Noncommutative Geometry Chapter 3: Operators on Hilbert Space

Sichuan University, Spring 2025

Operators on a Hilbert Space

Overview

This chapter is a review of basic results regarding operators on Hilbert space.

References for this Chapter

 Reed, M.; Simon, B.: Methods of modern mathematical physics. I. Functional analysis. Second edition. Academic Press, Inc., New York, 1980.

Notation

- \bullet \mathcal{H} is a separable Hilbert space.
- $\mathcal{L}(\mathcal{H})$ is the C^* -algebra of bounded operators on \mathcal{H} .

Positive Operators

Definition

An operator $T \in \mathcal{L}(\mathcal{H})$ is said to be positive if can be written in the form $T = S^*S$ with $S \in \mathcal{L}(\mathcal{H})$.

Remark

We denote by $\mathcal{L}(\mathcal{H})_+$ the set of positive elements of $\mathcal{L}(\mathcal{H})$.

Proposition

Let $T \in \mathcal{L}(\mathcal{H})$. TFAE:

- (i) T is positive.
- (ii) There exists $S \in \mathcal{L}(\mathcal{H})$ selfadjoint such that $T = S^2$.
- (iii) T is selfadjoint and $Sp T \subset [0, \infty)$.
- (iv) $\langle T\xi|\xi\rangle \geq 0$ for all $\xi \in \mathcal{H}$.

Positive Operators

Corollary

The set of positive operators $\mathcal{L}(\mathcal{H})_+$ is a positive cone of $\mathcal{L}(\mathcal{H})$, i.e.,

$$\lambda_1 T_1 + \lambda_2 T_2 \in \mathcal{L}(\mathcal{H})_+ \qquad \forall T_j \in \mathcal{L}(\mathcal{H})_+ \ \forall \lambda_j \geq 0.$$

Corollary

Let $T \in \mathcal{L}(\mathcal{H})$ be normal. If $f \in C(\operatorname{\mathsf{Sp}} T)$ is non-negative, then f(T) is a positive operator.

Absolute Value

Facts

- If $T \in \mathcal{L}(\mathcal{H})$, then T^*T is positive.
- Thus, it is selfadjoint and $Sp(T^*T) \subset [0, \infty)$.
- By continuous functional calculus we then can define its square root $\sqrt{T^*T}$.
- We get a positive operator.

Definition

The operator $\sqrt{T^*T}$ is denoted |T| and is called the absolute value of T.

Absolute Value

Lemma

Let $T \in \mathcal{L}(\mathcal{H})$. The following hold:

- (i) |T| is the unique element of $\mathcal{L}(\mathcal{H})_+$ whose square is T^*T .
- (ii) We have $\||T|\xi\|=\|T\xi\| \qquad \forall \xi \in \mathcal{H},$ and hence $\ker |T|=\ker T.$

Polar Decomposition

Proposition (Polar Decomposition)

Let $T \in \mathcal{L}(\mathcal{H})$. Then there exists a unique $U \in \mathcal{L}(\mathcal{H})$, called the phase of T, such that

- (i) T = U|T|.
- (ii) $\ker U = \ker |T|$.

Definition

- **1** The operator U is called the phase of U.
- ② The decomposition T = U|T| is called the polar decomposition of T.

Polar Decomposition

Proposition

Let $T \in \mathcal{L}(\mathcal{H})$ have polar decomposition T = U|T| and denote by $\Pi_0(T)$ (resp. $\Pi_0(T^*)$) the orthogonal projection onto ker T (resp. ker T^*).

- The range of U is ran T.
- We have

$$U^*U = 1 - \Pi_0(T)$$
 and $UU^* = 1 - \Pi_0(T^*)$

Thus, U is a partial isometry and has norm 1 unless T = 0.

- \bullet If T is injective and has dense range, then U is unitary.
- We have

$$|T| = U^*T,$$
 $|T^*| = TU^* = U|T|U^*.$

1 The phase of T^* is U^* .

The Spectral Theorem

Setup

- $T = \text{normal operator in } \mathcal{L}(\mathcal{H}) \text{ (i.e., } T^*T = TT^*).$
- We set S = Sp(T).

Theorem (Spectral Theorem)

There exist a finite measure space (X, μ) , a unitary operator $U: \mathcal{H} \to L^2_{\mu}(X)$, and a function $f \in L^\infty_{\mu}(X)$ such that

$$UTU^*\xi = f\xi \qquad \forall \xi \in L^2_\mu(X).$$

Borel Functionial Calculus

Definition

For $F \in L^\infty_\mu(X)$ the multiplication operator $M_F: L^2_\mu(X) \to L^2_\mu(X)$ is given by $M_F \xi = F \xi, \qquad \xi \in L^2_\mu(X).$

Remark

The Spectral Theorem asserts that $UTU^* = M_f$.

