CHAPTER 3

Operators on a Hilbert Space

This chapter is a review of basic results concerning operators on a Hilbert space. The main reference for this chapter is the book of Reed-Simon [RS].

Throughout this chapter we let \mathcal{H} be a separable Hilbert space and we denote by $\mathcal{L}(\mathcal{H})$ its C^* -algebra of continuous endomorphisms.

3.1. Polar Decomposition

DEFINITION 3.1.1. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be positive if can be written in the form $T = S^*S$ with $S \in \mathcal{L}(\mathcal{H})$.

We denote by $\mathcal{L}(\mathcal{H})_+$ the set of positive elements of $\mathcal{L}(\mathcal{H})$.

PROPOSITION 3.1.2. For $T \in \mathcal{L}(\mathcal{H})$ the following are equivalent:

- (i) T is positive.
- (ii) There exists $S \in \mathcal{L}(\mathcal{H})$ selfadjoint such that $T = S^2$.
- (iii) T is selfadjoint and $\operatorname{Sp} T \subset [0, \infty)$.
- (iv) $\langle T\xi, \xi \rangle \geq 0$ for all $\xi \in \mathcal{H}$.

PROOF. We shall prove the implications (i) \Rightarrow (iv), (ii) \Rightarrow (i), (iii) \Rightarrow (ii) and (iv) \Rightarrow (iii), which will give the proposition.

• (i) \Rightarrow (iv): If $T = S^*S$ for some $S \in \mathcal{L}(\mathcal{H})$ then, for all $\xi \in \mathcal{H}$,

$$\langle T\xi, \xi \rangle = \langle S^*S\xi, \xi \rangle = \langle S\xi, S\xi \rangle = ||S\xi||^2 \ge 0,$$

proving that (i) \Rightarrow (iv).

- $\underline{\bullet}$ (ii) \Rightarrow (i): If $T = S^2$ with $S \in \mathcal{L}(\mathcal{H})$ selfadjoint, then $T = S^*S$ and hence T is positive. Thus (ii) \Rightarrow (i).
- (iii) ⇒ (ii): Assume that T is selfadjoint and $\operatorname{Sp} T \subset [0, \infty)$. Then the function \sqrt{t} is defined and continuous on $\operatorname{Sp} T$, and so we can define $S := \sqrt{T}$ by functional continuous calculus. Notice that, as \sqrt{t} takes real values on $\operatorname{Sp} T$, it follows from Remark 1.5.4 that S is selfdajoint. Recall that the continuous functional calculus $f \to f(T)$ is a homomorphism of algebra from $C(\operatorname{Sp} T)$ to $\mathcal{L}(\mathcal{H})$. Since $(\sqrt{t})^2 = t$ on $\operatorname{Sp} T$, it follows that $S^2 = (\sqrt{T})^2 = T$, and hence T satisfies (ii). Thus (iii) ⇒ (ii).
- $\underline{\bullet}$ (iv) \Rightarrow (iii): Assume that $\langle T\xi, \xi \rangle \geq 0$ for all $\xi \in \mathcal{H}$. Then T is selfadjoint. Indeed, for all ξ, η in \mathcal{H} , we have

$$4\langle T\xi,\eta\rangle=\langle T(\xi+\eta),\xi+\eta\rangle-\langle T(\xi-\eta),\xi-\eta\rangle-i\langle T(\xi+i\eta),\xi+i\eta\rangle+i\langle T(\xi-i\eta),\xi-i\eta\rangle,$$

from which we see that $\overline{\langle T\xi, \eta \rangle} = \langle T\eta, \xi \rangle$, and hence $\langle T\xi, \eta \rangle = \langle \xi, T\eta \rangle$.

Let us now show that $\operatorname{Sp} T \subset [0, \infty)$. Since T is selfadjoint, and hence $\operatorname{Sp} T \subset \mathbb{R}$ by Proposition 1.3.4, we only need to show that $T - \lambda$ is invertible for all $\lambda < 0$.

1

Thus let $\lambda \in (-\infty, 0)$ and let $\xi \in \mathcal{H}$. As $\langle T\xi, \xi \rangle \geq 0$ we have

$$|\lambda| \|\xi\|^2 = -\lambda \langle \xi, \xi \rangle \le \langle (T - \lambda)\xi, \xi \rangle \le \|(T - \lambda)\xi\| \|\xi\|.$$

Thus,

(3.1)
$$||(T - \lambda)\xi|| \le |\lambda|||\xi|| \forall \xi \in \mathcal{H}.$$

This implies that $\ker(T - \lambda) = \{0\}$. As $T - \lambda$ is selfadjoint we then see that $\overline{\operatorname{im}(T - \lambda)} = (\ker(T - \lambda))^{\perp} = \mathcal{H}$.

In fact, the inequality (3.1) also implies that $\operatorname{im}(T-\lambda)$ is closed. Indeed, if $\eta = \lim(T-\lambda)\xi_n$, then (3.1) implies that the sequence $(\xi_n)_{n\geq 0}$ is Cauchy in \mathcal{H} , and hence ξ_n converges to some ξ in \mathcal{H} . Then $\eta = \lim(T-\lambda)\xi_n = T\xi$, showing that η is contained in $\operatorname{im}(T-\lambda)$. Thus $\ker(T-\lambda) = 0$ and $\operatorname{im}(T-\lambda) = \mathcal{H}$, i.e., $T-\lambda$ is bijective. Recall that by the open mapping theorem any bijective continuous linear map of \mathcal{H} onto \mathcal{H} has a continuous inverse (see [Fo, p. 162]), so $T-\lambda$ is an invertible element of $\mathcal{L}(\mathcal{H})$. Thus $\operatorname{Sp} T \subset [0,\infty)$, and hence T satisfies (iii), showing that (iv) implies (iii). The proof is complete.

COROLLARY 3.1.3. The set of positive operators $\mathcal{L}(\mathcal{H})_+$ is a positive cone of $\mathcal{L}(\mathcal{H})$, i.e.,

$$\lambda_1 T_1 + \lambda_2 T_2 \in \mathcal{L}(\mathcal{H})_+ \qquad \forall T_i \in \mathcal{L}(\mathcal{H})_+ \ \forall \lambda_i \ge 0.$$

PROOF. For j = 1, 2 let $T_j \in \mathcal{L}(\mathcal{H})_+$ and let $\lambda_j \in [0, \infty)$. Using the characterization (iv) of Proposition 3.1.2, we see that, for all $\xi \in \mathcal{H}$,

$$\langle (\lambda_1 T_1 + \lambda_2 T_2)\xi, \xi \rangle = \lambda_1 \langle T_1 \xi, \xi \rangle + \lambda_2 \langle T_2 \xi, \xi \rangle \ge 0,$$

proving that $\lambda_1 T_1 + \lambda_2 T_2$ is a positive operator.

