Noncommutative Residue and Zeta Functions of Elliptic Operators

Sichuan University, Fall 2022

Setup

- $U \subset \mathbb{R}^n$ open set.
- $\Omega \subset \mathbb{C}$ open set

Notation

$$S^{\bullet}(U \times \mathbb{R}^n) := \bigcup_{q \in \mathbb{C}} S^q(U \times \mathbb{R}^n), \quad \Psi^{\bullet}(U) := \bigcup_{q \in \mathbb{C}} \Psi^q(U).$$

Definition

A family $p(z)(x,\xi)$, $z \in \Omega$, in $S^{\bullet}(U \times \mathbb{R}^n)$ is called holomorphic if:

- (i) The order w(z) of $p(z)(x,\xi)$ is a holomorphic function on Ω .
- (ii) For every $(x,\xi) \in U \times \mathbb{R}^n$, the function $z \to p(z)(x,\xi)$ is holomorphic on Ω .
- (iii) We have an asymptotic expansion,

$$p(z)(x,\xi) \sim \sum p(z)_{w(z)-j}(x,\xi), \quad p(z)_{w(z)-j} \in S_{w(z)-j}(U \times \mathbb{R}^n),$$

whose bounds are uniform on compact sets of Ω .

Remark

The condition (iii) means that for all compacts $L \subset \Omega$ and $K \subset U$, we have

$$\left| D_x^{\alpha} D_{\xi}^{\beta} \left(p(z) - \sum_{j < N} p(z)_{w(z) - j} \right) (x, \xi) \right| \leq C_{LKN\alpha\beta} |\xi|^{\Re w(z) - j}$$

for all $z \in L$, $x \in K$ and $\xi \in \mathbb{R}^n$, $|\xi| \ge 1$.

Remark

A family R(z), $z \in \Omega$, in $\Psi^{-\infty}(U)$ is holomorphic if it is of the form,

$$R(z)u(x) = \int k_R(z)(x,y)u(y)dy,$$

where $k_R(z)(x, y)$, $z \in \Omega$, is a holomorphic family in $C^{\infty}(U \times U)$.

Definition

A family P(z), $z \in \Omega$, in $\Psi^{\bullet}(U)$ is holomorphic if it can be put in the form,

$$P(z) = p(z)(x, D) + R(z),$$

where $p(z)(x,\xi)$ and R(z) are holomorphic families in $S^{\bullet}(U \times \mathbb{R}^n)$ and $\Psi^{-\infty}(U)$, respectively.

Definition

A family P(z), $z \in \Omega$, in $\Psi^{\bullet}(U)$ is called properly supported if, for all compacts $L \subset \Omega$ and $K \subset U$, there are compact sets $K_1 \subset U$ and $K_2 \subset U$ such that

$$\operatorname{supp} u \subset K \implies \operatorname{supp} P(z)u \subset K_1 \quad \forall z \in L.$$

$$K_2 \cap \operatorname{supp} u = \emptyset \implies K \cap \operatorname{supp} P(z)u = \emptyset \quad \forall z \in L.$$

Proposition

Assume that

- $P_1(z)$, $z \in \Omega$, is a holom. family in $\Psi^{\bullet}(U)$ of order $w_1(z)$.
- $P_2(z)$, $z \in \Omega$, is a holom. family in $\Psi^{\bullet}(U)$ of order $w_2(z)$.
- One those families is properly supported.

Then $P_1(z)P_2(z)$, $z \in \Omega$, is a holomorphic family in $\Psi^{\bullet}(U)$ of order $w_1(z) + w_2(z)$.

Proposition

Suppose that $\phi: U \to V \subset \mathbb{R}^n$ is a diffeomorphism. If P(z), $z \in \Omega$, is a holomorphic family in $\Psi^{\bullet}(U)$ of order w(z), then $\phi_*P(z)$, $z \in \Omega$, a holomorphic family in $\Psi^{\bullet}(V)$ of order w(z).

Setup

• $M^n = \text{smooth manifold}$.

Definition

A family P(z), $z \in \Omega$, in $\Psi^{\bullet}(M)$ is holomorphic if

- The order w(z) of P(z) is a holomorphic function on Ω .
- For every chart $\kappa: U \to V$, the family $\kappa_*(P(z)_{|U})$, $z \in \Omega$, is a holomorphic family in $\Psi^{\bullet}(V)$ of order w(z).

Proposition

Assume that

- $P_1(z)$, $z \in \Omega$, is a holom. family in $\Psi^{\bullet}(M)$ of order $w_1(z)$.
- $P_2(z)$, $z \in \Omega$, is a holom. family in $\Psi^{\bullet}(M)$ of order $w_2(z)$.
- One of those families is properly supported.

Then $P_1(z)P_2(z)$, $z \in \Omega$, is a holomorphic family in $\Psi^{\bullet}(M)$ of order $w_1(z) + w_2(z)$.

In particular, if M is compact, then we get:

Proposition

Assume that M is compact, and

- $P_1(z)$, $z \in \Omega$, is a holom. family in $\Psi^{\bullet}(M,)$ of order $w_1(z)$.
- $P_2(z)$, $z \in \Omega$, is a holom. family in $\Psi^{\bullet}(M)$ of order $w_2(z)$.

Then $P_1(z)P_2(z)$, $z \in \Omega$, is a holomorphic family in $\Psi^{\bullet}(M)$ of order $w_1(z) + w_2(z)$.

Definition (Guillemin)

A holomorphic gauging for $P \in \Psi^m(M)$ is any holomorphic family P(z), $z \in \mathbb{C}$, in $\Psi^{\bullet}(M)$ such that

$$P(0) = P$$
, ord $P(z) = z + m$.

Proposition

Every $P \in \Psi^m(M)$ admits a holomorphic gauging.

Proof.

We first show the result for P = 1 on an open set $V \subset \mathbb{R}^n$.

Define

$$a(z)(x,\xi) = (1-\chi(\xi))|\xi|^z + \chi(\xi), \quad z \in \mathbb{C}, \ (x,\xi) \in V \times \mathbb{R}^n.$$

- $a(z)(x,\xi)$ is a holomorphic family in $S^{\bullet}(V \times \mathbb{R}^n)$ of order z with $a(z)(x,\xi) \sim |\xi|^z$.
- For z = 0 we have

$$a(0)(x,\xi) = (1 - \chi(\xi)) + \chi(\xi) = 1.$$

• Thus, a(z)(x, D), $z \in \mathbb{C}$, is a holomorphic family in $\Psi^{\bullet}(V)$ of order z with a(0)(x, D), i.e., this is a holom. gauging for 1.