Definition

The essential range of $F \in L^{\infty}_{\mu}(X)$, denoted ess-ran(F), consists of all $\lambda \in \mathbb{C}$ such that $\mu(|F - \lambda| < \epsilon) > 0$ for all $\epsilon > 0$.

Fact

 $Sp(M_F) = ess-ran(F)$.

Borel Functional Calculus

Fact

 $L^{\infty}_{\mu}(X)$ is a unital commutative C^* -algebra with respect to the involution $F \to \overline{F}$ and the norm,

$$||F||_{L^{\infty}} = \{|\lambda|; \ \lambda \in \operatorname{ess-ran}(|F|)\}, \qquad F \in L^{\infty}_{u}(X).$$

Proposition

The map $L^{\infty}_{\mu}(X) \ni F \to M_F \in \mathcal{L}(L^2_{\mu}(X))$ is an isometric *-representation.

Reminder

By the Spectral Theorem $UTU^* = M_f$, i.e, $T = U^*M_fU$.

Borel Functionial Calculus

Lemma

- (i) ess-ran(f) = S. (Here S = Sp(T).)
- (ii) $g(T) = U^*T_{g \circ f}U$ for all $g \in C(S)$.

Proof.

- ess-ran $(f) = \operatorname{Sp}(M_f) = \operatorname{Sp}(U^*TU) = \operatorname{Sp}(T) = S$.
- As $T = U^* M_f U$, if $g = z^m \overline{z}^n$, then

$$g(T) = T^m(T^*)^n = (U^*M_fU)^m(U^*M_f^*U)^m = U^*M_f^m(M_f^*)^nU.$$

- Here $M_f^m(M_f^*)^n=M_{f^m}M_{\overline{f}^n}=M_{f^m\overline{f}^n}=M_{g\circ f}.$ Thus, $g(T)=U^*M_{g\circ f}U.$
- By linearity this holds for any polynomial $g(z) = \sum c_{m,n} z^m \overline{z}^n$.
- By density of those polynomials and continuity of the continuous functional calculus, this holds for all $g \in C(S)$.

Borel Functionial Calculus

Definition

If $g\in L^\infty(S)$, then the operator $g(T)\in \mathcal{L}(\mathcal{H})$ is given by $g(T):=U^*M_{g\circ f}U.$

Theorem (Borel Functional Calculus)

• The map $g \to g(T)$ is a *-homomorphism from $L^{\infty}(S)$ to $\mathcal{L}(\mathcal{H})$ such that

$$\|g(T)\| \leq \|g\|_{L^{\infty}(S)} \qquad \forall g \in L^{\infty}(S).$$

- ② If $(g_n)_{n\geq 0}$ is a bounded sequence in $L^{\infty}(S)$ such that $g_n \to g$ a.e., then $g_n(T) \to g(T)$ strongly (i.e., $g_n(T)\xi \to g(T)\xi$ for all $\xi \in \mathcal{H}$).
- ③ If $g \in L^{\infty}(S)$ is real-valued (resp., non-negative), then g(T) is selfadjoint (resp., positive).

Definition

- An (unbounded) operator on H is a linear operator
 T: D(T) → H, where the domain D(T) is a subspace of H.
- It is called densily defined if D(T) is a dense subspace of \mathcal{H} .

Definition

• The graph of an operator T is

$$G(T) = \{(\xi, \eta) \in \mathcal{H} \oplus \mathcal{H}; \ \eta = T\xi\}.$$

- We say that T is closed if G(T) is closed.
- We say that \overline{T} is closable if there is a (closed) operator \overline{T} such that $\overline{G(T)} = G(\overline{T})$.
- The operator \overline{T} is called the closure of T.

Remark

- An operator S is called an extension of T, and we write $T \subset S$ if $G(T) \subset G(S)$.
- Equivalently, $D(T) \subset D(S)$ and S = T on D(T).

Definition

If T is densily defined, then its *adjoint* is the operator T^* given by the graph

$$G(T^*) = \{(\xi, \eta) \in \mathcal{H} \oplus \mathcal{H}; \ \langle T\zeta | \xi \rangle = \langle \zeta | \eta \rangle \ \forall \zeta \in D(T) \}.$$

Remark

As $G(T^*)$ is a closed subspace, we see that T^* is always a closed operator.

Definition

Let *T* be densily defined. We say that:

- T is selfadjoint if $T^* = T$.
- T is symmetric if $T \subset T^*$.
- T is essentially selfadjoint if T is symmetric and closable.

