Noncommutative Geometry Chapter 4: Singular Values and Schatten Classes

Sichuan University, Spring 2024

Singular Values and Schatten Classes

Additional References

- Gohberg, I.C.; Krein, M.G.: Introduction to the theory of linear nonselfadjoint operators. American Mathematical Society, 1969.
- Simon, B.: Trace ideals and their applications. American Mathematical Society, 2005.

Setup

Throughout this chapter \mathcal{H} is a separable Hilbert space.

Definition (Singular Values)

Let $T \in \mathcal{L}(\mathcal{H})$. Given any $n \geq 0$, the (n+1)-th singular value (a.k.a. characteristic value) of T is

$$\mu_n(T) := \inf\{\|T_{|E^{\perp}}\|; \dim E = n\}.$$

Remark

It follows from the above definition that

$$\mu_n(\lambda T) = |\lambda|\mu_n(T) \quad \forall \lambda \in \mathbb{C}.$$

Notation

 \mathcal{R}_n = the space of operators $T \in \mathcal{L}(\mathcal{H})$ of rank $\leq n$.

Proposition

Let $T \in \mathcal{L}(\mathcal{H})$. Then:

$$\mu_n(T) = \operatorname{dist}(T, \mathcal{R}_n),$$
 $\mu_m(T) \le \mu_n(T) \quad \forall m \ge n.$

Proposition

Let $T \in \mathcal{L}(\mathcal{H})$. Then:

$$\mu_n(T) = \mu_n(T^*) = \mu_n(|T|),$$

$$\mu_n(ATB) \le ||A||\mu_n(T)||B|| \quad \forall A, B \in \mathcal{L}(\mathcal{H}),$$

$$\mu_n(U^*TU) = \mu_n(T) \quad \forall U \in \mathcal{L}(\mathcal{H}), \ U \ unitary.$$

Remark

Let \mathcal{H}' be another (separable) Hilbert space.

• If $A \in \mathcal{L}(\mathcal{H}', \mathcal{H})$ and let $B \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$, then

$$\mu_n(ATB) \leq ||A||_{\mathcal{L}(\mathcal{H}',\mathcal{H})}\mu_n(T)||B||_{\mathcal{L}(\mathcal{H},\mathcal{H}')}.$$

• If $U \in \mathcal{L}(\mathcal{H}, \mathcal{H}')$ is unitary, then

$$\mu_n(U^*TU) = \mu_n(T).$$

 Thus, the singular values are invariant under unitary isomorphisms.

Proposition

Let
$$S, T \in \mathcal{L}(\mathcal{H})$$
 and let $m, n \in \mathbb{N}_0$. Then:

$$\mu_{m+n}(S+T) \leq \mu_m(S) + \mu_n(T),$$

$$|\mu_n(S) - \mu_n(T)| \leq ||S-T||,$$

$$\mu_{m+n}(ST) < \mu_m(S)\mu_n(T).$$

Proposition

Let $T \in \mathcal{L}(\mathcal{H})$. TFAE:

- 1 T is a compact operator.
- 2 T is the norm-limit of finite-rank operators.
- \bullet $\mu_n(T) \to 0$ as $n \to \infty$.
- **4** For any $\epsilon > 0$ there exists a finite-dimensional subspace E of \mathcal{H} such that $\|T_{|E^{\perp}}\| < \epsilon$.

Theorem (Min-Max Principle)

If T is compact, then

$$\mu_n(T) = (n+1)$$
-th eigenvalue of $|T|$ counted with multiplicity.

Remark

This implies that eigenvalues of *positive* compact operators are continuous, since the singular values are continuous.

Corollary

Let T = U|T| be the polar decomposition of T and $(\xi_n)_{n\geq 0}$ an orthonormal family such that $|T|\xi_n = \mu_n(T)\xi_n$ for all n. Then

$$T = \sum_{n\geq 0} \mu_n(T) |U\xi_n\rangle\langle \xi_n|,$$

where the series converges in norm.

Corollary

Assume that f(t), $t \ge 0$, is non-negative, non-decreasing and converges to 0 as $t \to 0^+$. Then

$$\mu_n(f(|T|)) = f(\mu_n(T)) \quad \forall n \ge 0,$$

$$f(|T|) = \sum_{n \ge 0} f(\mu_n(T)) |\xi_n| \langle \xi_n|,$$

where the series converges in norm.

Example

Let p > 0. Applying the above result to $f(t) = t^p$ gives

$$\mu_n(|T|^p) = \mu_n(T)^p \quad \forall n \ge 0.$$

Definition

• For $T \in \mathcal{L}(\mathcal{H})$ we set

$$||T||_1 := \sum_{n\geq 0} \mu_n(T).$$

• The trace-class \mathcal{L}^1 is the set of operators T such that $||T||_1 < \infty$.

Remarks

- We always have $||T|| = \mu_0(T) \le ||T||$.
- As $||T||_1 = \sum \mu_n(T) < \infty \Rightarrow \lim \mu_n(T) = 0$, any trace-class operator is compact.