Proof.

- Let $\kappa: U \to V$ be a chart. Then $A(z) := \kappa^*(a(z)(x, D))$ is a holomorphic gauging for 1 on U.
- Let (φ_i) be a partition of unity subordinate to a covering (U_i) by domains of charts.
- For each i let $A_i(z)$, $z \in \mathbb{C}$, be a holomorphic gauging for 1 on U_i . Define

$$A(z) = \sum \varphi_i A(z) \psi_i, \quad z \in C,$$

where $\psi_i \in C^{\infty}(U_i)$ is such that $\psi_i = 1$ near supp φ_i .

- Then A(z) is a holomorphic gauging for 1 on M.
- By construction the family A(z), $z \in \mathbb{C}$, is properly supported.

Proof.

• Let $P \in \Psi^m(M)$, and set

$$P(z) = A(z)P, \qquad z \in \mathbb{C}.$$

- We regard P as a constant holomorphic family of ΨDOs of order m.
- The product of a holomorphic family of ΨDOs with a properly supported family of ΨDOs is a holomorphic family of ΨDOs .
- Therefore, P(z), $z \in \mathbb{C}$, is a holomorphic family of ΨDOs of order z + m.
- As $P(0) = A(0)P = 1 \cdot P = P$, we get a holomorphic gauging for P.

Complex Powers of Elliptic ΨDOs

Assumptions

- M is compact with smooth measure μ .
- $P \in \Psi^m(M)$, m > 0, is elliptic, selfadjoint and ≥ 0 .

Reminder

- $P^z \in \Psi^{mz}(M)$ for all $z \in \mathbb{C}$.
- $P^z|_{z=0} = 1 \Pi_0(P)$, where $\Pi_0(P)$ is the orthogonal projection onto ker P.
- $P^{z_1}P^{z_2} = P^{z_1+z_2}, z_i \in \mathbb{C}.$
- $\Pi_0(P)$ is a smoothing operator.

Complex Powers of Elliptic ΨDOs

Theorem (Seeely, Shubin)

 P^z , $z \in \mathbb{C}$, is a holomorphic family in $\Psi^{\bullet}(M)$ of order mz.

Corollary

If $Q \in \Psi^m(M)$, $\Re m > 0$, is elliptic, then $|Q|^z$, $z \in \mathbb{C}$, is a holomorphic family in $\Psi^{\bullet}(M)$ of order $z\Re m$.

Corollary

Let $Q \in \Psi^q(M)$, $q \in \mathbb{C}$, and set

$$Q(z) = Q\left(P^{\frac{z}{m}} + \Pi_0(P)\right), \qquad z \in \mathbb{C}.$$

Then Q(z) is a holomorphic gauging for Q.

Complex Powers of Elliptic ΨDOs

Proof.

- We have Q(z) = QA(z), with $A(z) = P^{z/m} + \Pi_0(P)$.
- Here $P^{z/m}$, $z \in \mathbb{C}$, is a holomorphic family in $\Psi^{\bullet}(M)$ of order m(z/m) = z.
- $\Pi_0(P)$ is a smoothing operator, and so it can be regarded as a constant (holomorphic) family in $\Psi^{-\infty}(M) \subset \Psi^{\bullet}(M)$.
- Thus, $A(z) = P^{z/m} + \Pi_0(P)$, $z \in \mathbb{C}$, is a holomorphic family in $\Psi^{\bullet}(M)$ of order z.
- We have

$$A(0) = P^{z/m}|_{z=0} + \Pi_0(P) = (1 - \Pi_0(P)) + \Pi_0(P) = 1.$$

- Thus, A(z), $z \in \mathbb{C}$, is a holomorphic gauging for 1.
- It then follows that Q(z) = QA(z) is a holomorphic gauging for Q.

Definition

 $S^q(\mathbb{R}^n)$, $q\in\mathbb{C}$, consists of symbols $p(\xi)\in C^\infty(\mathbb{R}^n)$ such that

$$p(\xi) \sim \sum p_{q-j}(\xi), \quad p(\lambda \xi) = \lambda^{q-j} p(\xi).$$

Remarks

- **1** In other words $S^q(\mathbb{R}^n)$ consists of classical symbols of order q that do not depend on x.
- ② If $p(x,\xi) \in S^q(U \times \mathbb{R}^n)$, then $p(x,\cdot) \in S^q(\mathbb{R}^n)$ for all $x \in \mathbb{R}^n$.

Notation

For any subset $A \subset \mathbb{C}$ we set

$$S^{A}(\mathbb{R}^{n}) = \bigcup_{q \in A} S^{q}(\mathbb{R}^{n}), \qquad \Psi^{A}(M) = \bigcup_{q \in A} \Psi^{q}(M).$$

Remark

For $A = \{\Re z < a\}$ we use instead the notation $S^{<a}(\mathbb{R}^n)$ and $\Psi^{<a}(M)$.

Remark

We use similar notations for symbols on $U \times \mathbb{R}^n$.

Definition

Assume $A \subset \mathbb{C}$ is open and X is a topological vector space. We say that a linear map $\Phi: S^A(\mathbb{R}^n) \to X$ is holomorphic, if $\Phi(p(z))$, $z \in \Omega$, is a holomorphic family in X for every holomorphic family p(z), $z \in \Omega$, in $S^A(\mathbb{R}^n)$.

Remark

We similarly define holomorphic linear maps from $\Psi^A(M)$ or $S^A(U \times \mathbb{R}^n)$ to X.

Reminder

- If $P \in \Psi^{<-n}(M)$, then $k_P(x,x)$ is a C^{∞} density on M.
- ② If M is compact, then P is trace-class and

$$Tr[P] = \int_M k_P(x,x).$$

$$k_P(x,x) = \check{p}_{\xi \to y}(x,0) = \int p(x,\xi) d\xi.$$

Main Goal

- Get an analytic extension to $\Psi^{\mathbb{CZ}}(M)$ of the map $P \to \text{Tr}[P]$.
- ② The noncommutative residue will then appear as the "residual" functional on $\Psi^{\mathbb{Z}}(M)$ induced by this extension.