COROLLARY 3.1.4. Let $T \in \mathcal{L}(\mathcal{H})$ be normal and let $f \in C(\operatorname{Sp} T)$ be non-negative. Then the operator f(T) is positive.

PROOF. Since f is real-valued it follows from Remark 1.5.4 that f(T) is selfadjoint. Moreover, by (1.13) we have $\operatorname{Sp} f(T) = f(\operatorname{Sp} T) \subset [0, \infty)$, so it follows from Proposition 3.1.2 (iii) that f(T) is positive.

Let $T \in \mathcal{L}(\mathcal{H})$. Then T^*T is a positive operator, so by the previous proposition T^*T is selfadjoint and its spectrum is contained in $[0, \infty)$. Therefore, by continuous functional calculus we can define its square root $\sqrt{T^*T}$ as an element of $\mathcal{L}(\mathcal{H})$. It follows from Corollary 3.1.4 that |T| is a positive operator.

DEFINITION 3.1.5. For all $T \in \mathcal{L}(\mathcal{H})$ the operator $\sqrt{T^*T}$ is denoted |T| and is called the modulus of T.

Lemma 3.1.6. Let $T \in \mathcal{L}(\mathcal{H})$. Then

- (i) |T| is the unique element of $\mathcal{L}(\mathcal{H})_+$ whose square is T^*T .
- (ii) We have

$$(3.2) ||T|\xi|| = ||T\xi|| \forall \xi \in \mathcal{H},$$

and hence $\ker |T| = \ker T$.

PROOF. The continuous functional calculus $f \to f(T^*T)$ is a *-homomorphism from $C(\operatorname{Sp} T^*T)$ to $\mathcal{L}(\mathcal{H})$. As $(\sqrt{t})^2 = t$ on $[0, \infty)$ it follows that $|T|^2 = (\sqrt{T^*T})^2 = T^*T$.

Let $S \in \mathcal{L}(\mathcal{H})_+$ be such that $S^2 = T$. Since S is positive, by Proposition 3.1.2 its spectrum is contained in $[0,\infty)$, and hence $\sqrt{t^2} = t$ on $\operatorname{Sp} S$. Therefore, by continuous functional calculus $S = \sqrt{S^2} = \sqrt{T^*T} = |T|$. Thus |T| is the unique element of $\mathcal{L}(\mathcal{H})_+$ whose square is T^*T .

As |T| is selfadjoint $|T|^*|T| = |T|^2 = T^*T$. Therefore, for all $\xi \in \mathcal{H}$,

$$||T|\xi||^2 = \langle |T|\xi, |T||\xi|\rangle = \langle |T|^*|T|\xi, \xi\rangle = \langle T^*T\xi, \xi\rangle = \langle T\xi, T\xi\rangle = ||T\xi||^2,$$

proving (3.2). This immediately implies that |T| and T have same kernel.

PROPOSITION 3.1.7 (Polar Decomposition). Let $T \in \mathcal{L}(\mathcal{H})$. Then there exists a unique $U \in \mathcal{L}(\mathcal{H})$, called the phase of T, such that

- (i) T = U|T|;
- (ii) $\ker U = \ker |T|$.

PROOF. Since |T| is selfadjoint $(\ker |T|)^{\perp} = \overline{\operatorname{im} |T|}$, and hence |T| is a bijection from $\operatorname{im} |T|$ onto itself. Let $|T|^{-1} : \operatorname{im} |T| \to \operatorname{im} |T|$ be its inverse and denote by U the linear map $T|T|^{-1} : \operatorname{im} |T| \to \mathcal{H}$. Then, for any $\xi \in \operatorname{im} |T|$, we have

$$\begin{split} \|U\xi\|^2 &= \langle T|T|^{-1}\xi, T|T|^{-1}\xi \rangle = \langle T^*T|T|^{-1}\xi, |T|^{-1}\xi \rangle = \langle |T|^2|T|^{-1}\xi, |T|^{-1}\xi \rangle \\ &= \langle |T|\xi, |T|^{-1}\xi \rangle = \langle \xi, |T||T|^{-1}\xi \rangle = \|\xi\|^2. \end{split}$$

Thus U uniquely extends to an isometric linear map $U: \overline{\operatorname{im}} |T| \to \mathcal{H}$. Extending U to be 0 on $\ker |T| = (\operatorname{im} |T|)^{\perp}$ we then get a continuous endomorphism $U: \mathcal{H} \to \mathcal{H}$ whose null space is $\ker |T|$.

If $\xi \in \text{im} |T|$, then $U|T|\xi = T|T|^{-1}|T|\xi = \xi$, and hence T = U|T| on $\overline{\text{im} |T|}$ by continuity. Moreover, as by Lemma 3.1.6 ker $|T| = \ker T$, we have $U|T|\xi = 0 = T\xi$ for all ξ in $\ker |T| = (\text{im} |T|)^{\perp}$. Therefore, we see that T = U|T| on \mathcal{H} , showing that U satisfies the conditions (i) and (ii) of the proposition.

Let $V \in \mathcal{L}(\mathcal{H})$ be such that T = V|T| and $\ker V = \ker |T|$. If $\xi \in \ker |T|$, then obviously $V\xi = 0 = U\xi$. If $\xi \in \operatorname{im} |T|$, then $V\xi = V|T||T|^{-1}\xi = T|T|^{-1}\xi = U\xi$, so by continuity V = U on $\overline{\operatorname{im} |T|}$. It follows from this that V = U on \mathcal{H} , and hence U is the unique element of $\mathcal{L}(\mathcal{H})$ such that T = U|T| and $\ker U = \ker |T|$, giving the proposition.

PROPOSITION 3.1.8. Let $T \in \mathcal{L}(\mathcal{H})$ have polar decomposition T = U|T| and denote by $\Pi_0(T)$ (resp. $\Pi_0(T^*)$) the orthogonal projection onto $\ker T$ (resp. $\ker T^*$).