Proposition

The properties of singular values imply the following:

$$||T||_{1} = ||T^{*}||_{1} = |||T|||_{1},$$

$$||\lambda T||_{1} = |\lambda|||T||_{1}, \qquad \lambda \in \mathbb{C},$$

$$||S + T||_{1} \le ||S||_{1} + ||T||_{1},$$

$$||ATB||_{1} \le ||A|||T||_{1}||B||, \qquad A, B \in \mathcal{L}(\mathcal{H}).$$

Remark

The top equalities imply that

$$T \in \mathcal{L}^1 \iff T^* \in \mathcal{L}^1 \iff |T| \in \mathcal{L}^1.$$

Proposition

- **1** \mathcal{L}^1 is a two-sided ideal of $\mathcal{L}(\mathcal{H})$.

Proposition

Assume $T \in \mathcal{L}^1$. Let T = U|T| be its polar decomposition and $(\xi_n)_{n \geq 0}$ an orthonormal family such that $|T|\xi_n = \mu_n(T)\xi_n$ for all n. Then

$$T = \sum_{n>0} \mu_n(T) |U\xi_n\rangle\langle \xi_n|,$$

where the series converges in \mathcal{L}^1 .

Corollary

The space of finite-rank operators is dense in \mathcal{L}^1 .

Lemma

Let $T \in \mathcal{L}(\mathcal{H})$ be positive. Then, for every orthonormal basis $(\xi_n)_{n \geq 0}$ of \mathcal{H} , we have

$$||T||_1 = \sum_{n>0} \langle \xi_n | T \xi_n \rangle.$$

Lemma

Let $T \in \mathcal{L}^1$.

• For every orthonormal basis $(\xi_n)_{n\geq 0}$ of \mathcal{H} , the series

$$\sum_{n\geq 0} \langle \xi_n | T \xi_n \rangle$$

converges absolutely.

② The value of its sum does not depend on the basis $(\xi_n)_{n\geq 0}$.

Definition

Let $T \in \mathcal{L}(\mathcal{H})$. Then the trace of T is

$$\operatorname{Tr}(T) := \sum_{n \geq 0} \langle \xi_n | T \xi_n \rangle,$$

where $(\xi_n)_{n\geq 0}$ is any orthonormal basis.

Example

We have

$$\operatorname{Tr}(|T|) = \sum \langle \xi_n ||T|\xi_n \rangle = ||T||_1 = ||T||_1 = \sum \mu_n(T).$$

Proposition

lacktriangledown $T
ightarrow \mathsf{Tr}(T)$ is a continuous linear form on \mathcal{L}^1 such that

$$|\operatorname{Tr}(T)| \le \operatorname{Tr}(|T|)| = ||T||_1,$$

 $\operatorname{Tr}(T^*) = \overline{\operatorname{Tr}(T)}.$

2 This is a trace on the ideal \mathcal{L}^1 , i.e.,

$$\mathsf{Tr}(AT) = \mathsf{Tr}(TA) \qquad \forall T \in \mathcal{L}^1 \ \forall A \in \mathcal{L}(\mathcal{H}).$$

Example

Let $\xi, \eta \in \mathcal{H}$. Assume that $(\xi_n)_{n \geq 0}$ is an orthonormal basis of \mathcal{H} such that $\xi_0 = \|\xi\|^{-1}\xi$.

• For all n > 0, we have

$$\langle \xi_n | (|\xi\rangle\langle \eta|) \xi_n \rangle = \langle \xi_n | \xi \rangle \langle \eta | \xi_n \rangle = \delta_{n,0} ||\xi|| \langle \eta | \xi_0 \rangle = \delta_{n,0} \langle \eta | \xi \rangle.$$

• Thus,

$$\mathsf{Tr}\left(|\xi\rangle\langle\eta|\right) = \sum_{n\geq 0} \langle \xi_n|(|\xi\rangle\langle\eta|)\xi_n\rangle = \langle \eta|\xi\rangle.$$

Example

Assume $T \in \mathcal{L}^1$ is normal, and let $(\xi_n)_{n \geq 0}$ be an orthonormal eigenbasis of \mathcal{H} , i.e., $T\lambda_n = \lambda_n \xi_n$ for all $n \geq 0$.

We have

$$\operatorname{Tr}(T) = \sum_{n \geq 0} \langle \xi_n | T \xi_n \rangle = \sum_{n \geq 0} \lambda_n \langle \xi_n | \xi_n \rangle = \sum_{n \geq 0} \lambda_n.$$

• That is, the trace of *T* is the sum of its eigenvalues.