Definition

The functional $L: S^{<-n}(\mathbb{R}^n) \to \mathbb{C}$ is defined by

$$L(p) = \int_{\mathbb{R}^n} p(\xi) d\xi, \quad p(\xi) \in S^{<-n}(\mathbb{R}^n).$$

Remark

If
$$p(x,\xi) \in S^{<-n}(U \times \mathbb{R}^n)$$
 and $P = p(x,D)$, then $k_P(x,x) = L(p(x,\cdot))$.

Lemma

The linear functional $L: S^{<-n}(\mathbb{R}^n) \to \mathbb{C}$ is holomorphic.

Proof.

If $p(z)(\xi)$, $z \in \Omega$, is a holomorphic family in $S^{<-n}(\mathbb{R}^n)$, then this is a holomorphic family in $L^1(\mathbb{R}^n)$.

Lemma

The linear functional $L: S^{<-n}(\mathbb{R}^n) \to \mathbb{C}$ has a unique holomorphic extension $\tilde{L}: S^{\mathbb{C}\setminus\mathbb{Z}}(\mathbb{R}^n) \to \mathbb{C}$.

Proof of Uniqueness.

- Let $\tilde{L}_j: S^{\mathbb{C}\setminus\mathbb{Z}}(\mathbb{R}^n) \to \mathbb{C}$, j=1,2, be holom. extensions of L.
- Let $p(\xi) \in S^q(\mathbb{R}^n)$, $q \in \mathbb{C} \setminus \mathbb{Z}$, and $p(z)(\xi)$, $z \in \mathbb{C}$, a holomorphic gauging for $p(\xi)$.
- As $p(z)(\xi)$ has order q+z, for $\Re(z+q)<-n$ we have

$$\tilde{L}_1(p(z)) = L(p(z)) = \tilde{L}_2(p(z)).$$

- Here $\tilde{L}_j(p(z))$, $z + q \notin \mathbb{Z}$, are holomorphic functions.
- By the analytic continuation principle we then have

$$ilde{L}_{1}\left(p(z)
ight) = ilde{L}_{2}\left(p(z)
ight) \quad orall z\in \mathbb{C},\,\,z+q
ot\in \mathbb{Z}.$$

• In particular, for z = 0 we get

$$\tilde{L}_1(p) = \tilde{L}_1(p(0)) = \tilde{L}_2(p(0)) = \tilde{L}_2(p)$$
.

• This shows that \tilde{L}_1 and \tilde{L}_2 agree.

Proof of Existence.

• Let $N \ge 1$. For $p(\xi) \in S^{<-n+N}(\mathbb{R}^n)$, $p(\xi) \sim \sum p_{q-i}(\xi)$, set

$$L'_N(p) = \int_{|\xi| \ge 1} \left(p(\xi) - \sum_{j < N} p_{q-j}(\xi) \right) d\xi.$$

• This is well defined, since with $\epsilon := N - (\Re q + n) > 0$, we have

$$p(\xi) - \sum_{j < N} p_{q-j}(\xi) = O\left(|\xi|^{\Re q - N}\right) = O\left(|\xi|^{-n - \epsilon}\right).$$

Fact

The linear functional $L'_N: S^{<-n+N}(\mathbb{R}^n) \to \mathbb{C}$ is holomorphic.

Proof of Existence.

• For $p(\xi) \in S^{\bullet}(\mathbb{R}^n)$, $p(\xi) \sim \sum p_{q-i}(\xi)$, we also set

$$L''(p) = \int_{|\xi| \le 1} p(\xi) d\xi, \qquad \gamma_j(p) = \int_{|\xi| = 1} p_{q-j}(\xi) d\xi, \quad j \ge 0.$$

Fact

The functionals $L'': S^{\bullet}(\mathbb{R}^n) \to \mathbb{C}$ and $\gamma_j: S^{\bullet}(\mathbb{R}^n) \to \mathbb{C}$, $j \geq 0$, are holomorphic.

Proof of Existence.

• For N > 1, set

$$A_{N} = \{\Re z < -n + N\} \cap (\mathbb{C} \setminus \mathbb{Z}).$$

• For $p(\xi) \in S^{A_N}(\mathbb{R}^n)$, $p(\xi) \sim \sum p_{q-j}(\xi)$, define

$$\tilde{L}_N(p) = L'_N(p) + L''(p) - \sum_{j < N} \frac{1}{q + N - j} \gamma_j(p).$$
 (1)

• This is well defined, since $q + N - j \neq 0$ if $q \in A_N$ and j < N.

Fact

The functional $\tilde{L}_N: S^{A_N}(\mathbb{R}^n) \to \mathbb{C}$ is holomorphic.

Proof of Existence.

• Let $p(\xi) \in S^{<-n}(\mathbb{R}^n)$. We have

$$L(p) = \int_{\mathbb{R}^n} p(\xi) d\xi = \int_{|\xi| \ge 1} \left(p(\xi) - \sum_{j < N} p_{q-j}(\xi) \right) d\xi$$
$$+ \int_{|\xi| \le 1} p(\xi) d\xi + \sum_{j < N} \int_{|\xi| \ge 1} p_{q-j}(\xi) d\xi.$$

• As $p_{q-j}(t\xi) = t^{q-j}p(\xi)$, by using polar coordinates we get

$$\int_{|\xi| \ge 1} p_{q-j}(\xi) d\xi = \int_1^\infty \int_{\mathbb{S}^{n-1}} t^{q-j} p_{q-j}(\xi) t^{n-1} dt d\xi$$
$$= \frac{-1}{n+q-j} \int_{\mathbb{S}^{n-1}} p_{q-j}(\xi) d\xi$$
$$= \frac{-1}{n+q-j} \gamma_j(p).$$

28 /

Proof of Existence.

Thus,

$$L(p) = \int_{|\xi| \ge 1} \left(p(\xi) - \sum_{j < N} p_{q-j}(\xi) \right) d\xi$$

$$+ \int_{|\xi| \le 1} p(\xi) d\xi - \sum_{j < N} \frac{1}{n+q-j} \gamma_j(p)$$

$$= L'_N(p) + L''(p) - \sum_{j < N} \frac{1}{n+q-j} \gamma_j(p)$$

$$= \tilde{L}_N(p).$$

• It follows that $\tilde{L}_N: S^{A_N}(\mathbb{R}^n) \to \mathbb{C}$ is the unique holomorphic extension of L to $S^{A_N}(\mathbb{R}^n)$.

Proof of Existence.

