Noncommutative Geometry Chapter 5: Connes' Quantized Calculus

Sichuan University, Spring 2025

Singular Values and Schatten Classes

Additional References

- Lord, S.; Sukochev, F.; Zanin, D.: Singular traces: theory and applications. De Gruyter, 2012.
- Ponge, R.: Connes' integration and Weyl's laws.
 J. Noncomm. Geom. 17 (2023), 719–767.

Setup

Throughout this chapter \mathcal{H} is a separable Hilbert space.

Quantized Calculus (Connes)

Classical	Quantum (Connes)
Complex variable	Operator on Hilbert space ${\cal H}$
Real variable	Selfadjoint operator on ${\cal H}$
Infinitesimal variable	Compact operator on ${\cal H}$
Infinitesimal of $\ $ order $\ \ lpha$	Compact operator s.t. $\mu_j(\mathcal{T}) = O(j^{-lpha})$
Integral $\int f(x)dx$	NC integral $\int T$

Here the $\mu_j(A)$ are the singular values of A.

Infinitesimal Operators

Intuitive Definition

An infinitesimal is an object that it is smaller than any positive number.

Remark

For an operator $T \in \mathcal{L}(\mathcal{H})$ the condition

$$||T|| < \epsilon$$
 for all $\epsilon > 0$

gives the solution T = 0!

Definition (Infinitesimal Operator)

An operator $T \in \mathcal{L}(\mathcal{H})$ is infinitesimal if, for all $\epsilon > 0$, there is a subspace $E \subset \mathcal{H}$, dim $E < \infty$, such that

$$||T_{|E^{\perp}}|| < \epsilon.$$

Infinitesimal Operators

Proposition

Let $T \in \mathcal{L}(\mathcal{H})$. Then TFAE

- T is a compact operator.
- 2 T is the norm-limit of finite rank operators.
- For all $\epsilon > 0$, there is $E \subset \mathcal{H}$, dim $E < \infty$, s.t. $||T_{|E^{\perp}}|| < \epsilon$.

Consequence

An operator T is an infinitesimal if and only if it is compact.

Infinitesimal Operators

Definition

A (compact) operator T is an infinitesimal of order α , $\alpha > 0$, if

$$\mu_j(T) = O(j^{-\alpha})$$
 as $j \to \infty$.

Remark

In other words, T is an infinitesimal of order α if and only if it belongs to the weak Schatten class $\mathcal{L}_{p,\infty}$ with $p=\alpha^{-1}$.

From the properties of weak Schatten classes we get:

Proposition

For j = 1, 2, let T_j be infinitesimal of order α_j . Then

- **1** $T_1 + T_2$ is infinitesimal of order min (α_1, α_2) .
- 2 T_1T_2 is infinitesimal of order $\alpha_1 + \alpha_2$.

NC Integral - Ansatz

Ansatz for a NC Integral (Connes)

The NC integral should have the following properties:

- It is defined on infinitesimals of order 1, i.e., on the weak trace class $\mathcal{L}^{1,\infty}$.
- ② It should take non-negative values on positive operators.
- \odot It vanishes on infinitesimals of order > 1.
- It vanishes on the commutator space,

$$\mathsf{Com}(\mathcal{L}^{1,\infty}) = \mathsf{Span}\,\big\{[A,\,T];\ A\in\mathcal{L}(\mathcal{H}),\ T\in\mathcal{L}^{1,\infty}\big\}.$$

That is, it should be a positive trace on $\mathcal{L}^{1,\infty}$.

Setup

T =compact operator on \mathcal{H} .

Definition

Let $\lambda \in \operatorname{Sp}(T) \setminus 0$.

1 The root space relatively to λ is

$$E_{\lambda}(T) = \bigcup_{\ell \geq 1} \ker(T - \lambda)^{\ell}.$$

② dim $E_{\lambda}(T)$ is called the algebraic multiplicity of λ .

