcal{L}(L^2(M))$.
- As $\mathcal{L}_{nm^{-1},\infty}$ is an ideal of $\mathcal{L}(L^2(M))$, it follows that

$$P = P\left(1 + \Delta_g\right)^{\frac{m}{2}} \cdot \left(1 + \Delta_g\right)^{-\frac{m}{2}} \in \mathcal{L}_{nm^{-1},\infty}.$$

The proof is complete.



Facts

Let $P \in \Psi^n(M)$ be positive-elliptic with ker $P = \{0\}$ (e.g., $P = (1 + \Delta_g)^{n/2}$).

In this case the Weyl's law gives

$$\lambda_j(P^{-1}) = \lambda_j(P)^{-1} \sim \left(\frac{j}{\gamma(P)}\right)^{-1},$$

where $\gamma(P) = \frac{1}{n} \operatorname{Res}(P^{-1})$.

Facts

Let $P \in \Psi^n(M)$ be positive-elliptic with ker $P = \{0\}$ (e.g., $P = (1 + \Delta_g)^{n/2}$).

In this case the Weyl's law gives

$$\lambda_j(P^{-1}) = \lambda_j(P)^{-1} \sim \left(\frac{j}{\gamma(P)}\right)^{-1},$$

where $\gamma(P) = \frac{1}{n} \operatorname{Res}(P^{-1})$.

• It then follows that P^{-1} is strongly measurable, and we have

$$\int P^{-1} = \gamma(P) = \frac{1}{n} \operatorname{Res}(P).$$

More generally, we have:

More generally, we have:

Theorem (Connes' Trace Theorem)

If $P \in \Psi^{-n}(M)$, then P is strongly measurable, and we have

$$\int P = \frac{1}{n} \operatorname{Res}(P).$$

More generally, we have:

Theorem (Connes' Trace Theorem)

If $P \in \Psi^{-n}(M)$, then P is strongly measurable, and we have

$$\int P = \frac{1}{n} \operatorname{Res}(P).$$

Remark

• Connes (CMP '88) established measurability and derived the trace formula.

More generally, we have:

Theorem (Connes' Trace Theorem)

If $P \in \Psi^{-n}(M)$, then P is strongly measurable, and we have

$$\int P = \frac{1}{n} \operatorname{Res}(P).$$

Remark

- Connes (CMP '88) established measurability and derived the trace formula.
- 2 Lord-Potapov-Sukochev (Adv. Math. '13) obtained strong measurability.

Consequence

• The NC integral makes sense for Ψ DOs of order $\leq -n$

Consequence

- The NC integral makes sense for Ψ DOs of order $\leq -n$
- The NC residue, however, makes for all integer order ΨDOs .

Consequence

- The NC integral makes sense for Ψ DOs of order $\leq -n$
- The NC residue, however, makes for all integer order ΨDOs .
- Therefore, the equality between the NC integral and the NC residue enables us to extend the NC integral to all ΨDOs.

Consequence

- The NC integral makes sense for Ψ DOs of order $\leq -n$
- The NC residue, however, makes for all integer order ΨDOs .
- Therefore, the equality between the NC integral and the NC residue enables us to extend the NC integral to all ΨDOs.
- ullet This includes ΨDOs that are not infinitesimals or are not even bounded.

Consequence

- The NC integral makes sense for Ψ DOs of order $\leq -n$
- The NC residue, however, makes for all integer order ΨDOs .
- Therefore, the equality between the NC integral and the NC residue enables us to extend the NC integral to all ΨDOs.
- ullet This includes ΨDOs that are not infinitesimals or are not even bounded.

Definition

For any $P \in \Psi^{\mathbb{Z}}(M)$ we set

$$\oint P := \frac{1}{n} \operatorname{Res}(P) = \frac{1}{n} \int_{M} c_{P}(x).$$

Setup

• $(M^n, g) = \text{compact Riemannian manifold.}$

Setup

- $(M^n, g) = \text{compact Riemannian manifold.}$
- $\nu(g) = \text{Riemannian density}$.