- (i) The range of U is $\overline{\operatorname{im} T}$.
- (ii) We have

$$U^*U = 1 - \Pi_0(T)$$
 and $UU^* = 1 - \Pi_0(T^*)$,

so that U is a partial isometry and has norm 1 unless T = 0.

- (iii) If T is injective and has dense range, then U is unitary.
- (iv) We have

$$|T| = U^*T$$
, $T^* = UTU^*$, $|T^*| = TU^* = U|T|U^*$.

(v) The phase of T^* is U^* .

PROOF. As U vanishes on $\ker |T|$ we see that $\operatorname{im} U = U(\ker |T|)$. Notice that by its construction in the proof of Proposition 3.1.7 the operator U is isometric on $(\ker |T|)^{\perp}$ and agrees with $T|T|^{-1}$ on $\operatorname{im} |T|$. In particular, it follows from Lemma 1.1.8 that $U((\ker |T|)^{\perp})$ is closed and U induces a unitary operator from

 $(\ker |T|)^{\perp}$ onto $U((\ker |T|)^{\perp}) = \operatorname{im} U$. As $(\ker |T|)^{\perp} = \operatorname{\overline{im}} T$ we then see that $\operatorname{im} U = \overline{U(\operatorname{im} |T|)}$. Since $U = T|T|^{-1}$ on $\operatorname{im} |T|$ we have $U(\operatorname{im} |T|) \subset \operatorname{im} T$, and hence $\operatorname{im} U \subset \operatorname{\overline{im}} T$. However, as T = U|T| we also have $\operatorname{im} T \subset \operatorname{im} U$, and as $\operatorname{im} U$ is closed we see that $\operatorname{\overline{im}} T$ is contained is $\operatorname{im} U$, and so the range of U is $\operatorname{\overline{im}} T$.

As abovementioned U induces a unitary operator from $(\ker |T|)^{\perp}$ onto $\operatorname{im} U = \overline{\operatorname{im} T}$. Since by Lemma 3.1.6 $\ker |T| = \ker T$ this shows that U is a unitary endomorphism of $\mathcal H$ when T is injective and has dense range. In any case, as we have $\overline{\operatorname{im} T} = (\ker T^*)^{\perp}$ we see that U induces a unitary operator from $(\ker T)^{\perp}$ onto $(\ker T^*)^{\perp}$. Since $\ker U = \ker |T| = \ker T$ we then deduce that U^*U is the orthogonal projection onto $(\ker T)^{\perp}$, that is, $U^*U = 1 - \Pi_0(T)$ and $UU^* = 1 - \Pi_0(T^*)$. In particular, if $T \neq 0$ then $\|U\|^2 = \|U^*U\| = \|1 - \Pi_0(T)\| = 1$, i.e., $\|U\| = 1$.

Notice that, as $\ker |T| = \ker T$, we have $|T|(1 - \Pi_0(T)) = (1 - \Pi_0(T))|T| = |T|$, and hence $U^*T = U^*U|T| = (1 - \Pi_0(T))|T| = |T|$. Moreover,

$$(U|T|U^*)^2 = U|T|U^*U|T|U^* = U|T|(1 - \Pi_0(T))|T|U^* = (U|T|)(U|T|)^* = TT^*.$$

As |T| is positive, for any $\xi \in \mathcal{H}$, we have $\langle U|T|U^*\xi, \xi \rangle = \langle |T|U^*\xi, U^*\xi \rangle \geq 0$, and hence $U|T|U^*$ is positive. Thus $U|T|U^*$ is a positive operator whose square is equal to TT^* , so using Lemma 3.1.6 we see that $U|T|U^* = |T^*|$. Since T = U|T| this also shows that $|T^*| = TU^*$.

Notice that $\ker U^* = (\operatorname{im} U)^{\perp} = (\operatorname{im} T)^{\perp} = \ker T^* = \ker |T^*|$. Moreover,

$$U^*|T^*| = U^*U|T|U^* = (1 - \Pi_0(T))|T|U^* = |T|U^* = (U|T|)^* = T^*,$$

so by Proposition 3.1.7 the phase of T^* is U^* . Notice that the above equalities include the equality $T^* = |T|U^*$. As $|T| = U^*T$ we see that $T^* = U^*TU^*$, completing the proof.

3.2. Spectral Theorem and Borel Functional Calculus

Let $T \in \mathcal{L}(\mathcal{H})$ be a normal operator (i.e., $T^*T = TT^*$) and set $S = \operatorname{Sp} T$.

THEOREM 3.2.1 (Spectral Theorem; see [RS, Thm. VII.3]). There exist a finite measure space (X, μ) , a unitary operator $U : \mathcal{H} \to L^2_{\mu}(X)$, and a bounded measurable function f on X, in such way that

(3.3)
$$UTU^*\xi = f\xi \qquad \forall \xi \in L^2_\mu(X).$$

For $F \in \mathcal{L}^{\infty}(X)$ denote by T_F the multiplication operator by F, i.e., the operator $T_F \in \mathcal{L}(L^2_\mu(X))$ defined by

$$T_F \xi = F \xi$$
 $\xi \in L^2_\mu(X)$.

For instance, Eq. (3.3) says that $UTU^* = T_f$.

The essential range of F consists of all $\lambda \in \mathbb{C}$ such that

$$\mu(\lambda - \epsilon < F < \lambda + \epsilon) > 0 \quad \forall \epsilon > 0.$$

It can be shown that $\operatorname{Sp} T_F$ agrees with the essential range of F. In particular, we see that the essential range of T_f is S. Thus, without any loss of generality, we may assume that the range of f is S.