Facts (see Gohberg-Krein)

- The algebraic multiplicity is always finite (if $\lambda \neq 0$).
- ② On $E_{\lambda}(T)$ the operator T takes the form $T = \lambda + N_{\lambda}$, where N_{λ} is nilpotent.
- 3 If T is normal, then $E_{\lambda}(T) = \ker(T \lambda)$.

Definition

An eigenvalue sequence $\lambda(T) = {\lambda_i(T)}_{i>0}$ is any sequence s.t.:

- $\lambda_j(T)$ is an eigenvalue of T and is repeated according to algebraic multiplicity.
- $|\lambda_0(T) \geq |\lambda_1(T)| \geq \cdots.$

Remarks

- An eigenvalue sequence need not be unique.
- 2 If $T \geq 0$, then $\lambda_i(T) = \mu_i(T)$.
- 3 We shall denote by $\lambda(T)$ any eigenvalue sequence for T.

Proposition (Weyl)

For all N > 1, we have

$$\sum_{j < N} |\lambda_j(T)| \le \sum_{j < N} \mu_j(T).$$

Remark

In general we don't have $|\lambda_j(T)| \leq \mu_j(T)$.

Theorem (Lidskii)

If $T \in \mathcal{L}^1$, then

$$\mathsf{Tr}(T) = \sum_{j>0} \lambda_j(T).$$

Definition

A (compact) operator Q is called quasi-nilpotent if $Sp(Q) = \{0\}$.

Fact

Q is quasi-nilpotent if and only if $\lim_{n\to\infty} \|Q^n\|^{\frac{1}{n}} = 0$.

Proof.

By Gel'fand-Mazur theorem,

$$\lim_{n\to\infty}\|Q^n\|^{\frac{1}{n}}=\sup\{|\lambda|;\ \lambda\in\operatorname{Sp}(Q)\}.$$

Theorem (Ringrose)

Any compact operator T can be put in the form,

$$T = A + Q$$
,

where A and Q are compact operators such that

- A is normal and $\lambda(A) = \lambda(T)$.
- Q is quasi-nilpotent.

Lemma (see Reed-Simon)

Every $A \in \mathcal{L}(\mathcal{H})$ is linear combination of 4 unitaries.

Proof.

• If $A = A^*$ and ||A|| = 1, then

$$A = \frac{1}{2}(U + U^*)$$
 where $U = A + i\sqrt{1 - A^2}$.

• In general $A = c_1A_1 + ic_2A_2$ with $c_i \ge 0$ and A_i as above.

Lemma

Let $\varphi: \mathcal{L}^{1,\infty} \to \mathbb{C}$ be a linear functional. TFAE:

(i) φ is a trace, i.e.,

$$\varphi(AT) = \varphi(TA) \qquad \forall T \in \mathcal{L}^{1,\infty} \ \forall A \in \mathcal{L}(\mathcal{H}).$$

(ii) φ is unitarily invariant, i.e.,

$$\varphi(U^*TU) = \varphi(T) \ \forall T \in \mathcal{L}^{1,\infty} \ \forall U \in \mathcal{L}(\mathcal{H})$$
 unitary.

Proof.

If *U* is unitary, then

$$U^*TU - T = (U^*T)U - U(U^*T) = [U^*T, U]$$

• Here $U^*T\in\mathcal{L}^{1,\infty}$. Thus, if φ is a trace, then

$$\varphi(U^*TU) - \varphi(T) = \varphi([U^*T, U]) = 0.$$

• If φ is unitarily invariant, then

$$\varphi(UT) = \varphi(U^*(UT)U) = \varphi(TU).$$

- Thanks to the previous lemma the unitaries span $\mathcal{L}(\mathcal{H})$.
- Thus, by linearity $\varphi(TA) = \varphi(AT)$ for all $A \in \mathcal{L}(\mathcal{H})$, i.e., φ is a trace.