Notation

If $S \in \mathcal{L}^1$ and $T \in \mathcal{L}(\mathcal{H})$, then $ST \in \mathcal{L}^1$, and so we may set

$$(S,T):=\operatorname{Tr}(ST).$$

Remark

We have

$$|(S,T)| = |\mathsf{Tr}(ST)| \le ||ST||_1 \le ||S||_1 ||T||.$$

Lemma

(i) For all $S \in \mathcal{L}^1$,

$$||S||_1 = \sup_{||T||=1} |\mathsf{Tr}(ST)|.$$

(ii) For all $T \in \mathcal{L}(\mathcal{H})$,

$$||T|| = \sup_{||S||_1=1} |\text{Tr}(ST)|$$
.

Consequence

We isometric linear maps,

$$\mathcal{L}^1 \ni S \longrightarrow (S, \cdot) \in \mathcal{L}(\mathcal{H})',$$

 $\mathcal{L}(\mathcal{H}) \ni T \longrightarrow (\cdot, T) \in (\mathcal{L}^1)'.$

Proposition

The map $T \to (\cdot, T)$ is an isometric isomorphism from $\mathcal{L}(\mathcal{H})$ onto $(\mathcal{L}^1)'$.

Remark

This means that \mathcal{L}^1 is the pre-dual of $\mathcal{L}(\mathcal{H})$.

Proposition

The map $S \to (S, \cdot)$ is an isometric isomorphism from \mathcal{L}^1 onto \mathcal{K}' .

Definition

• For any $T \in \mathcal{L}(\mathcal{H})$, we set

$$||T||_2 = \left(\sum \mu_n(T)^2\right)^{\frac{1}{2}}.$$

- We say that T is a Hilbert-Schmidt operator if $||T||_2 < \infty$.
- The class of Hilbert-Schmidt operators is denoted \mathcal{L}^2 .

Remarks

- We have $\mathcal{L}^1 \subset \mathcal{L}^2 \subset \mathcal{K}$.
- If T is compact, then $\mu_n(T)^2 = \mu_n(|T|^2)$, and so

$$||T||_2^2 = \sum \mu_n(T)^2 = \sum \mu_n(|T|^2) = \operatorname{Tr}(|T|^2) = \operatorname{Tr}(T^*T).$$

Thus,

$$T \in \mathcal{L}^2 \iff \sum \mu_n(|T|^2) < \infty \iff |T|^2 \in \mathcal{L}^1.$$

Example

Let $\xi, \eta \in \mathcal{H}$. Assume that $(\xi_n)_{n \geq 0}$ is an orthonormal basis of \mathcal{H} such that $\xi_0 = \|\xi\|^{-1}\xi$.

- We have $(|\xi \rangle \langle \eta|)^* = |\eta \rangle \langle \xi|$, and so $(|\xi \rangle \langle \eta|)^* (|\xi \rangle \langle \eta|) = (|\eta \rangle \langle \xi|) (|\xi \rangle \langle \eta|) = \langle \xi|\xi \rangle |\eta \rangle \langle \eta| = ||\xi||^2 |\eta \rangle \langle \eta|.$
- Thus,

$$\||\xi \mathbin{\big\backslash} \eta|\|_2^2 = \operatorname{Tr} \left[(|\xi \mathbin{\big\backslash} \eta|)^* (|\xi \mathbin{\big\backslash} \eta|) \right] = \|\xi\|^2 \operatorname{Tr} \left[|\eta \mathbin{\big\backslash} \eta| \right] = \|\xi\|^2 \left\langle \eta|\eta \right\rangle.$$

• That is,

$$\||\xi\rangle\langle\eta|\|_2 = \|\xi\|\|\eta\|.$$

Proposition

The properties of singular values imply the following:

$$||T||_{2} = ||T^{*}||_{2} = |||T|||_{2},$$

$$||\lambda T||_{2} = |\lambda|||T||_{2}, \qquad \lambda \in \mathbb{C},$$

$$||ATB||_{2} \le ||A|||T||_{2}||B||, \qquad A, B \in \mathcal{L}(\mathcal{H}).$$

Remark

The top equalities imply that

$$T \in \mathcal{L}^2 \iff T^* \in \mathcal{L}^2 \iff |T| \in \mathcal{L}^2.$$

Lemma

For every orthonormal basis $(\xi_n)_{n\geq 0}$ of \mathcal{H} , we have

$$||T||_2^2 = \sum_{n>0} ||T\xi_n||^2.$$

Proof.

We have

$$||T||_2^2 = \operatorname{Tr}(|T|^2) = \sum \left\langle \xi_n ||T|^2 \xi_n \right\rangle.$$

Here

$$\langle \xi_n || T|^2 \xi_n \rangle = \langle \xi_n |T^* T \xi_n \rangle = \langle T \xi_n |T \xi_n \rangle = || T \xi_n ||^2.$$

Thus,

$$||T||_2^2 = \sum ||T\xi_n||^2.$$

Corollary

We have

$$||S + T||_2 \le ||S||_2 + ||T||_2, \quad S, T \in \mathcal{L}(\mathcal{H}).$$

Proposition

- **1** \mathcal{L}^2 is a two-sided ideal of \mathcal{L}^2 .

