Differentiable Forms in Algebraic Topology Submanifolds

Sichuan University, Spring 2025

Definition (Regular Submanifold)

Given a manifold N of dimension n, a subset $S \subset N$ is called a regular submanifold of dimension k if, for every $p \in S$, there is a chart (U, x^1, \ldots, x^n) about p in N such that

$$U \cap S = \left\{ q \in U; x^{k+1}(q) = \dots = x^n(q) = 0 \right\}.$$

Remarks

- A chart $(U, x^1, ..., x^n)$ as above is called an *adapted chart* relative to S.
- 2 We call n k the codimension of S.
- We always assume that S is equipped with the induced topology.
- **4** There are other types of submanifolds. By a submanifold we shall always mean a regular submanifold.

Remark

Let $S \subset N$ be a regular submanifold of dimension k, and $(U, \phi) = (U, x^1, \dots, x^n)$ be an adapted chart relative to S.

- We have $\phi = (x^1, \dots, x^k, 0, \dots, 0)$ on $U \cap S$.
- Define $\phi_S: U \cap S \to \mathbb{R}^k$ by

$$\phi_{\mathcal{S}}(q) = (x^1(q), \dots, x^k(q)), \qquad q \in U \cap \mathcal{S}.$$

Then ϕ_S is a homeomorphism from $U \cap S$ onto its image

• Let (r^1, \ldots, r^n) be the coordinates in \mathbb{R}^n . We have

$$\phi_S(U \cap S) \times \{0\}^{n-k} = \phi(U \cap S) = \phi(U) \cap \{r^{k+1} = \dots = r^n = 0\}.$$

Thus, $\phi_S(U \cap S) \times \{0\}^{n-k}$ is open in $\mathbb{R}^k \times \{0\}^{n-k}$, and so $\phi_S(U \cap S)$ is an open in \mathbb{R}^k .

• It then follows that $(U \cap S, \phi_S)$ is a (continuous) chart for S.

Example

Any open set $U \subset N$ is a regular submanifold of codimension 0.

Exampl<u>e</u>

- The open interval S = (-1,1) on the x-axis is a regular submanifold of dimension 1 of the xy-plane.
- An adapted chart is (U, x, y), with $U = (-1, 1) \times (-1, 1)$, since

$$U \cap \{y = 0\} = (-1, 1) \times \{0\} = S.$$

Facts

Let $(U, \phi) = (U, x^1, \dots, x^n)$ and $(V, \psi) = (V, y^1, \dots, y^n)$ be adapted charts relative to S about a point $p \in S$. Denote by (r^1, \dots, r^n) the coordinates in $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$.

• On $U \cap V \cap S$ we have

$$\phi = (x^1, \dots, x^k, 0, \dots, 0) = (\phi_S, 0, \dots, 0),$$

$$\psi = (y^1, \dots, y^k, 0, \dots, 0) = (\psi_S, 0, \dots, 0).$$

- Thus, on $\phi(U \cap V \cap S) = \phi_S(U \cap V \cap S) \times \{0\}^{n-k}$ we have $\psi \circ \phi^{-1}(r^1, \dots, r^k, 0, \dots, 0) = (\psi_S \circ \phi_S^{-1}(r^1, \dots, r^k), 0, \dots, 0).$
- As $\psi \circ \phi^{-1} = (y^1 \circ \phi^{-1}, \dots, y^n \circ \phi^{-1})$, we get

$$\psi_S \circ \phi_S^{-1} = (z^1, \dots, z^k), \quad \text{where } z^i = y^i \circ \phi^{-1}(r^1, \dots, r^k, 0, \dots, 0).$$

In particular, the transition map $\psi_S \circ \phi_S^{-1}$ is smooth.

Proposition (Proposition 9.4)

Let S be a regular submanifold of dimension k in a manifold N of dimension n. Let $\{(U, \phi)\}$ be a collection of adapted charts relative to S that covers S. Then:

- **1** The collection $\{(U \cap S, \phi_S)\}$ is a C^{∞} atlas for S.
- \bigcirc S is a manifold of dimension k.

Remark

It can be shown that the differentiable structure on S defined above is unique, i.e., it does not depend on the choice of the collection $\{(U,\phi)\}$.

Definition

- Given $F: N \to M$ and $c \in M$, the preimage $F^{-1}(c)$ is called a *level set* of level c.
- When $M = \mathbb{R}^m$ we call $F^{-1}(0)$ the zero set of F and denote it by Z(F).

Reminder

If $F: N \to M$ is a smooth map, then we say that c is a regular value when, either $c \not\in F(M)$, or for every point $p \in F^{-1}(c)$ the differential $F_{*,p}: T_pM \to T_cN$ is onto.

Definition

Let $F: N \to M$ be a smooth map, and let $c \in M$.

- If c is a regular value, then $F^{-1}(c)$ is called a regular level set.
- If $M = \mathbb{R}^m$ and 0 is a regular value, then we say that Z(F) is a regular zero set.

Remark

Let $f: \mathbb{N} \to \mathbb{R}$ be a smooth function.

- If $p \in N$, then $f_{*,p} : T_pM \to T_{f(p)}R \simeq \mathbb{R}$ is onto if and only if it is non-zero.
- If $c \in f(M)$, then $f^{-1}(c)$ is a regular level set if and only if $f_{*,p} \neq 0$ for all $p \in f^{-1}(c)$.

