Noncommutative Geometry Chapter 7: Noncommutative Residue, and Zeta Functions of Elliptic Operators

Sichuan University, Spring 2025

Additional References

• Slides of my 2022 online course.

Setup

- $U \subseteq \mathbb{R}^n$ open set.
- $P \in \Psi^m(U)$, $m \in \mathbb{Z}$, with symbol $p(x,\xi) \sim \sum_{j>0} p_{m-j}(x,\xi)$.
- $k_P(x, y) =$ Schwartz kernel of P.

Reminder

- $k_P(x,y)$ is C^{∞} for $x \neq y$.
- ② If m < -n, then $k_P(x, y)$ is continuous on $U \times U$.

Question

If $m \ge -n$, then what is the behaviour of $k_P(x, y)$ near x = y?

Proposition

Let $P \in \Psi^m(U)$, $m \in \mathbb{Z}$, $m \ge -n$. Near x = y its Schwartz kernel $k_P(x,y)$ has a behaviour of the form,

$$k_P(x,y) = \sum_{1 \le k \le m+n} a_k(x, \frac{x-y}{|x-y|}) |x-y|^{-k} - c_P(x) \log |x-y| + O(1).$$

Here
$$a_k(x,\theta) \in C^{\infty}(U \times \mathbb{S}^{n-1})$$
, and $c_P(x) \in C^{\infty}(U)$ is given by
$$c_P(x) = (2\pi)^{-n} \int_{\mathbb{S}^{n-1}} p_{-n}(x,\xi) d\xi,$$

where $p_{-n}(x,\xi)$ is the symbol of degree -n of P.

Remark

 $a_k(x,\theta)$ only depends on the homogeneous symbol $p_{m-k}(x,\xi)$ of degree m-k of P.

Setup

- $U_1 \subseteq \mathbb{R}^n$ open set.
- $\phi: U_1 \to U$ is a C^{∞} -diffeomorphism.

Fact

$$\phi^*P := (\phi^{-1})_* \in \Psi^m(U_1).$$

Proposition

We have

$$c_{\phi^*P}(x) = |\phi'(x)|c_P(\phi(x)) \qquad \forall x \in U_1.$$

Remark

In other words the logarithmic singularities $c_P(x)$ satisfy the transformation law of densities.

Setup

M is a smooth manifold of dimension n.

Reminder

If $P \in \Psi^m(M)$, then, $\kappa_*(P_{|U}) \in \Psi^m(V)$ for every chart $\kappa: U \to V$.

Proposition

Let $P \in \Psi^m(M)$, $m \in \mathbb{Z}$, $m \ge -n$. There is a unique smooth density c_P on M such that, for every chart $\kappa : U \to V$, we have

$$(c_P)_{\kappa}(x) = c_{\kappa_*(P_{|U})}(x) = (2\pi)^{-n} \int_{\mathbb{S}^{n-1}} p_{-n}^{\kappa}(x,\xi) d\xi,$$

where $p_{-n}^{\kappa}(x,\xi)$ is the symbol of degree -n of $\kappa_*(P_{|U})$.

Remark

If P is a differential operator on M, then $c_P(x) = 0$ everywhere, since P has no symbols of negative degree.

Remark

- In case $P \in \Psi^{-n}(M)$, i.e., P has order m = -n, then its symbol of degree -n agrees with its principal symbol.
- It thus makes sense as a function $p_{-n}(x,\xi) \in C^{\infty}(T^*M \setminus 0)$.
- It then can be shown that, if $u \in C_c(M)$, then

$$\int_{M} u(x)c_{P}(x) = (2\pi)^{-n} \iint_{S^{*}M} f(x)p_{-n}(x,\xi)dxd\xi,$$

where $S^*M = (T^*M \setminus 0)/\mathbb{R}_+^*$ is the cosphere bundle and $dxd\xi$ is its Liouville measure.

Setup

M is a compact manifold of dimension n.

Definition (Noncommutative Residue)

If $P \in \Psi^m(M)$, $m \in \mathbb{Z}$, then its noncommutative residue is

$$\operatorname{\mathsf{Res}}(P) := \int_M c_P(x).$$

Remar<u>ks</u>

- Res(P) = 0 if P is a differential operator or if P has order < -n.
- 2 If P has order -n, then

Res(P) =
$$(2\pi)^{-n} \iint_{S^*M} p_{-n}(x,\xi) dx d\xi$$
,

where $p_{-n}(x,\xi)$ is the principal symbol of P.