Proposition

Assume $T \in \mathcal{L}^2$. Let T = U|T| be its polar decomposition and $(\xi_n)_{n\geq 0}$ an orthonormal family such that $|T|\xi_n = \mu_n(T)\xi_n$ for all n. Then

$$T = \sum_{n\geq 0} \mu_n(T) |U\xi_n\rangle\langle \xi_n|,$$

where the series converges in \mathcal{L}^2 .

Corollary

The space of finite-rank operators is dense in \mathcal{L}^2 .

Proposition

If $S, T \in \mathcal{L}^2$, then ST is trace-class, and we have

$$|\operatorname{Tr}(ST)| \le ||ST||_1 \le ||S||_2 ||T||_2,$$

 $\operatorname{Tr}(ST) = \operatorname{Tr}(TS).$

Corollary

 \mathcal{L}^2 is a Hilbert space with respect to the inner product,

$$\langle S|T\rangle_{\mathcal{L}^2} := \operatorname{Tr}(S^*T), \qquad S, T \in \mathcal{L}^2.$$

Remark

We have

$$\langle T|T\rangle_{\mathcal{L}^2} = \text{Tr}(T^*T) = \text{Tr}(|T|^2) = ||T||_2^2.$$

Integral Operators

Setup

 (X, μ) is a σ -finite measure space s.t. $L^2_{\mu}(X)$ is separable.

Example

X is a smooth manifold and μ is a Radon measure.

Definition (Integral Operators)

If
$$K(x,y)\in L^2_{\mu\otimes\mu}(X\times X)$$
, then $T_K:L^2_\mu(X)\to L^2_\mu(X)$ is given by
$$T_Kf(x):=\int_X K(x,y)f(y)d\mu(y),\qquad f\in L^2_\mu(X).$$

Integral Operators

Remark

• By Cauchy-Schwartz's inequality,

$$|T_K f(x)|^2 = \left(\int_X K(x,y)f(y)d\mu(y)\right)^2 \leq \int_X |K(x,y)|^2 d\mu(y) \int_X |f(y)|^2 d\mu(y).$$

Thus,

$$\int_{X} |T_{K}f(x)|^{2} d\mu(x) \leq \|f\|_{L^{2}}^{2} \iint_{X \times X} |K(x,y)|^{2} f(y) d\mu(y) d\mu(x) < \infty.$$

• That is,

$$T_K f \in L^2_\mu(X)$$
 and $\|T_K\|_{L^2} \le \|K\|_{L^2} \|f\|_{L^2}$.

It follows that

$$T_K \in \mathcal{L}(L^2_{\mu \otimes \mu}(X \times X))$$
 and $\|T_K\| \leq \|K\|_{L^2}$.

Example

Let $\varphi, \psi \in L^2_\mu(X)$, and set $K(x, y) = \varphi(x)\overline{\varphi(y)} \in L^2_{\mu \otimes \mu}(X \times X)$.

• If $f \in L^2_u(X)$, then

$$T_K f(x) = \int_X \varphi(x) \overline{\varphi(y)} f(y) d\mu(y) = f(x) \langle \psi | f \rangle.$$

Thus,

$$T_K = |\varphi\rangle\langle\psi|$$

- It follows that every rank 1 operator on $L^2_{\mu}(X)$ is an integral operator.
- By linearity every finite-rank operator is an integral operator

Proposition

For
$$K(x,y)$$
 and $K'(x,y)$ in $L^2_{\mu\otimes\mu}(X\times X)$, we have $T_K^*=T_{K^*}$ and $T_KT_{K'}=T_{K*K'},$

where we have set

$$K^*(x,y) = \overline{K(y,x)},$$

$$K * K'(x,y) = \int_X K(x,z)K'(z,y)d\mu(z).$$

Proposition

- If $K(x,y) \in L^2_{\mu \otimes \mu}(X \times X)$, then T_K is Hilbert-Schmidt.
- ② The linear map $K \to T_K$ is an isometric isomorphism from $L^2_{\mu \otimes \mu}(X \times X)$ onto \mathcal{L}^2 .

Proof.

Let $(\varphi_n)_{n\geq 0}$ be an orthonormal basis of $L^2_{\mu}(X)$.

• If $K(x,y) \in L^2_{\mu \otimes \mu}(X \times X)$, then

$$||T_{\mathcal{K}}||_2^2 = \sum_{n \geq 0} ||T_{\mathcal{K}}\varphi_n||^2 = \sum_{n,m} |\langle \varphi_m|T_{\mathcal{K}}\varphi_n\rangle|^2.$$

Here

$$\langle \varphi_m | T_K \varphi_n \rangle = \iint \overline{\varphi_m(x)} K(x, y) \varphi_n(y) d\mu(y) = \langle \varphi_m \otimes \overline{\varphi_n} | K \rangle.$$

• As $(\varphi_m \otimes \overline{\varphi_n})_{m,n \geq 0}$ is an orthonormal basis of $L^2_\mu(X \times X)$, we get

$$||T_{K}||_{2}^{2} = \sum_{n,m} \left| \langle \varphi_{m} \otimes \overline{\varphi_{n}} | K \rangle \right|^{2} = ||K||_{L^{2}} < \infty.$$

- Thus, $T_K \in \mathcal{L}^2$ and we have isometric linear map $K \to T_K$ from $L^2_{u \otimes \mu}(X \times X)$ to \mathcal{L}^2 . In particular, it has closed range.
- As the range contains finite-rank operators, which are dense in \mathcal{L}^2 , the map is onto, and hence is an isometric isomorphism.