Setup

- $(M^n, g) = \text{compact Riemannian manifold.}$
- $\nu(g) = \text{Riemannian density}$.
- Δ_g = Laplacian associated with g,

Setup

- $(M^n, g) = \text{compact Riemannian manifold.}$
- $\nu(g) = \text{Riemannian density}$.
- Δ_g = Laplacian associated with g,

Theorem (Connes' Integration Formula)

For every $f \in C^{\infty}(M)$, the operator $f\Delta_g^{-n/2}$ is strongly measurable, and we have

$$\int f\Delta_g^{-\frac{n}{2}} = c(n) \int_M f(x) \nu(g)(x),$$

where we have set $c(n) := \frac{1}{n}(2\pi)^{-n}|\mathbb{S}^{n-1}| = (2\pi)^{-n}|\mathbb{B}^n|$.

Proof.

ullet $\Delta_g^{-n/2}$ is Ψ DOs of order -n whose principal symbol is $|\xi|_g^{-n}$.

Proof.

- $\Delta_g^{-n/2}$ is Ψ DOs of order -n whose principal symbol is $|\xi|_g^{-n}$.
- As $f \in C^{\infty}(M)$, this is a ΨDO of order 0.

Proof.

- $\Delta_g^{-n/2}$ is Ψ DOs of order -n whose principal symbol is $|\xi|_g^{-n}$.
- As $f \in C^{\infty}(M)$, this is a ΨDO of order 0.
- Thus $f\Delta_g^{-n/2}$ is in $\Psi^{-n}(M)$ and it has $f(x)|\xi|_g^{-n}$ as principal symbol.

Proof.

- $\Delta_g^{-n/2}$ is Ψ DOs of order -n whose principal symbol is $|\xi|_g^{-n}$.
- As $f \in C^{\infty}(M)$, this is a Ψ DO of order 0.
- Thus $f\Delta_g^{-n/2}$ is in $\Psi^{-n}(M)$ and it has $f(x)|\xi|_g^{-n}$ as principal symbol.
- Thus, by Connes' trace theorem $f\Delta_g^{-n/2}$ is strongly measurable, and we have

$$\int f \Delta_g^{-\frac{n}{2}} = \frac{1}{n} \operatorname{Res} \left(f \Delta_g^{-\frac{n}{2}} \right) = \frac{(2\pi)^{-n}}{n} \iint_{S^*M} f(x) |\xi|_g^{-n} dx d\xi$$
$$= \frac{1}{n} (2\pi)^{-n} |\mathbb{S}^{n-1}| \int_M f(x) \nu(g)(x).$$

Proof.

- $\Delta_g^{-n/2}$ is Ψ DOs of order -n whose principal symbol is $|\xi|_g^{-n}$.
- As $f \in C^{\infty}(M)$, this is a Ψ DO of order 0.
- Thus $f\Delta_g^{-n/2}$ is in $\Psi^{-n}(M)$ and it has $f(x)|\xi|_g^{-n}$ as principal symbol.
- Thus, by Connes' trace theorem $f\Delta_g^{-n/2}$ is strongly measurable, and we have

$$\int f \Delta_g^{-\frac{n}{2}} = \frac{1}{n} \operatorname{Res} \left(f \Delta_g^{-\frac{n}{2}} \right) = \frac{(2\pi)^{-n}}{n} \iint_{S^*M} f(x) |\xi|_g^{-n} dx d\xi$$
$$= \frac{1}{n} (2\pi)^{-n} |\mathbb{S}^{n-1}| \int_M f(x) \nu(g)(x).$$

This proves the result.