• The uniqueness implies that

$$\tilde{L}_{N+1} = \tilde{L}_N$$
 on $S^{A_N}(\mathbb{R}^n)$.

ullet Thus, we define a functional $\widetilde{L}:S^{\mathbb{CZ}}(\mathbb{R}^n) o \mathbb{C}$ by letting

$$\tilde{L}(p) = \tilde{L}_N(p), \quad p \in S^q(\mathbb{R}^n), \ q \in \mathbb{C} \setminus \mathbb{Z}, \ \Re(q) + N < -n,$$

where the value of N is irrelevant.

• Then $\tilde{L} = L$ on $S^{<-n}(\mathbb{R}^n)$ and is holomorphic, and so this is the unique holomorphic extension of L to $S^{\mathbb{CZ}}(\mathbb{R}^n)$.

The proof is complete.

Lemma

Let $p(\xi) \in S^m(\mathbb{R}^n)$, $m \in \mathbb{Z}$, $m \ge -n$, $p(\xi) \sim \sum p_{m-j}(\xi)$. Given any holomorphic gauging $p(z)(\xi)$, $z \in \mathbb{C}$, the function $\tilde{L}(p(z))$ has near z = 0 at worst a simple pole such that

$$\operatorname{Res}_{z=0} \tilde{L}(p(z)) = -\gamma_{m+n}(p) = -\int_{\mathbb{S}^{n-1}} p_{-n}(\xi) d\xi.$$

Proof.

- As $p(z)(\xi)$ has order z+m, for $\Re z < 1$ we may take N=m+n+1 in the definition of $\tilde{L}(p(z))$.
- We get

$$\tilde{L}(p(z)) = \tilde{L}_{m+n+1}(p(z))
= L'_{m+n+1}(p(z)) + L''(p(z)) - \sum_{j < m+n+1} \frac{1}{(z+m)+n-j} \gamma_j(p(z))
= L'_{m+n+1}(p(z)) + L''(p(z)) - \sum_{0 \le \ell \le m+n} \frac{1}{z-\ell} \gamma_{m+n-\ell}(p(z)).$$

• This shows that $\tilde{L}(p(z))$ is meromorphic near z=0 with a simple pole such that

$$\operatorname{Res}_{z=0} \tilde{L}(p(z)) = \operatorname{Res}_{z=0} z^{-1} \gamma_{m+n}(p(z))$$
$$= -\gamma_{m+n}(p(0))$$
$$= -\gamma_{m+n}(p).$$

Setup

 $U \subset \mathbb{R}^n$ is an open set.

Reminder

- ② If P = p(x, D) with $p(x, \xi) \in S^{<-n}(U \times \mathbb{R}^n)$, then $k_P(x, x) = \check{p}_{\xi \to V}(x, 0) = L(p(x, \cdot))$.

Proposition

The map $\Psi^{<-n}(U) \ni P \to k_P(x,x) \in C^{\infty}(U)$ has a unique holomorphic extension $\Psi^{\mathbb{C}/\mathbb{Z}}(U) \ni P \to t_P(x) \in C^{\infty}(U)$.

Proof.

• Let $P \in \Psi^q(U)$, $q \in \mathbb{C} \setminus \mathbb{Z}$, and put

$$P = p(x, D) + R,$$

with $p(x,\xi) \in S^q(U \times \mathbb{R}^n)$ and $R \in \Psi^{-\infty}(U)$.

• If $\Re q < -n$, then

$$k_P(x,x) = \check{p}_{\xi \to y}(x,0) + k_R(x,x) = L(p(x,\cdot)) + k_R(x,x).$$

• In general, we set

$$t_P(x) = \tilde{L}(p(x,\cdot)) + k_R(x,x).$$

- It can be shown that the r.h.s. does not depend on the choice of the pair (p, R).
- It can be also shown that $t_P(x) \in C^{\infty}(U)$.
- This extends the map $P \to k_P(x,x)$ to $\Psi^{\mathbb{CZ}}(U)$.

Proof.

- Let P(z), $z \in \Omega$, be a holomorphic family in $\Psi^{\mathbb{CZ}}(U)$.
- We may write

$$P(z) = p(z)(x, D) + R(z),$$

where $p(z)(x,\xi)$ and R(z) are holomorphic families in $S^{\mathbb{C}\mathbb{Z}}(U\times\mathbb{R}^n)$ and $\Psi^{-\infty}(U)$.

We then have

$$t_{P(z)}(x) = \tilde{L}(p(z)(x,\cdot)) + k_{R(z)}(x,x).$$

- Here $k_{R(z)}(x,x)$ is a holomorphic family in $C^{\infty}(U)$.
- It can be checked that $\tilde{L}(p(z)(x,\cdot))$ is a holomorphic family in $C^{\infty}(U)$ as well.
- Thus, $t_{P(z)}(x)$, $z \in \Omega$, is a a holomorphic family in $C^{\infty}(U)$.
- It follows that the linear map $P \to t_P(x)$ is holomorphic.
- This is the unique holomorphic extension of $P \to k_P(x,x)$.

Definition

If $P \in \Psi^m(U)$, $m \in \mathbb{Z}$, $m \ge -n$, has symbol $p(x,\xi) \sim \sum p_{m-j}(x,\xi)$, then we set

$$c_P(x) = \int_{\mathbb{S}^{n-1}} p_{-n}(x,\xi) d\xi.$$

Remarks

- \bullet $c_P(x)$ is a smooth function on U.
- 2 We make the convention that $c_P(x) = 0$ for $m \in \mathbb{Z}$, m < -n.

Analytic Extension of $k_P(x,x)$

Proposition

Let $P \in \Psi^m(U)$, $m \in \mathbb{Z}$. Given any holomorphic gauging P(z) for P, near z = 0 the map $z \to t_{P(z)}(x)$ has at worst a simple pole singularity such that

$$\operatorname{Res}_{z=0} t_{P(z)}(x) = -c_P(x).$$

Proof.

Put

$$P(z) = p(z)(x, D) + R(z),$$

where $p(z)(x,\xi)$ and R(z) are holomorphic families in $S^{\bullet}(U \times \mathbb{R}^n)$ and $\Psi^{-\infty}(U)$.

We have

$$t_{P(z)}(x) = \tilde{L}(p(z)(x,\cdot)) + k_{R(z)}(x,x).$$

Analytic Extension of $k_P(x,x)$

Proof.