We endow $L^{\infty}(X)$ with its usual norm, i.e.,

$$||F||_{L^{\infty}(X)} = \{\lambda; \ \lambda \text{ in the essential range of } |F|\} \qquad \forall F \in L^{\infty}(\mathbb{R}).$$

We also endow $L^{\infty}(X)$ with the involution $F \to \overline{F}$ given by complex conjugation. This turns $L^{\infty}(X)$ into a commutative unital C^* -algebra. Then it is not difficult to check that the map $F \to T_F$ is a *-homomorphism from $L^{\infty}(X)$ to $\mathcal{L}(L^2_{\mu}(X))$. Moreover, as T_F is a normal operator, we have

$$||T_F|| = \sup_{\lambda \in \operatorname{Sp} T_F} |\lambda| = ||F||_{L^{\infty}(S)}.$$

If $g \in C(S)$ then $g \circ f$ is again a bounded measurable function on X. In fact, the continuous functional calculus for f is just $g \to g \circ f$. Since the maps $F \to T_F$ (resp., $F \to U^*T_FU$) is an isometric *-homomorphisms from $L^{\infty}(X)$ to $\mathcal{L}(L^2_{\mu}(X))$ (resp., $\mathcal{L}(\mathcal{H})$), it follows that, for all $g \in C(S)$,

(3.4)
$$g(T) = g(U^*T_fU) = U^*g(T_F)U = U^*T_{q \circ f}U.$$

We then can extend the definition of g(T) for any any bounded Borel function g on $\operatorname{Sp} T$ by letting

$$g(T) := U^*T_{g \circ f}U.$$

This defines a bounded operator on \mathcal{H} .

Theorem 3.2.2 (Borel Functional Calculus; see $[\mathbf{RS}, \mathrm{Thm.~VII.2}]$). The following holds.

- (1) The map $g \to g(T)$ is a *-homomorphism from $L^{\infty}(S)$ to $\mathcal{L}(\mathcal{H})$ such that (3.5) $||g(T)|| \le ||g||_{L^{\infty}(S)} \quad \forall g \in L^{\infty}(S).$
 - (2) If $(g_n)_{n\geq 0}$ is a bounded sequence in $L^{\infty}(S)$ such that $g_n \to g$ a.e., then $g_n(T) \to g(T)$ strongly (i.e., $g_n(T)\xi \to g(T)\xi$ for all $\xi \in \mathcal{H}$).
 - (3) If $g \in L^{\infty}(S)$ is real-valued (resp., non-negative), then g(T) is selfadjoint (resp., positive).

3.3. Unbounded Operators

The spectral theorem and the Borel functional calculus can be extended to unbounded operators as follows.

DEFINITION 3.3.1. An (unbounded) operator on \mathcal{H} is a linear operator T: $D(T) \to \mathcal{H}$, where the domain D(T) is a subspace of \mathcal{H} . T

An operator T on \mathcal{H} is said to be *densily defined* when its domain D(T) is a dense subspace of \mathcal{H} . An operator S is said to be an extension of T, and we write $T \subset S$, if $D(T) \subset D(S)$ and S agrees with T on D(T).

The graph of an operator T is defined to be

$$G(T) = \{(\xi, \eta) \in \mathcal{H} \oplus \mathcal{H}; \ \eta = T\xi\}.$$

The graph of T is a subspace of $\mathcal{H} \oplus \mathcal{H}$. We say that T is *closed* when G(T) is a closed subspace of $\mathcal{H} \oplus \mathcal{H}$. We say that T^* is *closable* when $\overline{G(T)}$ is the graph of an operator \overline{T} . In this case we call \overline{T} the *closure* of T. This is the smallest closed extension of T.

If T is densily defined, then its adjoint is the operator T^* with graph

$$G(T^*) = \{(\xi, \eta) \in \mathcal{H} \oplus \mathcal{H}; \langle T\zeta, \xi \rangle = \langle \zeta, \eta \rangle \ \forall \zeta \in D(T) \}.$$

Since $G(T^*)$ is a closed subspace, we see that T^* is always a closed operator.

The resolvent set of a closed operator T consists of all $\lambda \in \mathbb{C}$ such that

(i)
$$T - \lambda : D(T) \to \mathcal{H}$$
 is a bijection.

(ii) The inverse $(T - \lambda)^{-1} : \mathcal{H} \to D(T)$ is bounded.

The *spectrum* of T, denoted $\operatorname{Sp} T$, is the complement of the resolvent set.

It can be shown that $\operatorname{Sp} T$ is a closed subset of \mathbb{C} (which may be empty) and the resolvent $\lambda \to (T-\lambda)^{-1}$ is analytic from $\mathbb{C} \setminus \operatorname{Sp} T$ to $\mathcal{L}(\mathcal{H})$ (provided we regard the inverses $(T-\lambda)^{-1}$ as elements of $\mathcal{L}(\mathcal{H})$).

A densily defined operator T is said to be *symmetric* is $T \subset T^*$. It is said to be *selfadjoint* if $T = T^*$. Note that any symmetric operator is closable. We also say that T is *essentially selfadjoint* when T is symmetric and closable.

PROPOSITION 3.3.2 ([RS, Thm. VIII.3]). Let T be a symmetric operator on \mathcal{H} . Then the following are equivalent:

- (i) T is selfadjoint.
- (ii) T is closed and $ker(T \pm i) = \{0\}.$
- (iii) $im(T \pm i) = \mathcal{H}$.

COROLLARY 3.3.3 (see [RS]). Let T be a symmetric operator on \mathcal{H} . Then the following are equivalent:

- (i) T is essentially selfadjoint.
- (ii) $\ker(T \pm i) = \{0\}.$
- (iii) $\operatorname{im}(T \pm i) = \mathcal{H}$.

Let T be a selfadjoint (unbounded) operator on \mathcal{H} .

THEOREM 3.3.4 (Spectral Theorem; see [RS, Thm. VIII.4]). There exist a measured space (X, μ) with $\mu(X) < \infty$, a unitary operator $U : \mathcal{H} \to L^2_{\mu}(X)$, and a measurable real-valued function f on X such that

$$\begin{split} U\left(D(T)\right) &= \{\xi \in L^2_\mu(X); \ f\xi \in L^2_\mu(X)\}, \\ UTU^*\xi &= f\xi \qquad \forall \xi \in U\left(D(T)\right). \end{split}$$

If g is a bounded Borel function on \mathbb{R} , then we define g(T) as the bounded operator on $\mathcal{L}(\mathcal{H})$ given by

$$g(T) := U^*T_{q \circ f}U.$$

Theorem 3.3.5 (Borel Functional Calculus; $[\mathbf{RS},$ Thm. VIII.5]). The following holds.