Notation

$$\Psi^{\mathbb{Z}}(M) := \bigcup_{m \in \mathbb{Z}} \Psi^m(M).$$

Remark

As M is compact, $\Psi^{\mathbb{Z}}(M)$ is an algebra:

• If $P_1 \in \Psi^{m_1}(M)$ and $P_2 \in \Psi^{m_2}(M)$ with $m_1, m_2 \in \mathbb{Z}$, then $m_1 + m_2 \in \mathbb{Z}$, and so

$$P_1P_2\in \Psi^{m_1+m_2}(M)\subseteq \Psi^{\mathbb{Z}}(M).$$

• If $m_2 \geq m_1$, then $\Psi^{m_1}(M) \subseteq \Psi^{m_2}(M)$, and so we have

$$P_1 + P_2 \in \Psi^{m_1}(M) + \Psi^{m_2}(M) \subseteq \Psi^{m_2}(M) \subseteq \Psi^{\mathbb{Z}}(M).$$

Remark

We then can regard the noncommutative residue as a linear functional Res : $\Psi^{\mathbb{Z}}(M) \to \mathbb{C}$.

Proposition

• If $P_1 \in \Psi^{m_1}(M)$ and $P_2 \in \Psi^{m_2}(M)$ are such that $m_1 + m_2 \in \mathbb{Z}$, then

$$Res(P_1P_2) = Res(P_2P_1).$$

② In particular, the noncommutative residue Res : $\Psi^{\mathbb{Z}}(M) \to \mathbb{C}$ is a linear trace on the algebra $\Psi^{\mathbb{Z}}(M)$.

Theorem (Wodzicki, Guillemin)

Every linear trace on $\Psi^{\mathbb{Z}}(M)$ is a constant multiple of the noncommutative residue.

Example

 Δ_g = Laplacian on M associated with some Riemannian metric g.

- The principal symbol of Δ_g is $p_2(x,\xi) = |\xi|_g^2$, where $|\xi|_g^2 = \sum g^{ij} \xi_i \xi_j$ is the Riemannian metric on T^*M .
- $\Delta_g^{-n/2}$ is in $\Psi^{-n}(M)$, and its principal symbol is $p_{-n}(x,\xi) = |\xi|_g^{-n}$.
- It then can be shown that

$$c_{\Delta_g^{-n/2}}(x) = (2\pi)^{-n} \int_{S_c^*M} |\xi|_g^{-n} d\xi = (2\pi)^{-n} |\mathbb{S}^{n-1}| \nu(g)(x),$$

where $\nu(g)$ is the Riemannian density.

• Thus, if we set $c(n) := (2\pi)^{-n} |\mathbb{S}^{n-1}|$, then

$$\operatorname{\mathsf{Res}} \left(\Delta_g^{-\frac{n}{2}} \right) = c(n) \int_M
u(g) = c(n) \operatorname{\mathsf{Vol}}_g(M).$$

Meromorphic Extension of the Trace

Setup

- M = compact manifold of dimension n.
- μ = positive smooth measure on M.
- $P \in \Psi^m(M)$, m > 0, is positive-elliptic.
- $p_m(x,\xi)$ = principal symbol of P.

Remark

The positive-elliptic assumption means that

- $p_m(x,\xi) > 0$ for all $(x,\xi) \in T^*M \setminus 0$.
- $P^* = P$ and $Sp(P) \subseteq [0, \infty)$.

Meromorphic Extension of the Trace

Reminder

- Each operator P^{-z} , $z \in \mathbb{C}$, is in $\Psi^{-mz}(M)$.
- Its principal symbol is $p_m(x,\xi)^{-z}$.

Facts

Let $A \in \Psi^a(M)$, $a \in \mathbb{R}$.

- The operator AP^{-z} is in $\Psi^{a-mz}(M)$.
- In particular AP^{-z} is trace-class for $a m\Re z > -n$, i.e., $\Re z > m^{-1}(n+a)$.
- Thus, $\text{Tr}[AP^{-z}]$ is well defined for $\Re z > m^{-1}(n+a)$.

Meromorphic Extension of the Trace

Proposition (Wodzkicki, Guillemin)

Let $A \in \Psi^a(M)$, $a \in \mathbb{R}$, and set $\Sigma := \{m^{-1}(n+a-j); j \in \mathbb{N}_0\}$.

- The function $z \to \text{Tr}[AP^{-z}]$ has a meromorphic extension to $\mathbb C$ with at worst simple pole singularities on Σ .
- **2** If $\sigma \in \Sigma$, then

$$m\operatorname{\mathsf{Res}}_{z=\sigma}\operatorname{\mathsf{Tr}}\left[AP^{-z}
ight]=\operatorname{\mathsf{Res}}\left[AP^{-\sigma}
ight].$$

③ In particular, if $a \in \mathbb{Z}$, $a \ge -n$, then for $\sigma = 0$ we get $m\operatorname{Res}_{z=0}\operatorname{Tr}\left[AP^{-z}\right] = \operatorname{Res}(A).$

Remark

$$\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}.$$

Zeta Functions of Elliptic Operators

Reminder

- $P^{-z} \in \Psi^{-mz}(M)$.
- Thus, P^{-z} is trace-class for $-m\Re z<-n$, i.e., $\Re z>m^{-1}n$.