Remarks

- T is symmetric if and only if $\langle T\xi|\eta\rangle = \langle \xi|T\eta\rangle \ \forall \xi, \eta \in D(T)$.
- T is selfadjoint iff T is symmetric and $D(T) = D(T^*)$.
- If *T* is selfadjoint, then it is closed.
- If T is essentially selfadjoint, then T^* is the closure of T.
- A symmetric operator may have several different selfadjoint extensions.

Proposition

Let T be symmetric. TFAE:

- T is selfadjoint.
- ② T is closed and $ker(T^* \pm i) = \{0\}.$

Corollary

Let T be symmetric. TFAE:

- T is essentially selfadjoint.
- **2** $\ker(T^* \pm i) = \{0\}.$
- 3 $ran(T \pm i)$ is dense.

Definition

Suppose that *T* is closed.

- The resolvent set of T consists of all $\lambda \in \mathbb{C}$ such that
 - (i) $T \lambda : D(T) \to \mathcal{H}$ is a bijection.
 - (ii) The inverse $(T \lambda)^{-1} : \mathcal{H} \to D(T)$ is bounded.
- The *spectrum* of *T*, denoted Sp(T), is the complement of the resolvent set.

Proposition

- **1** Sp(T) is (possibly empty) closed subset of \mathbb{C} .
- **②** The resolvent map $\mathbb{C} \setminus \mathsf{Sp}(T) \to (T \lambda)^{-1} \in \mathcal{L}(\mathcal{H})$ is analytic.

Remark

If T is selfadjoint, then $Sp(T) \subset \mathbb{R}$.

Setup

T =selfadjoint operator on \mathcal{H} .

Theorem (Spectral Theorem;)

There exist a measured space (X,μ) with $\mu(X)<\infty$, a unitary operator $U:\mathcal{H}\to L^2_\mu(X)$, and a measurable real-valued function f on X such that

$$U(D(T)) = \left\{ \xi \in L^2_{\mu}(X); \ f \xi \in L^2_{\mu}(X) \right\},$$

$$UTU^* \xi = f \xi \qquad \forall \xi \in U(D(T)).$$

Definition

If g is any bounded Borel function on \mathbb{R} , then g(T) as the bounded operator on \mathcal{H} defined by

$$g(T) := U^* M_{g \circ f} U.$$

Remark

If g is Borel and bounded, then $g \circ f \in L^{\infty}_{\mu}(X)$, and so $M_{g \circ f}$ is a bounded operator.

Theorem (Borel Functional Calculus)

• The map $g \to g(T)$ is a *-homomorphism from $L^{\infty}(\mathbb{R})$ to $\mathcal{L}(\mathcal{H})$ such that

$$\|g(T)\| \leq \|g\|_{L^{\infty}(\mathbb{R})} \qquad \forall g \in L^{\infty}(\mathbb{R}).$$

- ② If $(g_n)_{n\geq 0}$ is a bounded sequence in $L^{\infty}(\mathbb{R})$ such that $g_n\to g$ a.e., then $g_n(T)\to g(T)$ strongly.
- **③** If $g \in L^{\infty}(\mathbb{R})$ is real-valued (resp., non-negative), then g(T) is selfadjoint (resp., positive).

Remark

If g is a possibly unbounded Borel function on \mathbb{R} , then g(T) makes sense as an unbounded operator as follows.

• The domain of g(T) is

$$D(g(T)) = \left\{ \xi \mathcal{H}; \ (g \circ f)(U\xi) \in L^2_{\mu}(X) \right\},\,$$

 \bullet On D(T) we have

$$g(T)\xi := U^*((g \circ f)U\xi), \qquad \xi \in D(g(T)).$$

- For instance, if g(t) = t, then g(T) = T.
- If (g_n) is a sequence of Borel functions on $\mathbb R$ such that $g_n \to g$ and $|g_n| \le |g|$, then

$$g_n(T)\xi \longrightarrow g(T)\xi \qquad \forall \xi \in D(g(T)).$$

Example

Let $\Delta = -(\partial_{x_1}^2 + \ldots + \partial_{x_n}^2)$ be the (positive) Laplacian on \mathbb{R}^n .

• This is a selfadjoint operator on \mathbb{R}^n with domain

$$D(\Delta) = \left\{ u \in L^2(\mathbb{R}^n); (1 + |\xi|^2) | \hat{u}(\xi) \in L^2(\mathbb{R}^n) \right\}.$$

Here \hat{u} is the Fourier transform.

- The Fourier transform $U: L^2(\mathbb{R}^n) \to L^2(\mathbb{R}^n)$ is a unitary operator (with the suitable normalization).
- As $(\Delta u)^{\wedge} = |\xi|^2 \hat{u}$ we see that

$$\Delta = U^* M_{|\xi|^2} U.$$

ullet If $g\in L^\infty(\mathbb{R})$, then $g(T)=U^*M_{g(|\xi|^2)}U$. That is,

$$g(T)u = (g(|\xi|^2)\hat{u})^{\vee} \qquad \forall u \in L^2(\mathbb{R}^n).$$

Here $v \rightarrow \check{v}$ is the inverse Fourier transform.