(1) The map $g \to g(T)$ is a *-homomorphism from $L^{\infty}(\mathbb{R})$ to $\mathcal{L}(\mathcal{H})$ such that

(3.6)
$$||g(T)|| \le ||g||_{L^{\infty}(\mathbb{R})} \qquad \forall g \in L^{\infty}(\mathbb{R}).$$

- (2) If $(g_n)_{n\geq 0}$ is a bounded sequence in $L^{\infty}(\mathbb{R})$ such that $g_n \to g$ a.e., then $g_n(T) \to g(T)$ strongly.
- (3) If $g \in L^{\infty}(\mathbb{R})$ is real-valued (resp., non-negative), then g(T) is selfadjoint (resp., positive).

More generally, if g is a possibly unbounded Borel function on \mathbb{R} , then g(T) makes sense as an unbounded operator as follows. The domain of g(T) is

$$D(g(T)) = U^* \bigg(\{ \xi \in L^2_\mu(X); \ (g \circ f) \xi \in L^2_\mu(X) \} \bigg),$$

and we define g(T) by the formula

$$g(T)\xi := U^* ((g \circ f)U\xi) \qquad \forall \xi \in D(g(T)).$$

For instance, if g(t) = t, then g(T) = T. In addition, it is not hard to check that, if (g_n) be a sequence of Borel functions on \mathbb{R} such that $g_n \to g$ and $|g_n| \le |g|$, then as $n \to \infty$ we have

$$g_n(T)\xi \longrightarrow g(T)\xi \qquad \forall \xi \in D(g(T)).$$

EXAMPLE 3.3.6. Let $\Delta = -(\partial_{x_1}^2 + \ldots + \partial_{x_n}^2)$ be the (positive) Laplacian on \mathbb{R}^n . We shall regard Δ as an operator on the space $\mathcal{S}'(\mathbb{R}^n)$ of tempered distributions on \mathbb{R}^n . Denoting by $u \to \hat{u}$ the Fourier transform on $\mathcal{S}'(\mathbb{R}^n)$, we have

$$(3.7) (\Delta u)^{\wedge} = |\xi|^2 \hat{u} \forall u \in \mathcal{S}'(\mathbb{R}^n).$$

Thus, we can regard Δ as an unbounded operator on the Hilbert space $\mathcal{H} = L^2(\mathbb{R}^n)$ with domain,

$$D(\Delta) = \{ u \in L^2(\mathbb{R}^n); |\xi|^2 \hat{u} \in L^2(\mathbb{R}^n) \}.$$

Notice that $D(\Delta)$ agrees with the Sobolev space $W^{2,2}(\mathbb{R}^n)$. As such Δ is a selfadjoint operator with spectrum $[0,\infty)$.

Denote by U the unitary operator on $L^2(\mathbb{R}^n)$ defined by

$$Uv = (2\pi)^{-\frac{n}{2}}\hat{v} \qquad \forall v \in L^2(\mathbb{R}^n).$$

Then it follows from (3.7) that

$$\Delta v = U^* T_{|\xi|^2} U v \qquad \forall v \in W^{2,2}(\mathbb{R}^n).$$

Therefore, we see that in this example the spectral theorem follows from elementary Fourier-analytic considerations.

If g is a bounded Borel function on \mathbb{R} , then $g(\Delta)$ is given by

$$g(\Delta)v(x) = (U^*T_{g(|\xi|^2)}Uv)(x) = (2\pi)^{-n} \int e^{ix.\xi}g(|\xi|^2)\hat{u}(\xi)d\xi \quad \forall v \in L^2(\mathbb{R}^n).$$

The following operators are of special interest:

- The heat semigroup $e^{-t\Delta}$, $t \geq 0$.
- The wave group $e^{it\Delta}$, $t \in \mathbb{R}$.
- The complex powers Δ^z , $\Re z \geq 0$.

These operators can be similarly defined by Borel functional calculus for any selfadjoint unbounded operators with nonnegative spectrum.

3.4. Compact Operators

In the sequel for any r > 0 we denote by B(0, r) the (open) unit ball of \mathcal{H} of radius r about the origin.

DEFINITION 3.4.1. An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be compact when $\overline{T(B(0,1))}$ is compact in \mathcal{H} .

We denote by K the space of compact operators.

The following lemma will be useful to study compact operators.

PROPOSITION 3.4.2. Let $T \in \mathcal{L}(\mathcal{H})$. Then the following are equivalent:

- (i) T is a compact operator.
- (ii) For any bounded sequence $(\xi_n)_{n\geq 0} \subset \mathcal{H}$ there is a subsequence $(\xi_{n_k})_{k\geq 0}$ such that the sequence $(T\xi_{n_k})_{k\geq 0}$ converges in norm.
- (iii) For any sequence $(\xi_n)_{n\geq 0} \subset \mathcal{H}$ converging weakly to 0 the sequence $(T\xi_n)_{n\geq 0}$ converges to 0 in norm.

(iv) There is an orthonormal basis $(\xi_n)_{n\geq 0}$ of \mathcal{H} such that

$$\lim_{N \to \infty} \|T_{|E_N^{\perp}}\| = 0,$$

where we have denoted by E_N the span of ξ_0, \ldots, ξ_{N-1} .

(v) For any orthonormal basis $(\xi_n)_{n>0}$ of \mathcal{H} ,

$$\lim_{N\to\infty} \|T_{|E_N^{\perp}}\| = 0,$$

where we have denoted by E_N the span of ξ_0, \ldots, ξ_{N-1} .

PROOF. Taking into account that the implication $(v) \Rightarrow (iv)$ is immediate, to prove the proposition we only need to prove the implications $(ii) \Rightarrow (i)$, $(iii) \Rightarrow (ii)$, $(iv) \Rightarrow (iii)$ and $(i) \Rightarrow (v)$.