Proposition

Any positive trace on $\mathcal{L}^{1,\infty}$ is continuous.

Remark

This is a folk result.

- It can be shown that any positive linear form on a C*-algebra is continuous (see, e.g., Murphy's book).
- The same arguments show that any positive linear form on $\mathcal{L}^{1,\infty}$ is continuous

Proposition (Connes-McDonald-Sukochev-Zanin '19)

Every continuous trace on $\mathcal{L}^{1,\infty}$ is the linear combination of 4 positive traces.

Lemma (see Lord-Sukochev-Zanin's book)

If $S, T \in \mathcal{L}^{1,\infty}$, then

$$\sum_{j < N} \lambda_j(S + T) = \sum_{j < N} \lambda_j(S) + \sum_{j < N} \lambda_j(T) + O(1).$$

Corollary

If $(\lambda_j(T))_{j\geq 0}$ and $(\lambda_j'(T))_{j\geq 0}$ are two eigenvalue sequences, then

$$\sum_{j < N} \lambda'_j(T) = \sum_{j < N} \lambda_j(T) + O(1).$$

Proof.

Apply the lemma to S=0 with $\lambda_j(S+T)=\lambda_i'(T)$.

Corollary

If
$$T \in \mathsf{Com}(\mathcal{L}^{1,\infty})$$
, then

$$\sum_{j< N} \lambda_j(T) = O(1).$$

Proof.

• As the unitaries span $\mathcal{L}(\mathcal{H})$, the space $\mathsf{Com}(\mathcal{L}^{1,\infty})$ is span by operators of the form,

$$[T, U] = TU - UT = U^*(UT)U - UT.$$

with U unitary and $T \in \mathcal{L}^{1,\infty}$.

- Substituting U^*T for T shows that $Com(\mathcal{L}^{1,\infty})$ is span by operators of the form $U^*TU T$.
- As $U^*TU = U^{-1}TU$ has same spectrum as T, we may take $\lambda_j(U^*TU) = \lambda_j(T)$ to get

$$\sum_{j < N} \lambda_j \left(U^* T U - T \right) = \sum_{j < N} \lambda_j \left(U^* T U \right) - \sum_{j < N} \lambda_j (T) + O(1) = O(1).$$

19 / 50

Theorem (Dykema-Figiel-Weiss-Wodzicki)

If $S, T \in \mathcal{L}^{1,\infty}$, then

$$S - T \in \mathsf{Com}(\mathcal{L}^{1,\infty}) \Longleftrightarrow \sum_{j < N} \lambda_j(S) = \sum_{j < N} \lambda_j(T) + \mathsf{O}(1).$$

In particular,

$$T \in \mathsf{Com}(\mathcal{L}^{1,\infty}) \Longleftrightarrow \sum_{j < N} \lambda_j(T) = \mathsf{O}(1).$$

Remarks

- This is a special case of a more general result for operator ideals.
- The proof for $\mathcal{L}^{1,\infty}$ is much simpler (see LSZ book).

Corollary

 $\mathcal{L}^1\subset \mathsf{Com}(\mathcal{L}^{1,\infty}).$

Proof.

• If $T \in \mathcal{L}^1$, then by Weyl's inequality,

$$\sum_{j < N} |\lambda_j(T)| \le \sum_{j < N} \mu_j(T) \le \sum_{j \ge 0} \mu_j(T) < \infty.$$

• Thus, $\sum \lambda_j(T) = O(1)$, and hence $T \in Com(\mathcal{L}^{1,\infty})$.

Corollary

Every trace on $\mathcal{L}^{1,\infty}$ vanishes on trace-class operators, including infinitesimal operators of order > 1.

Notation

- $\ell^{\infty} = C^*$ -algebra of bounded complex-valued sequences.
- c_0 = closed ideal of sequences converging to 0.