Example (Example 9.6; the 2-sphere in \mathbb{R}^3)

• The unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$ is the zero set of the function,

$$f(x, y, z) = x^2 + y^2 + z^2 - 1.$$

• For every $p = (x, y, z) \in \mathbb{S}^2$ we have

$$\left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p), \frac{\partial f}{\partial z}(p)\right) = (2x, 2y, 2z) \neq (0, 0, 0).$$

Therefore, S^2 is a regular zero set.

Example (The 2-sphere in \mathbb{R}^3 ; continued)

- Suppose that p = (x(p), y(p), z(p)) is such that $x(p) \neq 0$.
- The Jacobian matrix of F(x, y, z) = (f(x, y, z), y, z) is

$$J(F) = \begin{bmatrix} \partial f/\partial x & \partial f/\partial y & \partial f/\partial z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2x & 2y & 2z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- J(F)(p) is invertible, since $x(p) \neq 0$.
- By the inverse function theorem, there is an open *U* about *p* such that *F* is a diffeomorphism from *U* onto its image.
- Thus, $(U, F_{|U}) = (U, f_{|U}, y_{|U}, z_{|U})$ is a chart about p in \mathbb{R}^3 .

Example (The 2-sphere in \mathbb{R}^3 ; continued)

• Set $u^1 = y_{|U}$, $u^2 = z_{|U}$, and $u^3 = f_{|U}$. Then (U, u^1, u^2, u^3) is a chart about p in \mathbb{R}^3 , and we have

$${u^3 = 0} = {f_{|U} = 0} = U \cap {f = 0} = U \cap \mathbb{S}^2.$$

Thus, (U, u^1, u^2, u^3) is an adapted chart relative to \mathbb{S}^2 .

- Similarly, if $y(p) \neq 0$ or $z(p) \neq 0$, then there is an adapted chart about p.
- Therefore, $\mathbb{S}^2 \subset \mathbb{R}^3$ is a regular submanifold of codimension 1.

More generally, we have the following result:

Theorem (Theorem 9.8)

Let $g: N \to \mathbb{R}$ be a smooth function. Any non-empty regular level set $g^{-1}(c)$ is a regular submanifold of codimension 1.

Remark

A codimension 1 submanifold is called a *hypersurface*.

Example (Example 9.11)

Let S be the solution set of $x^3 + y^3 + z^3 = 1$ in \mathbb{R}^3 .

- *S* is the zero set of $f(x, y, z) = x^3 + y^3 + z^3 1$.
- If $p = (x, y, z) \in S$, then

$$\left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p), \frac{\partial f}{\partial z}(p)\right) = \left(3x^2, 3y^2, 3z^2\right) \neq 0.$$

Thus, every $p \in S$ is a regular point.

• Therefore, *S* is a regular zero set, and so this is a regular hypersurface.

Example (Example 9.13; Special Linear Group)

• Let $\mathbb{R}^{n \times n}$ be the vector space of $n \times n$ matrices with real entries. The general linear group is

$$\mathsf{GL}(n,\mathbb{R}) = \left\{ A \in \mathbb{R}^{n \times n}; \ \det A \neq 0 \right\}.$$

This an open set in $\mathbb{R}^{n \times n}$, and so this is a manifold of dimension n^2 .

• The special linear group is

$$\mathsf{SL}(n,\mathbb{R}) = \{ A \in \mathsf{GL}(n,\mathbb{R}); \ \det A = 1 \}.$$

This is the level set $f^{-1}(1)$ of the function $f(A) = \det A$.

Example (Special Linear Group, continued)

• If $A = [a_{ij}] \in GL(n, \mathbb{R})$ and $m_{ij} = \det S_{ij}$ is the (i, j)-minor, then

$$\frac{\partial f}{\partial a_{ij}} = (-1)^{i+j} m_{ij}.$$

- If $A \in GL(n, \mathbb{R})$, then at least one minor is non-zero, and so A is a regular point of f.
- In particular, every $A \in SL(n, \mathbb{R})$ is a regular point.
- Therefore, $SL(n, \mathbb{R})$ is a regular level set, and so this is a regular hypersurface in $GL(n, \mathbb{R})$.

The Regular Level Set Theorem

Even more generally we have:

Theorem (Regular Level Set Theorem; Theorem 9.9)

Let $F: N \to M$ be a C^{∞} map. Any non-empty regular level set $F^{-1}(c)$ is a regular submanifold of codimension equal to dim M.

The Regular Level Set Theorem

Example (Example 9.12)

Let S be the solution set in \mathbb{R}^3 of the polynomial equations,

$$x^3 + y^3 + z^3 = 1$$
, $x + y + z = 0$.

• By definition S is the level set $F^{-1}(1,0)$, where $F: \mathbb{R}^3 \to \mathbb{R}^2$ is the smooth function given by

$$F(x, y, z) = (x^3 + y^3 + z^3, x + y + z).$$

The Jacobian matrix of F is

$$J(F) = \begin{bmatrix} 3x^2 & 3y^2 & 3z^2 \\ 1 & 1 & 1 \end{bmatrix}.$$

It has rank 2 unless $x^2 = y^2 = z^2$, i.e., $x = \pm y = \pm z$.

- For such a point $F(x, y, z) = \lambda(x^3, x) \neq (1, 0)$, so all the points of S are regular points.
- Thus, *S* is a regular level set of *F*, and so this is a regular submanifold of codimension 2.