Trace Theorems

Assumptions

- X = separable metrizable locally compact Hausdorff space (e.g., X is a smooth manifold).
- μ = Radon measure.

Remark

Under those assumptions $L^2_{\mu}(X)$ is a separable Hilbert space.

Trace Theorems

Theorem (Duflo)

Assume that

- $K(x,y) \in L^2_{u \otimes u}(X \times X) \cap C(X \times X)$.
- T_K is trace-class.

Then K(x,x) is in $L^1_u(X)$, and we have

$$\operatorname{Tr}(T_K) = \int_X K(x, x) d\mu(x).$$

Remark

In the above generality we need to assume T_K to be trace-class, since otherwise the trace formula may fail.

Trace Theorems

If $T_K \geq 0$, then we don't need to assume T_K is trace-class.

Theorem

Assume that

- $K(x,y) \in L^2_{\mu \otimes \mu}(X \times X) \cap C(X \times X)$.
- T_K is positive.

Then:

- We have

$$\operatorname{Tr}(T_K) = \int_X K(x,x) d\mu(x).$$

In particular,

$$T_K \in \mathcal{L}^1 \iff K(x,x) \in L^1_\mu(X).$$

Definition

A Banach ideal is a two-sided ideal \mathcal{I} of $\mathcal{L}(\mathcal{H})$ together with a norm $\|.\|_{\mathcal{I}}$ such that

- (i) $(\mathcal{I}, \|.\|_{\mathcal{I}})$ is a Banach space.
- (ii) We have

$$||ATB||_{\mathcal{I}} \le ||A|| ||T||_{\mathcal{I}} ||B|| \qquad \forall T \in \mathcal{I} \quad \forall A, B \in \mathcal{L}(\mathcal{H}).$$

Examples

The following are Banach ideals:

- ullet The ideal of compact operators \mathcal{K} .
- The trace-class \mathcal{L}^1 .
- The ideal of Hilbert-Schmidt operators \mathcal{L}^2 .

Remark

If \mathcal{I} is a two-sided ideal, then

$$T \in \mathcal{I} \iff |T| \in \mathcal{I} \iff T^* \in \mathcal{I}.$$

Proof.

If T = U|T|, then $|T| = U^*T$ and $T^* = U^*TU^*$ and $T = UT^*U$.

Proposition

Assume $(\mathcal{I}, \|\cdot\|)$ is a Banach ideal. If $T \in \mathcal{I}$, then:

$$\begin{split} \|T\|_{\mathcal{I}} &= \||T||_{\mathcal{I}} = \|T^*\|_{\mathcal{I}},\\ \|U^*TU\|_{\mathcal{I}} &= \|T\|_{\mathcal{I}} \qquad \forall U \in \mathcal{L}(\mathcal{H}), \ U \ \textit{unitary}. \end{split}$$

Corollary

If
$$T \in \mathcal{I}$$
 and $\mu_n(S) = \mu_n(T)$ for all $n \geq 0$, then $S \in \mathcal{I}$ and $\|S\|_{\mathcal{I}} = \|T\|_{\mathcal{I}}$.

Thus, $||T||_{\mathcal{I}}$ only depends on the singular values $\mu_n(T)$.

Proof.

• Let $(\xi_n)_{n\geq 0}$ and $(\eta_n)_{n\geq 0}$ be orthonormal bases such that

$$|T|\xi_n = \mu_n(T)\xi_n$$
 and $|S|\eta_n = \mu_n(T)\eta_n$.

• Let U be the unitrary operator s.t. $U\xi_n=\eta_n$. Then

$$U|T|\xi_n = \mu_n(T)U\xi_n = \mu_n(T)\eta_n = |S|\eta_n = |S|U\xi_n.$$

• That is, U|T| = |S|U, i.e., $U|T|U^* = |S|$. Thus,

$$T \in \mathcal{I} \iff |T| \in \mathcal{I} \iff U|T|U^* \in \mathcal{I} \iff |S| \in \mathcal{I} \iff S \in \mathcal{I}.$$

Moreover, $||S||_{\mathcal{I}} = |||S|||_{\mathcal{I}} = ||U|T|U^*||_{\mathcal{I}} = |||T|||_{\mathcal{I}} = ||T||_{\mathcal{I}}$.