Definition

For $T \in \mathcal{L}^{1,\infty}$ set

$$\Lambda_N(T) = \frac{1}{\log N} \sum_{j < N} \lambda_j(T), \qquad N \ge 1.$$

Lemma

- The sequence $(\Lambda_N(T))_{N\geq 1}$ is bounded.
- ② If $(\lambda'_i(T))_{j\geq 1}$ is another eigenvalue sequence for T, then

$$\frac{1}{\log N} \sum_{j < N} \lambda_j'(T) - \frac{1}{\log N} \sum_{j < N} \lambda_j(T) \in \mathfrak{c}_0.$$

Proof.

- By Weyl's inequality $\sum_{j < N} |\lambda_j(T)| \le \sum_{j < N} \mu_j(T)$.
- As $\mu_i(T) = O(j^{-1})$, we have $\sum_{i < N} \mu_i(T) = O(\log N)$.
- Thus,

$$|\Lambda_N(T)| \leq \frac{1}{\log N} \sum_{j < N} |\lambda_j(T)| \leq \frac{1}{\log N} \sum_{j < N} \mu_j(T) = O(1).$$

That is, $(\Lambda_N(T))_{N\geq 1}$ is a bounded sequence.

• If $(\lambda'_i(T))_{i\geq 1}$ is another eigenvalue sequence for T, then

$$\sum_{j < N} \lambda'_j(T) = \sum_{j < N} \lambda_j(T) + O(1).$$

Thus,

$$\frac{1}{\log N} \sum_{i \in N} \lambda_j'(T) - \frac{1}{\log N} \sum_{i \in N} \lambda_j(T) = O\left((\log N)^{-1}\right) = o(1).$$

In particular, the above sequence is in c_0 .

Consequence

The class of $(\Lambda_N(T))$ in $\ell^{\infty}/\mathfrak{c}_0$ does not depend on the choice of the eigenvalue sequence.

Definition

The map $\tau: \mathcal{L}^{1,\infty} \to \ell^{\infty}/\mathfrak{c}_0$ given by

$$au(T) = \text{class of } \left\{ \frac{1}{\log N} \sum_{k < N} \lambda_k(T) \right\}_{N \ge 1} \text{ in } \ell^{\infty}/\mathfrak{c}_0.$$

Lemma

au is a positive linear map that vanishes on $\mathsf{Com}(\mathcal{L}^{1,\infty})$ and $\mathcal{L}^{1,\infty}_0$.

Proof.

• If $S, T \in \mathcal{L}^{1,\infty}$, then

$$\sum_{j < N} \lambda_j(S + T) = \sum_{j < N} \lambda_j(S) + \sum_{j < N} \lambda_j(T) + O(1).$$

Thus,

$$\Lambda_N(S+T)-\Lambda_N(S)-\Lambda_N(T)=O((\log N)^{-1})=o(1).$$

That is, $\Lambda(S+T)-\Lambda(S)-\Lambda(T)\in\mathfrak{c}_0$, and hence $\tau(S+T)=\tau(S)+\tau(T)$.

• If $T \in \mathsf{Com}(\mathcal{L}^{1,\infty})$, then $\sum_{i < N} \lambda_i(T) = \mathsf{O}(1)$, and so

$$\Lambda_N(T) = O((\log N)^{-1}) = o(1).$$

That is, $\Lambda(T) \in \mathfrak{c}_0$, and hence $\tau(T) = 0$.

Proof (Continued).

• If $T \in \mathcal{L}_0^{1,\infty}$, then $\mu_j(T) = o(j^{-1})$, and so we have

$$\sum_{j < N} \mu_j(T) = o(\log N).$$

By Weyl's inequality,

$$\sum_{j < N} |\lambda_j(T)| \le \sum_{j < N} \mu_j(T).$$

Thus,

$$\left| \Lambda_{\mathcal{N}}(\mathcal{T}) \right| \leq \frac{1}{\log \mathcal{N}} \sum_{j < \mathcal{N}} \mu_j(\mathcal{T}) = \mathsf{o}(1).$$

That is, $\Lambda(T) \in \mathfrak{c}_0$, and so $\tau(T) = 0$.