- (ii) \Rightarrow (i): Assume that T sastifies the condition (ii). Then for any sequence $\overline{(\xi_n)_{n\geq 0}} \subset B(0,1)$ the sequence $(T\xi_n)_{n\geq 0}$ admits a convergent subsequence. By virtue of the Bolzano-Weierstrass criterion this proves that $\overline{T(B(0,1))}$ is compact, i.e., T is a compact operator. Thus (ii) implies (i).
- (iii) ⇒ (ii): Suppose that T satisfies the condition (iii). Let $(\xi_n)_{n\geq 0} \subset \mathcal{H}$ be a bounded sequence, i.e., there exists r>0 such that $\xi_n\in B(0,r)$ for all n. By Alaoglu theorem (see [Fo, pp. 169-170]) the ball B(0,r) is precompact with respect to the weak topology and, as \mathcal{H} is separable, the weak topology is metrizable (see [Fo]), so by the Bolzano-Weierstrass criterion there is a subsequence $(\xi_{n_k})_{k\geq 0}$ converging weakly to some ξ in \mathcal{H} . Then $\xi_{n_k} \xi$ converges weakly to 0, so by (iii) the sequence $T(\xi_{n_k} \xi)$ converges to 0 in norm, i.e., $T\xi_{n_k} \to T\xi$ in norm. This shows that (iii) implies (ii).
- (iv) \Rightarrow (iii): Suppose that T satisfies (iv). Thus there exists an orthonormal basis $(\xi_n)_{n\geq 0}$ of \mathcal{H} such that if, for any $N\in\mathbb{N}$, we denote by E_N the span of ξ_0,\ldots,ξ_{N-1} then $\|T_{|E_N^{\perp}}\to 0$ as $N\to\infty$. In addition, we denote by Π_N the orthogonal projection onto E_N .

Let $(\eta_k)_{k\geq 0} \subset \mathcal{H}$ be a sequence converging weakly to 0. In particular $(\eta_k)_{k\geq 0}$ is weakly bounded, and hence is bounded in norm by the uniform boundedness principle and the fact \mathcal{H} is isometrically isomorphic to its dual (see [Fo, pp. 163, 174–175]). Thus there exists C>0 such that $\|\eta_k\|\leq C$ for all $k\in\mathbb{N}_0$.

Let $\epsilon > 0$. Since $\Pi_N \eta_k = \sum_{n < N} \langle \xi_n, \eta_k \rangle \xi_n$ we have

(3.8)

$$||T\eta_k|| \le ||T\Pi_N\eta_k|| + ||T(1-\Pi_N)\eta_k|| \le \sum_{n < N} |\langle \xi_n, \eta_k \rangle| ||T\xi_n|| + ||T(1-\Pi_N)|| ||\eta_k||$$

$$\leq \|T\| \sum_{n < N} |\langle \xi_n, \eta_k \rangle| + C \|T_{|E_N^{\perp}}\|.$$

Since $||T_{|E_N^{\perp}}|| \to 0$ as $N \to \infty$ by choosing N large enough we have

$$||T(1-\Pi_N)|| < \epsilon.$$

As η_k converges weakly to 0 we see that $\sum_{n < N} |\langle \xi_n, \eta_k \rangle|$ goes to 0 as $k \to \infty$, and hence there exists $k_0 \in \mathbb{N}_0$ such that, for any $k \ge k_0$,

(3.10)
$$\sum_{n < N} |\langle \xi_n, \eta_k \rangle| < \epsilon.$$

Combining (3.8), (3.9) and (3.10) we see that, for all $k \geq k_0$, we have

$$||T\eta_k|| \le (\nu_0 + C)\epsilon.$$

This shows that $T\eta_k \to 0$ in norm as $k \to \infty$. Thus (iv) implies (iii).

• (i) ⇒ (v): Suppose that T is a compact operator. Let $(\xi_n)_{n\geq 0}$ be an orthonormal basis of \mathcal{H} . For any $N\in\mathbb{N}$ we denote by E_N the span of ξ_0,\ldots,ξ_{N-1} . Assume that the sequence $(\|T_{|E_N^{\perp}}\|)_{N\geq 1}$ does not converge to 0 as $N\to 0$. Since this is a non-increasing sequence of non-negative numbers there is c>0 such that $\|T_{|E_N^{\perp}}\|>c$ for all $N\in\mathbb{N}$. Therefore, for every $N\in\mathbb{N}$, there is a unit vector $\eta_N\in E_N^{\perp}$ such that $\|T\eta_N\|>c$.

Let $\xi \in \mathcal{H}$. As η_N is contained in E_N^{\perp} , and hence $\eta_N = \sum_{n \geq N} \langle \xi_n, \eta_N \rangle \xi_n$, we have

$$|\langle \eta_n, \xi \rangle| \le \sum_{n \ge N} |\langle \eta_N, \xi_n \rangle \langle \xi, \xi_n \rangle| \le \left(\sum_{n \ge N} |\langle \eta_N, \xi_n \rangle|^2\right)^2 \left(\sum_{n \ge N} |\langle \xi, \xi_n \rangle|^2\right)^2.$$

Since $\sum_{n\geq N} |\langle \eta_N, \xi_n \rangle|^2 = \|\eta_N\|^2 = 1$ and $\sum_{n\geq N} |\langle \xi, \xi_n \rangle|^2 \to 0$ as $N \to \infty$, it follows that $\langle \eta_n, \xi \rangle \to 0$ as $N \to \infty$. Thus η_N converges weakly to 0 as $N \to \infty$. As T is continuous with respect to the weak topology it follows that $T\eta_N$ converges weakly to 0 as $N \to \infty$.

On the other hand, the sequence $(T\eta_N)_{n\geq 1}$ is contained in the image by T of the unit sphere, which is precompact since T is compact. Therefore, by the Bolzano-Weierstrass criterion there is a subsequence $(\eta_{N_k})_{k\geq 0}$ such that $T\eta_{N_k}$ converges in norm to some ζ as $k\to\infty$. As $T\eta_{N_k}$ converges weakly to 0 we must have $\zeta=0$, i.e., $T\eta_{N_k}$ converges to 0 in norm. This contradicts the fact that $\|T\eta_N\|>c$ for all $N\in\mathbb{N}$. Therefore, it is not possible for the sequence $(\|T_{|E_N^{\perp}}\|)_{N\geq 1}$ to not converge to 0. This proves that $\|T_{|E_N^{\perp}}\|\to 0$ as $N\to\infty$. Thus (i) implies (v). The proof is complete.

PROPOSITION 3.4.3. K is a closed two-sided ideal of $\mathcal{L}(\mathcal{H})$.

PROOF. Let $(\xi_n)_{n\geq 0}$ be any sequence converging weakly to 0.

For j=1,2 let $T_j \in \mathcal{K}$ and $\lambda_j \in \mathbb{C}$. By Proposition 3.4.2 (iii) the sequences $(T_1\xi_n)_{n\geq 0}$ and $(T_2\xi_n)_N$ converge to 0 in norm, and so $(\lambda_1T_1+\lambda_2T_2)\xi_n)_{n\geq 0}$ too converges to 0 in norm. It then follows from Proposition 3.4.2 (iii) that $\lambda_1T_1+\lambda_2T_2$ is a compact operator. Thus \mathcal{K} is a subspace of $\mathcal{L}(\mathcal{H})$.