Remark

If \mathcal{I} is a two-sided ideal, then, we always have

 $\{\mathsf{finite}\text{-rank operators}\} \subset \mathcal{I} \subset \mathcal{K}$

Definition

 \mathcal{I}^0 is the closure in \mathcal{I} of the ideal of finite-rank operators.

Remarks

- $(\mathcal{I}^0, \|\cdot\|_{\mathcal{I}})$ is a Banach ideal itself.
- As a Banach space \mathcal{I}_0 is separable (i.e., it contains a dense countable subset).

Lemma

Let $T \in \mathcal{L}(\mathcal{H})$. TFAE:

- $T \in \mathcal{I}.$
- **2** Any Schmidt series $T = \sum \mu_n(T) |U\xi_n\rangle\langle \xi_n|$ converges in \mathcal{I} .

Proposition

TFAE:

- 1 is separable.
- 2 $\mathcal{I}^0 = \mathcal{I}$, i.e., finite-rank operators are dense in \mathcal{I} .

Proposition

 \mathcal{I}^0 always contains the trace-class \mathcal{L}^1 and we can choose $\|\cdot\|_{\mathcal{I}}$ so that $\|\cdot\|_{\mathcal{I}} \leq \|\cdot\|_1$ on \mathcal{L}^1 .

Remark

In other words \mathcal{L}^1 is the smallest Banach ideal.

Definition

A quasi-norm on a vector space E is a function $\|\cdot\|: E \to [0, \infty)$ such that:

- 3 There is C > 0 such that

$$||x + y|| \le C(||x|| + ||y||) \quad \forall x, y \in E.$$

A vector space equipped with a quasi-norm is called quasi-normed.

Facts

- A quasi-norm generates a topological vector space topology.
- A basis of neighbourhoods of the origin is given by the "quasi-balls",

$$B(0,1/n) = \{x \in E; \|x\| < 1/n\}, \quad n \ge 1.$$

- **3** As we have a countable basis, the topology is metrizable.
- **1** In particular, $x_n \to x$ in E iff $||x_n x|| \to 0$.

Proposition

Let $T: E \to F$ be a linear map between quasi-normed spaces. TFAF:

- T is continuous.
- T is continuous at 0.
- **3** There is C > 0 such that $||Tx|| \le C||x||$ for all $x \in E$.

Definition

A quasi-Banach space is a vector space E together with a complete quasi-norm (i.e., every Cauchy sequence is convergent).

Remark

- A quasi-Banach space need not be locally convex.
- 2 In particular, Hahn-Banach Theorem need not hold.

Example

Let (X, μ) be a measure space.

• For $0 the space <math>L_{\mu}^{p}(X)$ is a quasi-Banach space with quasi-norm,

$$||f||_{L^p} := \left(\int_X |f(x)|^p d\mu(x)\right)^{\frac{1}{p}}.$$

2 The triangular inequality is replaced by

$$||f+g||_{L^p}^p \le ||f||_{L^p}^p + ||g||_{L^p}^p.$$

In particular $d(f,g) = ||f - g||_{L^p}^p$ is a metric.

3 Thanks to the convexity of $t \to t^{1/p}$ this gives the inequality,

$$||f+g||_{L^p} \leq 2^{\frac{1-p}{p}} (||f||_{L^p} + ||g||_{L^p}).$$

Definition

A quasi-Banach ideal is a two-sided ideal \mathcal{I} of $\mathcal{L}(\mathcal{H})$ together with a quasi-norm $\|.\|_{\mathcal{I}}$ such that

- (i) $(\mathcal{I}, \|.\|_{\mathcal{I}})$ is a quasi-Banach space.
- (ii) We have

$$||ATB||_{\mathcal{I}} \le ||A|| ||T||_{\mathcal{I}} ||B|| \qquad \forall T \in \mathcal{I} \quad \forall A, B \in \mathcal{L}(\mathcal{H}).$$

Remark

We will see that the Schatten classes \mathcal{L}^p , $0 , and the weak Schatten classes <math>\mathcal{L}^{p,\infty}$, 0 , are instances of quasi-Banach spaces.

Proposition

Assume $(\mathcal{I}, \|\cdot\|)$ is a Banach ideal. If $T \in \mathcal{I}$, then:

$$\|T\|_{\mathcal{I}} = \||T|\|_{\mathcal{I}} = \|T^*\|_{\mathcal{I}},$$

$$\|U^*TU\|_{\mathcal{I}} = \|T\|_{\mathcal{I}} \quad \forall U \in \mathcal{L}(\mathcal{H}), \ U \ \textit{unitary}.$$

Corollary

If
$$T\in\mathcal{I}$$
 and $\mu_n(S)=\mu_n(T)$ for all $n\geq 0$, then $S\in\mathcal{I}$ and $\|S\|_{\mathcal{I}}=\|T\|_{\mathcal{I}}.$

Thus, $||T||_{\mathcal{I}}$ only depends on the singular values $\mu_n(T)$.