Definition

A state on a unital C^* -algebra $\mathcal A$ is a positive linear form $\omega:\mathcal A\to\mathbb C$ such that $\omega(1)=1.$

Remark

Every state is continuous.

Definition

An extended limit is any positive linear map $\lim_{\omega}: \ell^{\infty} \to \mathbb{C}$ s.t.:

- (i) $\lim_{\omega} 1 = 1$.
- (ii) $\lim_{\omega} a_i = 1$ if $(a_i) \in \mathfrak{c}_0$.

Remark

- If $a_i \to L$, then $(a_i) L \in \mathfrak{c}_0$.
- Thus, for every extended limit \lim_{ω} , we have

$$\lim_{\omega} a_i = \lim_{\omega} L = L \lim_{\omega} 1 = L.$$

Remark

• Any state ω on $\ell^{\infty}/\mathfrak{c}_0$ defines an extended limit by

$$\lim_{\omega} a_i = \omega([a]), \qquad a = (a_i) \in \ell^{\infty}$$

where [a] is the class of a in $\ell^{\infty}/\mathfrak{c}_0$.

- ullet Conversely, any extended limit descends to a state on $\ell^{\infty}/\mathfrak{c}_0$.
- We thus have a one-to-one correspondence,

$$\big\{\text{extended limits}\big\} \longleftrightarrow \big\{\text{states on } \ell^\infty/\mathfrak{c}_0\big\}.$$

Remark

If $(a_j) \in \ell^{\infty}$ is real-valued, for every extended limit \lim_{ω} we have $\liminf a_j \leq \lim_{\omega} a_j \leq \limsup a_j$.

Lemma

Given any $(a_i) \in \ell^{\infty}$, TFAE:

- (i) $a_j \rightarrow L$.
- (ii) $\lim_{\omega} a_j = L$ for every extended limit \lim_{ω} .

Definition

If \lim_{ω} is an extended limit, then $\operatorname{Tr}_{\omega}:\mathcal{L}^{1,\infty}\to\mathbb{C}$ is given by

$$\mathsf{Tr}_\omega(T) := \mathsf{lim}_\omega \left\{ rac{1}{\log N} \sum_{j < N} \lambda_j(T)
ight\}, \qquad T \in \mathcal{L}^{1,\infty}.$$

Proposition (Dixmier)

- **1** Tr_{ω} is a positive linear trace on $\mathcal{L}^{1,\infty}$.
- 2 It is annihilated by $\mathcal{L}_0^{1,\infty}$, and hence it vanishes on infinitesimals of order > 1.

Proof.

• If ω is the state on $\ell^{\infty}/\mathfrak{c}_0$ defined by \lim_{ω} , then

$$\operatorname{Tr}_{\omega}(T) = \lim_{\omega} \Lambda_{N}(T) = \omega([\Lambda(T)]) = \omega \circ \tau(T).$$

- It then follows from properties of τ and states that Tr_{ω} that:
 - It is a positive linear form on $\mathcal{L}^{1,\infty}$.
 - It vanishes on $\mathsf{Com}(\mathcal{L}^{1,\infty})$ and $\mathcal{L}^{1,\infty}_0$.
 - In particular, this is a trace.

Definition

 Tr_{ω} is called the Dixmier trace associated with the extended limit lim_{ω} .

Definition (Connes)

- An operator $T \in \mathcal{L}^{1,\infty}$ is called measurable if the value of $\operatorname{Tr}_{\omega}(T)$ does not depend on the extended limit.
- 2 We denote by ${\mathcal M}$ the class of measurable operators.
- **3** If $T \in \mathcal{M}$, we define its NC integral by

$$\int T := \operatorname{Tr}_{\omega}(A),$$

where Tr_{ω} is any Dixmier trace.