We have

$$t_{P(z)}(x) = \tilde{L}(p(z)(x,\cdot)) + k_{R(z)}(x,x).$$

- Here $k_{R(z)}(x,x)$ is a holomorphic family in $C^{\infty}(U)$.
- $\tilde{L}(p(z)(x,\cdot))$ has a simple pole at z=0.
- Thus $t_{P(z)}(x)$ has a simple pole at z=0 such that

$$\operatorname{Res}_{z=0} t_{P(z)}(x) = \operatorname{Res}_{z=0} \tilde{L}(p(z)(x,\cdot)) = -\int_{\mathbb{S}^{n-1}} p_{-n}(0)(x,\xi) d\xi.$$

• Here $p_{-n}(0)(x,\xi)$ is the symbol of degree -n of P(0)=P, and so

$$\int_{\mathbb{S}^{n-1}} p_{-n}(0)(x,\xi)d\xi = c_P(x).$$

This gives the result.

38 / 1

Proposition

Let $\phi: U \to V$ be a diffeomorphism, where $V \subset \mathbb{R}^n$ is open.

• If $P \in \Psi^{\mathbb{C}/\mathbb{Z}}(V)$, then

$$t_{\phi^*P}(x) = |\phi'(x)|t_P(\phi(x)) \qquad \forall x \in V.$$

$$c_{\phi^*P}(x) = |\phi'(x)|c_P(\phi(x)) \quad \forall x \in V.$$

Proof.

- Let $P \in \Psi^q(V)$, $q \in \mathbb{C}$, and P(z), $z \in \mathbb{C}$, a holomorphic gauging for P.
- Here P(z) has order z + q.
- For $\Re(z+q) < -n$, we have

$$t_{\phi*P(z)} = k_{\phi*P(z)}(x, x)$$

= $|\phi'(x)|k_{P(z)}(\phi(x), \phi(x))$
= $|\phi'(x)|t_{P(z)}(\phi(x))$.

- Here $\phi^*P(z)$ is a holomorphic gauging for $\phi^*P(0) = \phi^*P$.
- Thus, by the analytic continuation principle,

$$t_{\phi*P(z)}(x) = |\phi'(x)|t_{P(z)}(\phi(x)) \qquad \forall z \in \mathbb{C}, \ z+q \in \mathbb{C} \setminus \mathbb{Z}.$$

Proof.

We have

$$t_{\phi*P(z)}(x) = |\phi'(x)|t_{P(z)}(\phi(x)) \qquad \forall z \in \mathbb{C}, \ z+q \in \mathbb{C} \setminus \mathbb{Z}.$$

• If $q \in \mathbb{C} \setminus \mathbb{Z}$, then for z = 0 this gives

$$t_{\phi*P}(x) = |\phi'(x)|t_{P(z)}(\phi(x)).$$

• If $q \in \mathbb{Z}$, then

$$c_{\phi^*P}(x) = -\operatorname{Res}_{z=0} t_{\phi*P(z)}(x)$$

= -\text{Res}_{z=0} |\phi'(x)| t_{P(z)}(\phi(x))
= -|\phi'(x)| c_P(\phi(x)).

41 / 1

Setup

 $M^n = \text{smooth manifold}.$

Reminder

If $P \in \Psi^{<-n}(M)$, then $k_P(x,x)$ is a C^{∞} -density, i.e., $k_P(x,x) \in C^{\infty}(M,|\Lambda|(M))$.

Proposition

If $P \in \Psi^q(M)$, $q \in \mathbb{C} \setminus \mathbb{Z}$.

- There is a unique C^{∞} -density $t_P(x) \in C^{\infty}(M, |\Lambda|(M))$ s.t. $\kappa_*(t_P(x)|_U) = t_{\kappa_*(P|_U)}(x)$ for every chart $\kappa: U \to V$.
- **2** If $\Re q < -n$, then $t_P(x) = k_P(x, x)$.

Proposition

If $P \in \Psi^{\mathbb{Z}}(M)$, then there is a unique C^{∞} -density $c_P(x) \in C^{\infty}(M, |\Lambda|(M))$ s.t.

$$\kappa_*(c_P(x)|_U) = c_{\kappa_*(P|_U)}(x)$$
 for every chart $\kappa: U \to V$.

Remark

If $P \in \Psi^{-n}(M)$ and g is a Riemannian metric on M, then

$$c_P(x) = \left(\int_{S_*^*M} \sigma_{-n}(P)(x,\xi) d\xi\right) \nu(g)(x)$$

Here $\sigma_{-n}(P)(x,\xi)$ is the principal symbol of P and $\nu(g)$ is the Riemannian density.

Setup

 \mathcal{E}^r = smooth vector bundle over M of rank r.

Reminder

If $P \in \Psi^{<-n}(M, \mathcal{E})$, then $k_P(x, x)$ is a smooth $\operatorname{End}(\mathcal{E})$ -valued density, i.e., a section

$$k_P(x,x) \in C^{\infty}(M,\operatorname{End}(\mathcal{E}) \otimes |\Lambda|(M))$$
.

Proposition

• If $P \in \Psi^{\mathbb{CZ}}(M, \mathcal{E})$, then there is a unique $\operatorname{End}(\mathcal{E})$ -valued density $t_P(x)$ in $C^{\infty}(M, \operatorname{End}(\mathcal{E}) \otimes |\Lambda|(M))$ s.t.

$$au_*(t_P(x)_{|U}) = t_{ au_*(P_{|U})}(x)$$
 for every triv. $au: \mathcal{E}_{|U} o U imes \mathbb{C}^r$.

② If $P \in \Psi^{\mathbb{Z}}(M, \mathcal{E})$, then there is a unique $\operatorname{End}(\mathcal{E})$ -valued density $c_P(x)$ in $C^{\infty}(M, \operatorname{End}(\mathcal{E}) \otimes |\Lambda|(M))$ s.t.

$$\tau_*(c_P(x)_{|U}) = c_{\tau_*(P_{|U})}(x) \quad \text{for every triv. } \tau: \mathcal{E}_{|U} \to U \times \mathbb{C}^r.$$

Remarks

• $au_*(P_{|U})$ is an operator in $\Psi^{\bullet}(M, \mathbb{C}^r)$, and so $t_{\tau_*(P_{|U})}(x)$ and $c_{\tau_*(P_{|U})}(x)$ make sense as elements of

$$M_r(C^{\infty}(M,|\Lambda|(M)) = C^{\infty}(M,\operatorname{End}(\mathbb{C}^r)\otimes |\Lambda|(M))$$