Let $T \in \mathcal{K}$ and let $A, B \in \mathcal{L}(\mathcal{H})$. Since B is continuous with respect to the weak topology the sequence $(B_{\xi_n})_{n\geq 0}$ converges weakly to 0. Since T is compact Proposition 3.4.2 (iii) insures us that $(TB\xi_n)_{n\geq 0}$ converges to 0 in norm. Then $(ATB\xi_n)_{n\geq 0}$ converges to 0 in norm too. Thanks to Proposition 3.4.2 (iii), this shows that ATB is a compact operator. Therefore, we see that \mathcal{K} is a two-sided ideal of $\mathcal{L}(\mathcal{H})$.

It remains to show that \mathcal{K} is closed. Thus, let $(T_k)_{k\geq 0} \subset \mathcal{K}$ be a sequence such that $T_k \to T$ in $\mathcal{L}(\mathcal{H})$ and let us show that T is compact. Let $\epsilon > 0$. Then for k large enough $||T - T_k|| < \epsilon$. Since T_k is compact by Proposition 3.4.2 (iii) the sequence $(T_k \xi_n)_{n\geq 0}$ converges to 0 in norm, and hence there exists $N \in \mathbb{N}$, such that $||T_k \xi_n|| < \epsilon$ for all $n \geq N$. Then, for any $n \geq N$, we have

$$||T\xi_n|| \le ||T_k\xi_n|| + ||(T - T_k)\xi_n|| \le ||T_k\xi_n|| + ||T - T_k|| ||\xi_n|| < 2\epsilon.$$

Thus $(T\xi_n)_{n\geq 0}$ converges to 0 in norm, which by Proposition 3.4.2 (iii) shows that T is compact. This proves that \mathcal{K} is closed, completing the proof.

PROPOSITION 3.4.4. For any $T \in \mathcal{L}(\mathcal{H})$,

$$(3.11) T \in \mathcal{K} \iff T^* \in \mathcal{K} \iff |T| \in \mathcal{K}.$$

PROOF. Let $T \in \mathcal{L}(\mathcal{H})$ and let T = U|T| be its polar decomposition. The fact that \mathcal{K} is a two-sided ideal then implies that if |T| is compact, then so is T. Likewise, as by Proposition 3.1.8 we have $|T| = U^*T$, if T is compact, then so is |T|.

Proposition 3.1.8 also tells us that $T^* = UTU^*$. Therefore, we also see that if T is compact then so is T^* . Upon substituting T^* for T, we see that if T^* is compact, then T is compact too. The proof is complete.

PROPOSITION 3.4.5. K is a sub- C^* -algebra of $\mathcal{L}(\mathcal{H})$, and hence is a C^* -algebra.

PROOF. Since Proposition 3.4.3 tells us that \mathcal{K} is a closed two-sided ideal, we see that \mathcal{K} is a closed subalgebra of $\mathcal{L}(\mathcal{H})$. As by Proposition 3.4.4 \mathcal{K} is closed under the involution of $\mathcal{L}(\mathcal{H})$ it follows that \mathcal{K} is a sub- C^* -algebra of $\mathcal{L}(\mathcal{H})$.

THEOREM 3.4.6 (Riesz-Schauder; see [RS, Thm. VI.15]). Let $T \in \mathcal{K}$.

- (1) T always contains 0 in its spectrum.
- (2) If $\lambda \in \operatorname{Sp} T \setminus 0$, then λ is an eigenvalue with finite multiplicity.
- (3) Sp T is either finite or consists of a sequence of complex numbers converging to 0.

In the sequel, for any vectors ξ and η in \mathcal{H} , we denote by $\xi \otimes \eta^*$ the element of $\mathcal{L}(\mathcal{H})$ defined by

$$(3.12) (\xi \otimes \eta^*)\zeta := \langle \eta, \xi' \rangle \xi \forall \zeta \in \mathcal{H}.$$

Thus in ketbra notation $\xi \otimes \eta^*$ is just the operator $|\xi\rangle\langle\eta|$. This is an operator of rank 1. If ξ is a unit vector then $\xi \otimes \xi^*$ is the orthogonal projection onto $\mathbb{C}\xi$.

THEOREM 3.4.7 (Hilbert-Schmidt; see [RS, Thm. VI.16]). Let $T \in \mathcal{K}$ be normal. Then T diagonalizes in an orthonormal basis, i.e., there exists an orthonormal basis $(\xi_n)_{n\geq 0}$ of \mathcal{H} and a sequence $(\lambda_n)_{n\geq 0} \subset \mathbb{C}$ such that

$$(3.13) T\lambda_n = \lambda_n \xi_n \forall n \in \mathbb{N}_0.$$

This result allows us to reinterpret the Borel functional calculus for normal compact operators as follows.

PROPOSITION 3.4.8. Let $T \in \mathcal{K}$ be normal and let $(\xi_n)_{n\geq 0}$ be an orthonormal basis of \mathcal{H} respect to which T is diagonal, i.e., $T\lambda_n = \lambda_n \xi_n$ for all $n \in \mathbb{N}_0$. In addition, let f be bounded function on $\operatorname{Sp} T = \{\lambda_n; n \in \mathbb{N}_0\}$.

(1) We have

(3.14)
$$f(T) = \sum_{n>0} f(\lambda_n)(\xi_n \otimes \xi_n^*),$$

where the series converges strongly.

(2) f(T) is a compact operator if and only if

$$\lim_{n\to\infty} f(\lambda_n) = 0.$$

Furthermore, in this case the series (3.14) converges in norm.