Proposition (Connes, Lord-Sukochev-Zanin)

Given $T \in \mathcal{L}^{1,\infty}$, TFAE:

- **1** T is measurable and $\int T = L$.
- We have

$$\lim_{N\to\infty}\frac{1}{\log N}\sum_{i\leq N}\lambda_j(T)=L.$$

Proof.

We have

$$\begin{split} T \text{ meas. \& } & \int T = L \Longleftrightarrow \mathrm{Tr}_{\omega}(T) = L \quad \forall \, \mathrm{lim}_{\omega}, \\ & \Longleftrightarrow \mathrm{lim}_{\omega} \left\{ \frac{1}{\log N} \sum_{j < N} \lambda_{j}(T) \right\} = L \quad \forall \, \mathrm{lim}_{\omega}, \\ & \Longleftrightarrow \lim_{N \to \infty} \frac{1}{\log N} \sum_{j < N} \lambda_{j}(T) = L. \end{split}$$

Consequence

If T is measurable, then

$$\lim_{N \to \infty} \frac{1}{\log N} \sum_{i < N} \lambda_j(T) = \int T.$$

Proposition

- \mathcal{M} is a closed subspace of $\mathcal{L}^{1,\infty}$ that contains $\mathsf{Com}(\mathcal{L}^{1,\infty})$ and $\mathcal{L}^{1,\infty}_0$.
- ② $f: \mathcal{M} \to \mathbb{C}$ is a positive linear functional that vanishes on $\mathsf{Com}(\mathcal{L}^{1,\infty})$ and $\mathcal{L}^{1,\infty}_0$.
- § In particular, this is a positive trace that annihilates infinitesimals of order > 1.

Remarks

- The C^* -algebra $\ell^{\infty}/\mathfrak{c}_0$ is not separable.
- The existence of states follows from Hahn-Banach theorem.
- In the non-separable case the proof relies on the Axiom of Choice.

Question (Connes, Fudan U. '17)

- Show the existence of a limit for measurable operators without using extended limits.
- Produce a purely spectral theoretic construction of the NC integral.

Tauberian Approach

Reminder

If $(\lambda_j(T))$ and $(\lambda_j'(T))$ are two eigenvalue sequences for $T \in \mathcal{L}^{1,\infty}$, then

$$\frac{1}{\log N} \sum_{j < N} \lambda_j'(T) = \frac{1}{\log N} \sum_{j < N} \lambda_j(T) + \mathrm{o}(1).$$

Lemma

Let $T \in \mathcal{L}^{1,\infty}$. TFAE:

- (i) $\lim_{N\to\infty} (\log N)^{-1} \sum_{j< N} \lambda_j(T)$ exists for some eigenvalue sequence.
- (ii) $\lim_{N\to\infty} (\log N)^{-1} \sum_{j< N} \lambda_j(T)$ exists for every eigenvalue sequence.

Definition (Lord-Sukochev-Zanin)

1 An operator $T \in \mathcal{L}^{1,\infty}$ is called Tauberian if

$$\lim_{N \to \infty} \frac{1}{\log N} \sum_{j < N} \lambda_j(T) \text{ exists.}$$

2 The class of Tauberian operators is denoted \mathcal{T} .

Definition

For $T \in \mathcal{T}$ set

$$\int' T := \lim_{N \to \infty} (\log N)^{-1} \sum_{j < N} \lambda_j(T).$$

Proposition

- $\mathcal T$ is a closed subspace of $\mathcal L^{1,\infty}$ that contains $\mathsf{Com}(\mathcal L^{1,\infty})$ and $\mathcal L^{1,\infty}_0$.
- ② $f': \mathcal{T} \to \mathbb{C}$ is a positive linear functional that vanishes on $\mathsf{Com}(\mathcal{L}^{1,\infty})$ and $\mathcal{L}^{1,\infty}_0$.
- **1** In particular, this is a positive trace that annihilates infinitesimals of order > 1.