Definition

 \mathcal{I}^0 is the closure in \mathcal{I} of the ideal of finite-rank operators.

Proposition

TFAE:

- 1 is separable.
- 2 $\mathcal{I}^0 = \mathcal{I}$, i.e., finite-rank operators are dense in \mathcal{I} .

Definition (Schatten Classes)

Let $p \in (0, \infty)$.

• For $T \in \mathcal{L}(\mathcal{H})$, set

$$\|T\|_p = \left(\sum \mu_n(T)^p\right)^{\frac{1}{p}}.$$

• The Schatten class \mathcal{L}^p consists of all operators T such that $\|T\|_p < \infty$.

Remarks

- We have $\mathcal{L}^p \subset \mathcal{L}^q \subset \mathcal{K}$ for 0 .
- As $\mu_n(T)^p = \mu_n(|T|^p)$, we have

$$T \in \mathcal{L}^p \Longleftrightarrow \sum \mu_n(|T|^p) < \infty \Longleftrightarrow |T|^p \in \mathcal{L}^1.$$

Proposition

We have

$$||T||_{p} = ||T^{*}||_{p} = |||T|||_{p},$$

$$||\lambda T||_{p} = |\lambda|||T||_{p}, \qquad \lambda \in \mathbb{C},$$

$$||ATB||_{p} \le ||A|||T||_{p}||B||, \qquad A, B \in \mathcal{L}(\mathcal{H}).$$

② If $p \ge 1$, then

$$||S + T||_p \le ||S||_p + ||T||_p.$$

1 If 0 , then

$$||S + T||_p^p \le ||S||_p^p + ||T||_p^p.$$

Proposition

- **1** \mathcal{L}^p is a two-sided ideal of $\mathcal{L}(\mathcal{H})$.
- ② If $p \ge 1$, then $\|\cdot\|_p$ is a norm which respect to which \mathcal{L}^p is a Banach ideal.
- **3** If p < 1, then $\|\cdot\|_p$ is a quasi-norm which respect to which \mathcal{L}^p is a quasi-Banach ideal.

Proposition

- **1** If $T \in \mathcal{L}^p$, then all its Schmidt series converge in \mathcal{L}^p .
- 2 Finite rank operators are dense in \mathcal{L}^p .

Proposition (Hölder Inequality)

Assume $p^{-1} + q^{-1} = r^{-1}$. If $S \in \mathcal{L}^p$ and $T \in \mathcal{L}^q$, then $ST \in \mathcal{L}^r$, and we have

$$||ST||_r \leq ||S||_p ||T||_q.$$

Remark

If $p_1^{-1}+\cdots+p_k^{-1}=r^{-1}$ and $T_i\in\mathcal{L}^{p_i}$, then $T_1\cdots T_k\in\mathcal{L}^r$, and we have

$$||T_1 \cdots T_k||_r \leq ||T_1||_{\rho_1} \cdots ||T_k||_{\rho_k}.$$

Corollary

Assume $p^{-1} + (p')^{-1} = 1$. If $S \in \mathcal{L}^p$ and $T \in \mathcal{L}^{p'}$, then ST is trace-class, and we have

$$|\mathsf{Tr}(ST)| \leq ||ST||_1 \leq ||S||_p ||T||_{p'}.$$

Notation

If $S \in \mathcal{L}^p$ and $T \in \mathcal{L}^{p'}$, then (S, T) := Tr(ST).

Remark

The above corollary implies that $T \to (\cdot, T)$ is a continuous linear map from $\mathcal{L}^{p'}$ to the (topological) dual $(\mathcal{L}^p)'$.

Proposition

The map $T \to (\cdot, T)$ is an isometric linear isomorphism from $\mathcal{L}^{p'}$ onto $(\mathcal{L}^p)'$.

Definition (Weak Schatten Classes $\mathcal{L}^{p,\infty}$)

Let $p \in (0, \infty)$.

① The weak Schatten class $\mathcal{L}^{p,\infty}$ consists of all $T \in \mathcal{L}(\mathcal{H})$ such that

$$\mu_n(T) = O\left(n^{-\frac{1}{p}}\right)$$
 as $n \to \infty$.

2 For $T \in \mathcal{L}(\mathcal{H})$, we set

$$||T||_{p,\infty} := \sup_{n\geq 0} (n+1)^{\frac{1}{p}} \mu_n(T).$$

Remark

For 0 we have strict inclusions,

$$\mathcal{L}^p \subsetneq \mathcal{L}^{p,\infty} \subsetneq \mathcal{L}^q \subsetneq \mathcal{K}$$
.