Definition

The zeta function of P is defined by

$$\zeta_P(z) = \operatorname{Tr} \left[P^{-z} \right], \qquad \Re z > m^{-1} n.$$

Zeta Functions of Elliptic Operators

Applying the previous result to A = 1 and a = 0 gives:

$\mathsf{Theorem}$

Set $\Sigma := \{m^{-1}(n-j); j \in \mathbb{N}_0\}.$

- The zeta function $\zeta_P(z) = \text{Tr}[P^{-z}]$ has a meromorphic extension to $\mathbb C$ with at worst simple pole singularities on $\Sigma \setminus 0$.
- ② If $\sigma \in \Sigma \setminus 0$, then

$$m \operatorname{Res}_{z=\sigma} \zeta_P(z) = \operatorname{Res} [P^{-\sigma}].$$

3 In particular, $\zeta_P(z)$ always has a regular value at z=0.

Remark

There is no residue at z = 0, because for A = 1 we get

$$m \operatorname{Res}_{z=0} \operatorname{Tr} \left[P^{-z} \right] = \operatorname{Res}(1) = 0.$$

Theorem (Ikehara's Tauberian Theorem; see Shubin)

Assume N(t), $t \ge 0$, is a non-decreasing function s.t.

- (i) N(t) = 0 near t = 0.
- (ii) The integral $\zeta(z) := \int t^{-z} dN(t)$ converges for $\Re z > \sigma > 0$.
- (iii) $\zeta(z)$ admits a meromorphic extension to some half-plane $\Re z > \sigma \epsilon$, $\epsilon > 0$, with only a simple pole at $z = \sigma$ s.t.

$$\operatorname{Res}_{z=\sigma}\zeta(z)=c>0.$$

Then, we have

$$N(t) \sim rac{1}{\sigma} c t^{\sigma} \quad ext{as } t o \infty.$$

Definition

The counting function of P is

$$N_P(t) := \# \{j; \ 0 < \lambda_j(P) \le t\}, \quad t > 0,$$

where $0 \le \lambda_0(P) \le \lambda_1(P) \le \cdots$ are the eigenvalues of P.

Remark

We have

$$dN_P(t) = \sum_{\lambda_j(P)>0} \delta_{\lambda_j(P)}(t),$$

where $\delta_{\lambda_i(P)}(t)$ is the Dirac measure at $\lambda_j(P)$.

• Thus, for $\Re z > m^{-1}n$ we have

$$\zeta_P(z) = \sum_{\lambda_j(P)>0} \lambda_j(P)^{-z} = \int t^{-z} dN_P(t).$$

Theorem (Weyl's Law; 1st Version)

As $t \to \infty$, we have

$$N_P(t) \sim \frac{(2\pi)^{-n}}{n} \bigg(\iint_{S^*M} p_m(x,\xi)^{-\frac{n}{m}} dx d\xi \bigg) t^{\frac{n}{m}}.$$

Proof.

- For $\Re s > m^{-1}m$, we have $\int t^{-z} dN_P(t) = \zeta_P(z)$.
- The function $\zeta_P(z)$ is holomorphic for $\Re z > m^{-1}n$.
- It has a meromorphic continuation to the half-plane $\Re z > m^{-1}(n-1)$ with only a simple pole at $z = m^{-1}n$ s.t.

$$\operatorname{Res}_{z=m^{-1}n}\zeta_P(z)=rac{1}{m}\operatorname{Res}\left[P^{-rac{n}{m}}
ight].$$

Proof.

- Here $P^{-n/m}$ has order -n.
- Its principal symbol is $p_m(x,\xi)^{-\frac{n}{m}} > 0$.
- Thus,

$$\operatorname{Res}\left[P^{-\frac{n}{m}}\right] = (2\pi)^{-n} \iint_{S^*M} p_m(x,\xi)^{-\frac{n}{m}} dx d\xi$$

• Therefore, we may apply Ikehara's Tauberian theorem to get

$$N_{P}(t) = \frac{m}{n} \cdot \frac{1}{m} \operatorname{Res} \left[P^{-\frac{n}{m}} \right] t^{\frac{n}{m}} + o\left(t^{\frac{n}{m}}\right)$$
$$= \frac{(2\pi)^{-n}}{n} \left(\iint_{S^{*}M} p_{m}(x,\xi)^{-\frac{n}{m}} dx d\xi \right) t^{\frac{n}{m}} + o\left(t^{\frac{n}{m}}\right).$$

This gives the result.

Lemma

We always have

$$\limsup_{j \to \infty} j \lambda_j(P)^{-\frac{m}{n}} = \limsup_{t \to \infty} t^{-\frac{n}{m}} N_P(t),$$
 $\liminf_{j \to \infty} j \lambda_j(P)^{-\frac{m}{n}} = \liminf_{t \to \infty} t^{-\frac{n}{m}} N_P(t).$

Therefore, we obtain:

Theorem (Weyl's Law; 2nd Version)

As $j \to \infty$ we have

$$\lambda_j(P) \sim j^{\frac{m}{n}} \left(\frac{(2\pi)^{-n}}{n} \iint_{S^*M} p_m(x,\xi)^{-\frac{n}{m}} dx d\xi \right)^{-\frac{m}{n}}.$$