Proof.

• Reminder (LSZ Lemma): if $S, T \in \mathcal{L}^{1,\infty}$, then

$$\sum_{i \in N} \lambda_j(S+T) = \sum_{i \in N} \lambda_j(S) + \sum_{i \in N} \lambda_j(T) + O(1).$$

Thus,

$$\frac{1}{\log N} \sum_{i \leq N} \lambda_j(S+T) = \frac{1}{\log N} \sum_{i \leq N} \lambda_j(S) + \frac{1}{\log N} \sum_{i \leq N} \lambda_j(T) + o(1).$$

• Therefore, if $S, T \in \mathcal{T}$, then

$$\lim_{N\to\infty}\frac{1}{\log N}\sum_{i\leq N}\lambda_j(S+T)=$$

$$\lim_{N\to\infty} \frac{1}{\log N} \sum_{i < N} \lambda_j(S) + \lim_{N\to\infty} \frac{1}{\log N} \sum_{i < N} \lambda_j(T) = \int_{-\infty}^{\infty} S + \int_{-\infty}^{\infty} T.$$

• $S + T \in \mathcal{T}$ and f'(S + T) = f'S + f'T.

Proof (Continued).

• Reminder: if $T \in \mathsf{Com}(\mathcal{L}^{1,\infty})$, then $\sum_{j < N} \lambda_j(T) = \mathsf{O}(1)$, and hence $\frac{1}{\log N} \sum_{i < N} \lambda_j(T) = \mathsf{o}(1).$

Thus,

$$\lim_{N\to\infty} \frac{1}{\log N} \sum_{j< N} \lambda_j(T) = 0.$$

That is,

$$T \in \mathcal{T}$$
 and $\int_{-1}^{1} T = 0$.

Proof (Continued).

• Reminder: if $T \in \mathcal{L}_0^{1,\infty}$, then $\mu_i(T) = o(j^{-1})$, and hence

$$\sum_{j < N} \mu_j(T) = o(\log N).$$

By Weyl's inequality,

$$\big|\sum_{j$$

Thus,

$$\frac{1}{\log N} \Big| \sum_{i \le N} \lambda_j(T) \Big| \le \frac{1}{\log N} \sum_{i \le N} \mu_j(T) = o(1).$$

- It follows that $(\log N)^{-1} \sum \lambda_i(T) \to 0$.
- As before, this implies that

$$T \in \mathcal{T}$$
 and $\int_{-1}^{1} T = 0$.

The two approaches agree.

Proposition Proposition

$$\mathcal{T} = \mathcal{M}$$
 and $f' = f$.

Proof.

We know that

$$T \in \mathcal{M} \Longleftrightarrow \lim_{N \to \infty} \frac{1}{\log N} \sum_{j < N} \lambda_j(T)$$
 exists.

- Thus, $\mathcal{T} = \mathcal{M}$.
- Moreover, if $T \in \mathcal{M} = \mathcal{T}$, then

$$\int' T = \lim_{N \to \infty} \frac{1}{\log N} \sum_{j < N} \lambda_j(T) = \int T.$$

Corollary (Spectral Invariance)

Let $S, T \in \mathcal{L}^{1,\infty}$ have the same non-zero eigenvalues with same multiplicity. Then:

- S is measurable if and only if T is measurable.
- 2 In this case $\int S = \int T$.

Proof.

- The assumptions imply that $\lambda_j(S) = \lambda_j(T)$.
- Thus,

$$\lim_{N\to\infty} \frac{1}{\log N} \sum_{j< N} \lambda_j(S) = \lim_{N\to\infty} \frac{1}{\log N} \sum_{j< N} \lambda_j(T),$$

provided any of the above limit exists.

• Therefore, $S \in \mathcal{M}$ iff $T \in \mathcal{M}$, and in this case $\int S = \int T$.