2 If $P \in \Psi^{<-n}(M, \mathcal{E})$, then $t_P(x) = k_P(x, x)$.

Theorem (Guillemin, Wodzicki, Kontsevich-Vishik)

- **1** The map $\Psi^{\mathbb{C}/\mathbb{Z}}(M,\mathcal{E}) \ni P \to t_P(x) \in C^{\infty}(M,\operatorname{End}(\mathcal{E}) \otimes |\Lambda|(M)) \text{ is the unique holomorphic extension to } \Psi^{\mathbb{C}/\mathbb{Z}}(M,\mathcal{E}) \text{ of the map } \Psi^{<-n}(M,\mathcal{E}) \ni P \to k_P(x,x) \in C^{\infty}(M,\operatorname{End}(\mathcal{E}) \otimes |\Lambda|(M)).$
- **2** Let $P \in \Psi^{\mathbb{Z}}(M)$. Given any holomorphic gauging P(z) for P, the map $z \to t_{P(z)}(x)$ has near z = 0 at worst a simple pole singularity such that

$$Res_{z=0} t_{P(z)}(x) = -c_P(x).$$

Assumption

 M^n is a closed manifold

Reminder

- If $\rho(x) \in C^{\infty}(M, \operatorname{End}(\mathcal{E}) \otimes |\Lambda|(M))$, then $\operatorname{tr}_{\mathcal{E}}[\rho(x)] \in C^{\infty}(M, |\Lambda|(M))$.
- ② If $P \in \Psi^{<-n}(M, \mathcal{E})$, then P is trace-class, and

$$\operatorname{Tr}[P] = \int_{M} \operatorname{tr}_{\mathcal{E}}[k_{P}(x, x)].$$

3 In particular, if $P \in \Psi^{<-n}(M, M)$, then

$$Tr[P] = \int_M k_P(x, x).$$

Definition (Kontsevich-Vishik)

The canonical trace $\mathsf{TR}:\Psi^{\mathbb{CZ}}(M,\mathcal{E})\to\mathbb{C}$ is defined by

$$\mathsf{TR}(P) = \int_M \mathsf{tr}_{\mathcal{E}}\left[t_P(x)\right], \qquad P \in \Psi^{\mathbb{C}/\mathbb{Z}}(M, \mathcal{E}).$$

Remarks

• If $P \in \Psi^{\mathbb{C}/\mathbb{Z}}(M)$, then

$$\mathsf{TR}(P) = \int_{M} t_{P}(x).$$

• If $P \in \Psi^{<-n}(M, \mathcal{E})$, then $t_P(x) = k_P(x, x)$, and so we have

$$\mathsf{TR}(P) = \int_{M} \mathsf{tr}_{\mathcal{E}}[k_{P}(x,x)] = \mathsf{Tr}(P).$$

Definition (Guillemin, Wodzicki)

The noncommutative residue Res : $\Psi^{\mathbb{Z}}(M,\mathcal{E}) \to \mathbb{C}$ is given by

$$\operatorname{\mathsf{Res}}(P) = \int_M \operatorname{\mathsf{tr}}_{\mathcal{E}}[c_P(x)], \qquad P \in \Psi^{\mathbb{Z}}(M, \mathcal{E}).$$

Remarks

• If $P \in \Psi^{\mathbb{Z}}(M)$, then

$$\operatorname{Res}(P) = \int_{M} c_{P}(x).$$

2 If $P \in \Psi^{-n}(M, \mathcal{E})$, then

$$\operatorname{Res}(P) = \int_{S^*M} \operatorname{tr}_{\mathcal{E}_x} \left[\sigma_{-n}(P)(x,\xi) \right] dx d\xi.$$

Remark

The noncommutative residue is annihilated by the following classes of operators:

- Ψ DOs of order < -n, including smoothing operators.
- Differential operators (since such operators don't have homogeneous symbols of negative degree).

Theorem (Guillemin, Wodzicki, Kontsevich-Vishik)

- The canonical trace $TR: \Psi^{\mathbb{CZ}}(M,\mathcal{E}) \to \mathbb{C}$ is the unique holomorphic extension to $\Psi^{\mathbb{CZ}}(M,\mathcal{E})$ of the ordinary trace $Tr: \Psi^{<-n}(M,\mathcal{E}) \to \mathbb{C}$.
- **2** Let $P \in \Psi^{\mathbb{Z}}(M, \mathcal{E})$. Given any holomorphic gauging P(z), $z \in \mathbb{C}$, for P, near z = 0 the function $z \to \mathsf{TR}[P(z)]$ has a simple pole such that

$$\operatorname{\mathsf{Res}}_{z=0}\operatorname{\mathsf{TR}}\left[P(z)\right]=-\operatorname{\mathsf{Res}}(P).$$

Proposition

Let $P_1 \in \Psi^{q_1}(M, \mathcal{E})$ and $P_2 \in \Psi^{q_2}(M, \mathcal{E})$.

• If $q_1 + q_2 \in \mathbb{C} \setminus \mathbb{Z}$, then

$$\mathsf{TR}\left[P_1P_2\right] = \mathsf{TR}\left[P_2P_1\right].$$

2 If $q_1 + q_2 \in \mathbb{Z}$, then

$$Res[P_1P_2] = Res[P_2P_1].$$

Corollary

The noncommutative residue is a trace on the algebra $\Psi^{\mathbb{Z}}(M, \mathcal{E})$.

Proof of the Proposition.

We may assume $\Re q_1 \geq \Re q_1$.

- For j = 1, 2 let $P_j(z)$ be a holomorphic gauging for P_j .
- For $\Re(z+q_1) \leq 0$ the operator $P_1(z)$ is bounded
- For $\Re(z+q_2)<-n$, the operator $P_2(z)$ is trace-class.
- Thus, for $\Re z < \min(-\Re q_1, -(n+\Re q_2))$, we have

$$TR[P_1(z)P_2(z)] = Tr[P_1(z)P_2(z)]$$

$$= Tr[P_2(z)P_1(z)] = TR[P_2(z)P_1(z)].$$

By analytic continuation we get

$$\mathsf{TR}\left[P_1(z)P_2(z)\right] = \mathsf{TR}\left[P_2(z)P_1(z)\right], \quad z+q_1+q_2 \in \mathbb{C} \setminus \mathbb{Z}.$$

• If $q_1 + q_2 \in \mathbb{C} \setminus \mathbb{Z}$, then for z = 0 we get

$$TR[P_1P_2] = TR[P_1(0)P_2(0)] = TR[P_2(0)P_1(0)] = TR[P_2P_1]$$

Proof of the Proposition.