PROOF. For any $n \in \mathbb{N}_0$ we have $T\xi_n = \lambda_n \xi_n$. Since $(\xi_n)_{n \geq 0}$ is an orthonormal basis we deduce that $T^*\xi_n = \overline{\lambda_n}\xi_n$ for all $n \in \mathbb{N}_0$. Let $n \in \mathbb{N}_0$. For any polynomial $f(z) = \sum a_{jk} z^j \overline{z}^k$, we have

$$f(T) = \sum a_{jk} T^{j} (T^{*})^{k} \xi_{n} = \sum a_{jk} \lambda_{n}^{j} (\overline{\lambda_{n}})^{k} \xi_{n} = f(\lambda_{n}) \xi_{n}.$$

It then follows from (1.14) that, for any $f \in C(\operatorname{Sp} T)$, we have

$$(3.15) f(T)\xi_n = \lambda_n \xi_n \forall n \in \mathbb{N}_0.$$

Since $\operatorname{Sp} T = \{\lambda_n; n \in \mathbb{N}_0\}$ any function on $\operatorname{Sp} T$ is a Borel function. Moreover, by Theorem 3.4.6 0 is always in $\operatorname{Sp} T$ and the non-zero eigenvalues of T have finite multiplicities, i.e., each non-zero eigenvalue λ appears at most finitely many times in the sequence $(\lambda_n)_{n\geq 0}$. Thus $\lambda_n \to 0$ as $n \to \infty$, and hence a function $f(\lambda)$ on $\operatorname{Sp} T$ is continuous iff $\lim_{n\to\infty} f(\lambda_n) = f(0)$. Let f be a bounded function on $\operatorname{Sp} T$ and, for $N \in \mathbb{N}$, let f_N be the function on $\operatorname{Sp} T$ defined by

$$f_N(\lambda) = \begin{cases} f(\lambda_n) & \text{if } \lambda = \lambda_n \text{ with } n < N, \\ f(0) & \text{if } \lambda = 0 \text{ or } \lambda \neq \lambda_n \text{ for all } n < N. \end{cases}$$

As $\lim_{n\to\infty} f_N(\lambda_n) = f(0) = f_N(0)$, we see that f_N is a continuous function on $\operatorname{Sp} T$, and hence it satisfies (3.15). Moreover, for all $n \in \mathbb{N}_0$,

$$|f_N(\lambda_n)| \le ||f||_{\infty}$$
 and $\lim_{N \to \infty} f_N(\lambda_n) = f(\lambda_n).$

Thus $(f_N)_{N\geq 1}$ is a bounded sequence in $L^{\infty}(\operatorname{Sp} T)$ which converges pointwise to f. It then follows from Theorem 3.2.2 and (3.15) that, for all $n\in\mathbb{N}_0$,

(3.16)
$$f(T)\xi_n = \lim_{N \to \infty} f_N(T)\xi_n = \lim_{N \to \infty} f_N(\lambda_n)\xi_n = f(\lambda_n)\xi_n.$$

Let $\xi \in \mathcal{H}$. Since $\xi = \sum_{n \geq 0} \langle \xi_n, \xi \rangle \xi_n$ and f(T) is continuous, using (3.16) we get

$$f(T)\xi = \sum_{n\geq 0} \langle \xi_n, \xi \rangle f(\xi_n) = \sum_{n\geq 0} \langle \xi_n, \xi \rangle f(\lambda_n) \xi_n = \sum_{n\geq 0} f(\lambda_n) (\xi_n \otimes \xi_n^*) \xi,$$

which proves (3.14).

Next, for $N \in \mathbb{N}$ let E_N the span of ξ_0, \ldots, ξ_{N_1} and denote by Π_N be the orthogonal projection onto E_N . Then by Proposition 3.4.2 (iv) the operator f(T) is compact if and only if

(3.17)
$$||f(T)|_{E_N^{\perp}}|| = ||f(T)(1 - \Pi_N)|| \longrightarrow 0$$
 as $N \longrightarrow 0$.

Set $\nu_N = \sup_{n \geq N} |f(\lambda_n)|$. Since $f(T)\xi_n = f(\lambda_n)\xi_n$ for all $n \in \mathbb{N}_0$, we see that $\nu_N \leq ||f(T)|_{E_N^{\perp}}|| = ||f(T)(1 - \Pi_N)||$. Conversely, let $\xi \in \mathcal{H}$. Since $(\xi_n)_{n \geq 0}$ is an orthonormal basis, from (3.14) we get

$$||f(T)(1-\Pi_N)\xi||^2 = \sum_{n>N} |\langle \xi_n, \xi \rangle|^2 |f(\lambda_n)|^2 \le \nu_N^2 \sum_{n>0} |\langle \xi_n, \xi \rangle|^2 = \nu_N^2 ||\xi||^2.$$

Thus $||f(T)(1-\Pi_N)|| \leq \nu_N$. Thefore, we have

(3.18)
$$||f(T)|_{|E_N^{\perp}|} || = ||f(T)(1 - \Pi_N)|| = \sup_{n \ge N} |f(\lambda_n)|.$$

Combining this with the condition (3.17) then shows that f(T) is compact if and only if $\lim_{n\to\infty} f(\lambda_n) = 0$.

Finally, using (3.14) we get

$$f(T)(1-\Pi_N) = \sum_{n\geq N} f(\lambda_n)(\xi_n \otimes \xi_n^*),$$

where the series converges strongly. Thus,

$$\left\| \sum_{n > N} f(\lambda_n)(\xi_n \otimes \xi_n^*) \right\| = \|f(T)(1 - \Pi_N)\| = \sup_{n \ge N} |f(\lambda_n)|.$$

Therefore, if $\lim_{n\to\infty} f(\lambda_n) = 0$, then the series (3.14) converges to f(T) in norm. The proof is complete.

Example 3.4.9. Let $T \in \mathcal{K}$ be normal. Then, with the notation of Proposition 3.4.8, we have

(3.19)
$$T = \sum_{\lambda_n \neq 0} \lambda_n(\xi_n \otimes \xi_n^*),$$

where the series converges in norm. Moreover, if we let T=U|T| be the polar decomposition, then

$$U = \sum_{\lambda_n \neq 0} |\lambda_n|^{-1} \lambda_n(\xi_n \otimes \xi_n^*) \quad \text{and} \quad |T| = \sum_{n \geq 0} |\lambda_n|(\xi_n \otimes \xi_n^*),$$

where the first series converges strongly (unless T has finite rank, in which case it is a finite sum), and the second series converges in norm.

Bibliography

- [Fo] Folland, G.: Real analysis. 2nd edition. John Wiley & Sons, Inc., New York,
- [RS] Reed, M.; Simon, B.: Methods of modern mathematical physics. I. Functional analysis. Second edition. Academic Press, Inc., New York, 1980.