Definition

A trace $\varphi: \mathcal{L}^{1,\infty} \to \mathbb{C}$ is called normalized if

$$(T \ge 0 \text{ and } \lambda_j(T) = (j+1)^{-1}) \Longrightarrow \varphi(T) = 1.$$

Remark

Every Dixmier trace Tr_{ω} is a normalized trace.

Proof.

• If $\lambda_j(T) = (j+1)^{-1}$, then

$$\frac{1}{\log N} \sum_{j < N} \lambda_j(T) = \frac{1}{\log N} \sum_{j < N} \frac{1}{j+1} \longrightarrow 1.$$

- Thus T is measurable and f = T = 1.
- In particular, $Tr_{\omega}(T) = 1$.

Remark

There are many normalized positive traces on $\mathcal{L}^{1,\infty}$ that are not Dixmier traces.

Definition

An operator $T\in\mathcal{L}^{1,\infty}$ is called strongly measurable (or positively measurable) if $\varphi(T)$ takes the same value as φ ranges over all normalized positive traces.

Remark

If T is strongly measurable, then: its is measurable, and, for every normalized positive trace $\varphi:\mathcal{L}^{1,\infty}\to\mathbb{C}$, we have

$$\varphi(T) = \int T = \lim_{N \to \infty} \frac{1}{\log N} \sum_{j < N} \lambda_j(T).$$

Reminder

- Every positive linear form on $\mathcal{L}^{1,\infty}$ is continuous.
- 2 Every continuous trace on $\mathcal{L}^{1,\infty}$ is linear combinations of 4 positive traces (Connes *et al.*).

Remark

It can be shown that every non-zero positive trace is normalized up to scalar multiple.

Consequence

The space of continuous traces on $\mathcal{L}^{1,\infty}$ is spanned by normalized positive traces.

Notation

 $\mathcal{T}_0=$ any positive operator in $\mathcal{L}^{1,\infty}$ such that $\lambda_j(\mathcal{T})=(j+1)^{-1}.$

Lemma

Given any $T \in \mathcal{L}^{1,\infty}$, TFAE:

- (i) T is strongly measurable and $\int T = L$.
- (ii) $\varphi(T) = \varphi(T_0)L$ for every continuous trace on $\mathcal{L}^{1,\infty}$.

Notation

 \mathcal{M}_s = class of strongly measurable operators.

Proposition

- \mathcal{M}_s is a closed subspace of $\mathcal{L}^{1,\infty}$.
- It contains $Com(\mathcal{L}^{1,\infty})$ and $\mathcal{L}^{1,\infty}_0$. In particular, it contains all infinitesimals of order > 1.
- It does not depend on the inner product of $\mathcal{L}(\mathcal{H})$.

Remark

- In fact, \mathcal{M}_s contains the closure $\overline{\mathsf{Com}(\mathcal{L}^{1,\infty})}$.
- This closure contains $Com(\mathcal{L}^{1,\infty}) \cup \mathcal{L}_0^{1,\infty}$.

Proposition

Let $T \in \mathcal{L}^{1,\infty}$ be such that

$$\sum_{j< N} \lambda_j(T) = L \cdot \log N + O(1).$$

Then T is strongly measurable and $\int T = L$.

Proof.

- The assumptions imply that T is measurable and f = L.
- We have

$$\sum_{j < N} \lambda_j(T_0) = \sum_{j < N} (j+1)^{-1} = \log N + O(1).$$

Thus,

$$\sum_{j < N} \lambda_j(T) = L \cdot \log N + O(1) = \sum_{j < N} \lambda_j(T_0) + O(1).$$

- We know that by a theorem of Dykema *et al.* this implies that $T LT_0 \in \mathsf{Com}(\mathcal{L}^{1,\infty})$.
- Here $T_0 \in \mathcal{M}_s$ and $Com(\mathcal{L}^{1,\infty})$, and so $T \in \mathcal{M}_s$.