Proposition

We have

$$||T||_{p,\infty} = ||T^*||_{p,\infty} = |||T|||_{p,\infty},$$

$$||\lambda T||_{p,\infty} = |\lambda| ||T||_{p,\infty}, \quad \lambda \in \mathbb{C},$$

$$||ATB||_{p,\infty} \le ||A|| ||T||_{p,\infty} ||B||, \quad A, B \in \mathcal{L}(\mathcal{H}),$$

$$||S + T||_{p,\infty} \le 2^{\frac{1}{p}} (||S||_{p,\infty} + ||T||_{p,\infty}).$$

Proposition

- **1** $\mathcal{L}^{p,\infty}$ is a two-sided ideal of $\mathcal{L}(\mathcal{H})$.
- $\|\cdot\|_{p,\infty}$ is a quasi-norm which respect to which $\mathcal{L}^{p,\infty}$ is a quasi-Banach ideal.

Proposition

• If p > 1, then $\|\cdot\|_{p,\infty}$ is equivalent to the norm,

$$\|T\|'_{p,\infty} = \sup_{N\geq 1} \left\{ N^{-1+\frac{1}{p}} \sum_{j\leq N} \mu_j(T) \right\}, \qquad T\in \mathcal{L}^{p,\infty}.$$

② In this case, $\mathcal{L}^{p,\infty}$ is a Banach ideal (w.r.t. that norm).

Notation

 $\mathcal{L}_0^{p,\infty}$ is the closure in $\mathcal{L}^{p,\infty}$ of the ideal of finite-rank operators.

Proposition

We have

$$\mathcal{L}_0^{p,\infty} = \left\{ T \in \mathcal{L}(\mathcal{H}); \ \mu_n(T) = o\left(n^{-\frac{1}{p}}\right) \right\}.$$

- **2** We have a strict inclusion $\mathcal{L}_0^{p,\infty} \subsetneq \mathcal{L}^{p,\infty}$.
- **1** In particular, $\mathcal{L}^{p,\infty}$ is not separable.

Remark

For 0 we have strict inclusions,

$$\mathcal{L}^p \subsetneq \mathcal{L}_0^{p,\infty} \subsetneq \mathcal{L}^{p,\infty} \subsetneq \mathcal{L}^q$$
.

Proposition (Hölder's Inequality)

Assume that $p^{-1} + q^{-1} = r^{-1}$.

• There is $C_{pqr} > 0$ such that

$$||ST||_{r,\infty} \leq C_{pqr}||S||_{p,\infty}||T||_{q,\infty}.$$

2 In particular,

$$(S \in \mathcal{L}^{p,\infty} \text{ and } T \in \mathcal{L}^{q,\infty}) \Longrightarrow ST \in \mathcal{L}^{r,\infty}.$$

Remark (Sukochev-Zanin '21)

The best constant C_{pqr} is equal to $p^{-\frac{1}{q}}q^{-\frac{1}{p}}(p+q)^{\frac{1}{r}}$.

Corollary

Suppose that $p_1^{-1} + \cdots + p_k^{-1} = r^{-1}$.

• There is $C = C(p_1, \ldots, q_k, r) > 0$ such that

$$||T_1\cdots T_k||_{r,\infty} \leq C||T_1||_{p_1,\infty}\cdots ||T_k||_{p_k,\infty}.$$

- \bullet If $T_i \in \mathcal{L}^{p_i,\infty}$ for $i=1,\ldots,k$, then $T_1 \cdots T_k \in \mathcal{L}^{r,\infty}$.
- **1** If in addition one of the T_i is in $\mathcal{L}_0^{p_i,\infty}$, then $T_1\cdots T_k\in \mathcal{L}_0^{r,\infty}$.

The Dixmier-Macaev Ideal

Definition

The Dixmier-Macaev ideal is

$$\mathcal{M}^{1,\infty} := \bigg\{ \mathcal{T} \in \mathcal{L}(\mathcal{H}); \ \sum_{j < N} \mu_j(\mathcal{T}) = \mathrm{O}(\log N) \bigg\}.$$

Proposition

$$\|T\|_{1,\infty}' = \sup_{N\geq 1} \left\{ \frac{1}{\log(N+1)} \sum_{j< N} \mu_j(T) \right\}, \qquad T \in \mathcal{M}^{1,\infty}.$$

2 We have a strict inclusion $\mathcal{L}^{1,\infty} \subsetneq \mathcal{M}^{1,\infty}$.

Remark

In Connes' book (as well as elsewhere) the Dixmier-Macaev ideal is denoted $\mathcal{L}^{1,\infty}$.

The Dixmier-Macaev Ideal

Notation

 $\mathcal{M}_0^{1,\infty}$ is the closure in $\mathcal{M}^{1,\infty}$ of the ideal of finite-rank operators.

Proposition

We have

$$\mathcal{M}_0^{1,\infty} = \bigg\{ T \in \mathcal{L}(\mathcal{H}); \ \sum_{j < N} \mu_n(T) = \mathrm{o}(\log N) \bigg\}.$$

- 2 There is a strict inclusion $\mathcal{M}_0^{1,\infty} \subsetneq \mathcal{M}^{1,\infty}$.
- **3** In particular, $\mathcal{M}^{1,\infty}$ is not separable.