Assume $q_1 + q_2 \in \mathbb{Z}$.

- Here $P_1(z/2)P_2(z/2)$ is a holomorphic gauging for P_1P_2 , since it has order $(z/2+q_1)+(z/2+q_2)=z+q_1+q_2$ and $P_1(0)P_2(0)=P_1P_2$.
- Likewise, $P_2(z/2)P_1(z/2)$ is a holomorphic gauging for P_2P_1 .
- Thus,

$$\begin{aligned} \operatorname{Res}\left[P_{1}P_{2}\right] &= -\operatorname{Res}_{z=0}\operatorname{TR}\left[P_{1}(z/2)P_{2}(z/2)\right] \\ &= -\operatorname{Res}_{z=0}\operatorname{TR}\left[P_{2}(z/2)P_{1}(z/2)\right] \\ &= \operatorname{Res}\left[P_{2}P_{1}\right]. \end{aligned}$$

Theorem (Wodzicki)

If M is connected and $n \geq 2$, then the noncommutative residue is the unique trace on $\Psi^{\mathbb{Z}}(M,\mathcal{E})$ up to constant multiple.

Remark

Alternative proofs by Guillemin, Lesch, Lescure-Paycha, RP.

Setup

- M is equipped with a smooth positive density and \mathcal{E} is endowed with a (smooth) Hermitian metric.
- $P \in \Psi^m(M, \mathcal{E})$, m > 0, is elliptic with $\sigma_m(P)(x, \xi) > 0$ and is selfadjoint and ≥ 0 .

Reminder

Under the above assumptions, the spectrum of P can be arranged as a non-decreasing sequence,

$$0 \leq \lambda_0(P) \leq \lambda_1(P) \leq \cdots$$
.

where each eigenvalue is repeated according to multiplicity.

Reminder

- P^z , $z \in \mathbb{C}$, is a holomorphic family of ΨDOs of order mz.
- We have

$$P^{z_1+z_2} = P^{z_1}P^{z_2}, \qquad P^z|_{z=0} = 1 - \Pi_0(P),$$

where $\Pi_0(P)$ is the orthogonal projection onto ker P.

- $\sigma_{mz}(P^z)(x,\xi) = \sigma_m(P)(x,\xi)^z$.
- $\Pi_0(P)$ is a smoothing operator.

Consequence

 $P^{z_0+z/m}$, $z \in \mathbb{C}$, is a holomorphic gauging for P^{z_0} for every $z_0 \in \mathbb{C}$.

Remark

- P^{-z} has order -mz, and hence is trace-class for $\Re z > nm^{-1}$.
- For $\Re z > mn^{-1}$ we have

$$\operatorname{Tr}\left[P^{-z}\right] = \sum_{\lambda_j(P)>0} \lambda_j(P)^{-z},$$

Definition

The zeta function of P is

$$\zeta_P(z) := \sum_{\lambda_j(P)>0} \lambda_j(P)^{-z}, \qquad \Re z > nm^{-1}.$$

Remark

- $\zeta_P(z) = \text{Tr}[P^{-z}] = \text{TR}[P^{-z}] \text{ for } \Re z > nm^{-1}.$
- As P^{-z} , $\Re z > nm^{-1}$, is a holomorphic family in $\Psi^{<-n}(M)$, we see that $\zeta_P(z)$ is holomorphic for $\Re z > nm^{-1}$.

Notation

$$\Sigma := \left\{ \frac{n-j}{m}; \ j \geq 0, \ j \neq n \right\} \subseteq \mathbb{R} \setminus 0.$$

$\mathsf{Theorem}$

- **1** The zeta function $\zeta_P(z)$ has a meromorphic continuation to \mathbb{C} with at worst simple poles on Σ .
- ② If $\sigma \in \Sigma$, then

$$m \operatorname{Res}_{z=\sigma} \zeta_P(z) = \operatorname{Res} \left[P^{-\sigma} \right].$$

3 The function $\zeta_P(z)$ is always regular at z=0.

Proof.

• For $\Re z > nm^{-1}$ we have

$$\zeta_P(z) = \operatorname{Tr}\left[P^{-z}\right] = \operatorname{TR}\left[P^{-z}\right].$$

- P^{-z} , $z \in \mathbb{C}$, is a holomorphic family of order -mz.
- Set $\Sigma_0 = \Sigma \cup \{0\} = \{(n-j)m^{-1}; j \ge 0\}$. We have $-m\sigma \in -n + \mathbb{N}_0 \iff -m\sigma = -n + j \text{ for some } j \ge 0$ $\iff \sigma = (n-j)m^{-1} \text{ for some } j \ge 0$ $\iff \sigma \in \Sigma_0.$
- Thus, P^{-z} , $z \in \mathbb{C} \setminus \Sigma_0$, is a holomorphic family in $\Psi^{\mathbb{CZ}}(M,\mathcal{E}) \cup \Psi^{<-n}(M,\mathcal{E})$.
- This ensures $TR[P^{-z}]$ is holomorphic on $\mathbb{C} \setminus \Sigma_0$.
- Therefore, this an analytic extension of $\zeta_P(z)$ to $\mathbb{C} \setminus \Sigma_0$.

Proof.

- Let $\sigma \in \Sigma_0$. In that case $P^{-\sigma}$ has order $-m\sigma \in -n + \mathbb{N}_0$.
- Here $P^{-\sigma+z/m}$, $z \in \mathbb{C}$, is a holomorphic gauging for $P^{-\sigma}$.
- Thus, the function $F(z) := TR[P^{-\sigma+z/m}]$ has a simple pole near z = 0 s.t.

$$\operatorname{\mathsf{Res}}_{z=0} F(z) = -\operatorname{\mathsf{Res}} \left[P^{-\sigma} \right].$$

- Here $F(z) = TR[P^{-\sigma+z/m}] = \zeta_P(\sigma z/m)$, i.e., $\zeta_P(z) = F(m(\sigma z))$.
- Thus, $\zeta_P(z)$ has a simple pole near $z = \sigma$ s.t.

$$\operatorname{Res}_{z=\sigma} \zeta_P(z) = -m^{-1} \operatorname{Res}_{z=0} F(z) = m^{-1} \operatorname{Res} \left[P^{-\sigma} \right].$$

61/1

Proof.