Consequence

 Connes' integration formula shows that the NC integral recaptures the Riemannian volume density. Namely,

$$\int_{M} f\nu(g) = c(n)^{-1} \int f\Delta_{g}^{-\frac{n}{2}} \qquad \forall f \in C^{\infty}(M).$$

Consequence

 Connes' integration formula shows that the NC integral recaptures the Riemannian volume density. Namely,

$$\int_{M} f\nu(g) = c(n)^{-1} \int f\Delta_{g}^{-\frac{n}{2}} \qquad \forall f \in C^{\infty}(M).$$

• We regard $c(n)^{-1}\Delta_g^{-n/2}$ as the NC volume element.

Consequence

 Connes' integration formula shows that the NC integral recaptures the Riemannian volume density. Namely,

$$\int_{M} f\nu(g) = c(n)^{-1} \int f\Delta_{g}^{-\frac{n}{2}} \qquad \forall f \in C^{\infty}(M).$$

- We regard $c(n)^{-1}\Delta_g^{-n/2}$ as the NC volume element.
- The volume element is ds^n , where ds is the length element.

Consequence

 Connes' integration formula shows that the NC integral recaptures the Riemannian volume density. Namely,

$$\int_{M} f\nu(g) = c(n)^{-1} \int f\Delta_{g}^{-\frac{n}{2}} \qquad \forall f \in C^{\infty}(M).$$

- We regard $c(n)^{-1}\Delta_g^{-n/2}$ as the NC volume element.
- The volume element is ds^n , where ds is the length element.
- Thus, ds is the n-th root of the volume element.

Definition

The NC length element of (M^n, g) is the operator,

$$ds := \left(c(n)^{-1}\Delta_g^{-\frac{n}{2}}\right)^{\frac{1}{n}} = c(n)^{-\frac{1}{n}}\Delta_g^{-\frac{1}{2}}.$$

Definition

The NC length element of (M^n, g) is the operator,

$$ds := \left(c(n)^{-1}\Delta_g^{-\frac{n}{2}}\right)^{\frac{1}{n}} = c(n)^{-\frac{1}{n}}\Delta_g^{-\frac{1}{2}}.$$

Remark

ds is a Ψ DO of order -1.

Facts

• For k = 1, ..., n the k-th dimensional volume is meant to be the integral of ds^k .

Facts

- For k = 1, ..., n the k-th dimensional volume is meant to be the integral of ds^k .
- Here ds^k is a Ψ DO of order -k.

Facts

- For k = 1, ..., n the k-th dimensional volume is meant to be the integral of ds^k .
- Here ds^k is a Ψ DO of order -k.
- The NC integral has been extended to all ΨDOs .

Facts

- For k = 1, ..., n the k-th dimensional volume is meant to be the integral of ds^k .
- Here ds^k is a Ψ DO of order -k.
- The NC integral has been extended to all ΨDOs .
- This enables us to define k-dimensional volumes for all k = 1, ..., n 1.

Definition

For k = 1, ..., n, the k-th dimensional volume of (M^n, g) is

$$\operatorname{Vol}_{g}^{(k)}(M) := \int ds^{k} = c(n)^{-\frac{k}{n}} \int \Delta_{g}^{-\frac{k}{2}}.$$

Definition

For k = 1, ..., n, the k-th dimensional volume of (M^n, g) is

$$\operatorname{Vol}_{g}^{(k)}(M) := \int ds^{k} = c(n)^{-rac{k}{n}} \int \Delta_{g}^{-rac{k}{2}}.$$

In particular, the length and area of (M^n, g) are

$$\begin{aligned} \mathsf{Length}_g(M) &:= \int ds = c(n)^{-\frac{1}{n}} \int \Delta_g^{-\frac{1}{2}}, \\ \mathsf{Area}_g(M) &:= \int ds^2 = c(n)^{-\frac{2}{n}} \int \Delta_g^{-1}. \end{aligned}$$

Proposition

• If k and n have opposite parities (i.e., n - k is odd), then $\operatorname{Vol}_g^{(k)}(M) = 0$.