• For $\sigma = 0$ we get

$$m\operatorname{Res}_{z=0}\zeta_P(z)=\operatorname{Res}\left[P^{-0}\right]=\operatorname{Res}\left[1-\Pi_0(P)\right].$$

• As 1 is a differential operator and $\Pi_0(P)$ is a smoothing operator, we have

$$Res[1] = Res[\Pi_0(P)] = 0.$$

Thus,

$$m \operatorname{Res}_{z=0} \zeta_P(z) = \operatorname{Res} [1 - \Pi_0(P)] = 0.$$

• This shows that $\zeta_P(z)$ does not have a pole at z=0, and hence it is regular there.

Setup

 $A \in \Psi^a(M, \mathcal{E})$, $a \in \mathbb{R}$, and

$$\Sigma_a := \left\{ \frac{n+a-j}{m}; \ j \ge 0 \right\}$$

Facts

- AP^{-z} is a holomorphic family of ΨDOs of order a mz.
- In particular, AP^{-z} is trace-class for $\Re z > n + a$.
- We also have

$$a - m\sigma \in -n + \mathbb{N}_0 \Longleftrightarrow \sigma \in \Sigma_a$$
.

• It follows that AP^{-z} , $z \in \mathbb{C} \setminus \Sigma_a$ is a holomorphic family in $\Psi^{<-n}(M,\mathcal{E}) \cup \Psi^{\mathbb{C}\mathbb{Z}}(M,\mathcal{E})$.

Definition

$$\zeta_P(A;z) := \operatorname{Tr} \left[A P^{-z} \right], \qquad z \in \mathbb{C} \setminus \Sigma_a.$$

Proposition

- The zeta function $\zeta_P(A; z)$ has a meromorphic continuation to \mathbb{C} with at worst simple poles on Σ_a .
- ② If $\sigma \in \Sigma_a$, then

$$m \operatorname{Res}_{z=\sigma} \zeta_P(A; z) = \operatorname{Res} \left[A P^{-\sigma} \right].$$

Theorem (Ikehara's Tauberian Theorem; see Shubin)

Assume N(t), $t \ge 0$, is a non-decreasing function s.t.

- (i) N(t) = 0 near t = 0.
- (ii) The integral $\zeta(z) := \int t^{-z} dN(t)$ converges for $\Re z > q > 0$.
- (iii) $\zeta(z)$ admits a meromorphic extension to a half-plane $\Re z > q \epsilon$, $\epsilon > 0$ with only a simple pole at z = q s.t.

$$\operatorname{Res}_{z=q}\zeta(z)=A>0.$$

Then, we have

$$N(t) \sim rac{1}{q} A t^q \quad ext{as } t o \infty.$$

Definition

The counting function of P is

$$N_P(t) := \# \{j; \ 0 < \lambda_j(P) \le t\}, \quad t > 0.$$

Remark

We have

$$dN_P(t) = \sum_{\lambda_j(P)>0} \delta_{\lambda_j(P)}(t),$$

where $\delta_{\lambda_i(P)}(t)$ is the Dirac measure at $\lambda_i(P)$.

• Thus, for $\Re z > nm^{-1}$ we have

$$\zeta_P(z) = \sum_{\lambda_j(P)>0} \lambda_j(P)^{-z} = \int t^{-z} dN_P(t).$$

Theorem (Weyl's Law; 1st Version)

As $t \to \infty$, we have

$$N_P(t) \sim rac{1}{n} igg(\int_{S^*M} {\sf Tr}_{\mathcal{E}} \left[\sigma_m(P)(x,\xi)^{-rac{n}{m}}
ight] dx d\xi igg) t^{rac{n}{m}}.$$

Proof.

- For $\Re z > nm^{-1}$, we have $\int t^{-z} dN_P(t) = \zeta_P(z)$.
- The function $\zeta_P(z)$ is holomorphic for $\Re z > nm^{-1}$.
- It has a meromorphic continuation to the half-plane $\Re z > (n-1)m^{-1}$ with only a simple pole at $z = nm^{-1}$ s.t.

$$\operatorname{Res}_{z=nm^{-1}}\zeta_P(z)=rac{1}{m}\operatorname{Res}\left[P^{-rac{n}{m}}
ight].$$

Proof.

• Here $P^{-n/m}$ has order -n, and its principal symbol is

$$\sigma_{-n}(P^{-\frac{n}{m}})(x,\xi) = \sigma_m(P)(x,\xi)^{-\frac{n}{m}} > 0.$$

Thus,

$$\operatorname{Res}\left[P^{-\frac{n}{m}}\right] = \int_{S^*M} \operatorname{Tr}_{\mathcal{E}_x} \left\{ \sigma_{-n} \left(P^{-\frac{n}{m}}\right)(x,\xi) \right\} dx d\xi$$
$$= \int_{S^*M} \operatorname{Tr}_{\mathcal{E}_x} \left[\sigma_m(P)(x,\xi)^{-\frac{n}{m}} \right] dx d\xi > 0.$$

• Therefore, we may apply Ikehara's Tauberian theorem to get

$$N_P(t) = rac{m}{n} \cdot rac{1}{m} \operatorname{Res}\left[P^{-rac{n}{m}}\right] t^{rac{n}{m}} + \mathrm{o}\left(t^{rac{n}{m}}\right) \ = rac{1}{n} \left(\int_{S^{*M}} \operatorname{Tr}_{\mathcal{E}}\left[\sigma_m(P)(x,\xi)^{-rac{n}{m}}\right] dx d\xi \right) t^{rac{n}{m}} + \mathrm{o}\left(t^{rac{n}{m}}\right).$$

This gives the result.

Lemma

We always have

$$\begin{split} &\limsup_{j\to\infty} j\lambda_j(P)^{-\frac{m}{n}} = \limsup_{t\to\infty} t^{-\frac{n}{m}} N_P(t), \\ &\liminf_{j\to\infty} j\lambda_j(P)^{-\frac{m}{n}} = \liminf_{t\to\infty} t^{-\frac{n}{m}} N_P(t). \end{split}$$

Therefore, we obtain:

Theorem (Weyl's Law; 2nd Version)

As $j \to \infty$ we have

$$\lambda_j(P) \sim j^{\frac{m}{n}} \left(\frac{1}{n} \int_{S^*M} \operatorname{Tr}_{\mathcal{E}} \left[\sigma_m(P)(x,\xi)^{-\frac{n}{m}} \right] dx d\xi \right)^{-\frac{m}{n}}.$$