Proposition

- If k and n have opposite parities (i.e., n k is odd), then $\operatorname{Vol}_g^{(k)}(M) = 0$.
- 2 If k = n 2, then

$$\operatorname{Vol}_{g}^{(n-2)}(M) = c(n,2) \int_{M} \kappa_{g}(x) \nu(g)(x),$$

where $\kappa_g(x)$ is the scalar curvature of (M, g).

Proposition

- If k and n have opposite parities (i.e., n k is odd), then $Vol_g^{(k)}(M) = 0$.
- 2 If k = n 2, then

$$\operatorname{Vol}_{g}^{(n-2)}(M) = c(n,2) \int_{M} \kappa_{g}(x) \nu(g)(x),$$

where $\kappa_g(x)$ is the scalar curvature of (M, g).

In general, we have

$$Vol_{g}^{(n-k)}(M) = c(n,k) \int_{M} I_{g}^{(k)}(x) \nu(g)(x),$$

where $I_g^{(k)}(x)$ is a universal polynomial in the curvature tensor and its covariant derivatives.

Remark

• The definition of the *k*-th dimensional volumes involved noncommutative geometry.

Remark

- The definition of the k-th dimensional volumes involved noncommutative geometry.
- However, the formulas in the previous slide provide purely differential-geometric expressions for the k-th dimensional volumes.

Remark

• The functional $g \to \int_M \kappa_g \nu(g)$ is called the Einstein-Hilbert action.

Remark

- The functional $g \to \int_M \kappa_g \nu(g)$ is called the Einstein-Hilbert action.
- It accounts for the contribution of gravity forces in the Standard Model from Theoretical Physics.

Remark

- The functional $g \to \int_M \kappa_g \nu(g)$ is called the Einstein-Hilbert action.
- It accounts for the contribution of gravity forces in the Standard Model from Theoretical Physics.
- We have

$$\int_{M} \kappa_{g} \nu(g) = c(n, 2)^{-1} \int \Delta_{g}^{-n+2}$$

$$= \frac{1}{n} c(n, 2)^{-1} \operatorname{Res} \left(\Delta_{g}^{-n+2} \right)$$

$$= \frac{2}{n} c(n, 2)^{-1} \operatorname{Res}_{s = \frac{n}{2} - 1} \operatorname{Tr} \left[\Delta_{g}^{-s} \right].$$

Remark

- The functional $g \to \int_M \kappa_g \nu(g)$ is called the Einstein-Hilbert action.
- It accounts for the contribution of gravity forces in the Standard Model from Theoretical Physics.
- We have

$$\int_{M} \kappa_{g} \nu(g) = c(n, 2)^{-1} \int \Delta_{g}^{-n+2}$$

$$= \frac{1}{n} c(n, 2)^{-1} \operatorname{Res} \left(\Delta_{g}^{-n+2} \right)$$

$$= \frac{2}{n} c(n, 2)^{-1} \operatorname{Res}_{s = \frac{n}{2} - 1} \operatorname{Tr} \left[\Delta_{g}^{-s} \right].$$

• This yields a spectral theoretic interpretation of the Einstein-Hilbert action.

Remark

- The functional $g \to \int_M \kappa_g \nu(g)$ is called the Einstein-Hilbert action.
- It accounts for the contribution of gravity forces in the Standard Model from Theoretical Physics.
- We have

$$\begin{split} \int_{M} \kappa_{g} \nu(g) &= c(n,2)^{-1} \int \Delta_{g}^{-n+2} \\ &= \frac{1}{n} c(n,2)^{-1} \operatorname{Res} \left(\Delta_{g}^{-n+2} \right) \\ &= \frac{2}{n} c(n,2)^{-1} \operatorname{Res}_{s = \frac{n}{2} - 1} \operatorname{Tr} \left[\Delta_{g}^{-s} \right]. \end{split}$$

- This yields a spectral theoretic interpretation of the Einstein-Hilbert action.
- This an important ingredient in the spectral action formalism of Connes-Chamseddine.