Definition

- An operator $T \in \mathcal{L}(\mathcal{H})$ is compact if the image by T of the unit ball B(0,1) is precompact.
- ullet The set of compact operators is denoted ${\cal K}.$

Example

Every finite rank operator is compact.

Proof.

Let $T \in \mathcal{L}(\mathcal{H})$ have finite rank, i.e., $\dim \operatorname{ran}(T) < \infty$.

- By Riesz Theorem any bounded subset of ran(T) is precompact.
- Here T(B(0,1)) is a bounded subset of ran(T).
- Therefore, it is precompact, and hence *T* is compact.

Proposition

Let $T \in \mathcal{L}(\mathcal{H})$. TFAE:

- 1 T is a compact operator.
- ② For any bounded sequence $(\xi_n)_{n\geq 0}\subset \mathcal{H}$ there is a subsequence $(\xi_{n_k})_{k\geq 0}$ such that the sequence $(T\xi_{n_k})_{k\geq 0}$ converges in norm.
- **3** For any sequence $(\xi_n)_{n\geq 0} \subset \mathcal{H}$ converging weakly to 0 the sequence $(T\xi_n)_{n\geq 0}$ converges to 0 in norm.
- There is an orthonormal basis $(\xi_n)_{n\geq 0}$ of $\mathcal H$ such that

$$\lim_{N\to\infty}\|T_{\mid E_N^\perp}\|=0,\quad E_N:=\operatorname{Span}\{\xi_0,\dots,\xi_{N-1}\}.$$

5 For any orthonormal basis $(\xi_n)_{n\geq 0}$ of \mathcal{H} , we have

$$\lim_{N\to\infty}\|T_{\mid E_N^{\perp}}\|=0,\quad E_N:=\operatorname{\mathsf{Span}}\{\xi_0,\dots,\xi_{N-1}\}.$$

Proposition

 \mathcal{K} is a closed two-sided ideal of $\mathcal{L}(\mathcal{H})$.

Corollary

Let $T \in \mathcal{L}(\mathcal{H})$. TFAE:

- T is compact.
- T is the norm limit of finite-rank operators.

Proof.

- ullet Any finite-rank operator is compact and ${\cal K}$ is closed.
- Thus, any norm-limit of finite-rank operators is compact.
- If T is compact and $(\xi_n)_{n\geq 0}$ is any orthonormal basis of \mathcal{H} , then

$$\lim_{N\to\infty}\|T_{|E_N^{\perp}}\|=0,\quad E_N:=\operatorname{Span}\{\xi_0,\dots,\xi_{N-1}\}.$$

- Let Π_N be the orthogonal projection onto E_N .
- Then $T_N := T\Pi_N$ has finite rank, and

$$||T_N - T|| = ||T(1 - \Pi_N)|| = ||T_{|E_N^{\perp}}|| \to 0.$$

• Thus, T is the norm-limit of finite-rank operators.

Corollary

Let $T \in \mathcal{L}(\mathcal{H})$. Then

$$T \in \mathcal{K} \iff T^* \in \mathcal{K} \iff |T| \in \mathcal{K}.$$

Proof.

- \mathcal{K} is an ideal, and so $T \in \mathcal{K} \Rightarrow ATB \in \mathcal{K} \ \forall A, B \in \mathcal{L}(\mathcal{H})$.
- By polar decomposition T = U|T|, and so $|T| \in \mathcal{K} \Rightarrow T \in \mathcal{K}$.
- As $|T| = U^*T$, we have $|T| \in \mathcal{K} \Rightarrow T \in \mathcal{K}$.
- We have $T^* = |T|U^* = U^*TU^*$, and hence $T = UT^*U$.
- Thus, $T \in \mathcal{K} \Leftrightarrow T^* \in \mathcal{K}$.

Remark

The above result is true for any two-sided ideal of $\mathcal{L}(\mathcal{H})$.

Corollary

 \mathcal{K} is a C^* -subalgebra of $\mathcal{L}(\mathcal{H})$, and hence is a C^* -algebra.

Proof.

- K is a closed two-sided ideal of L(H), and so this is a closed subalgebra.
- K is a *-subalgebra by the previous corollary.
- Thus, \mathcal{K} is a C^* -subalgebra.

Theorem (Riesz-Schauder)

Let $T \in \mathcal{K}$. The following hold.

- 1 T always contains 0 in its spectrum.
- ② If $\lambda \in \operatorname{Sp} T \setminus 0$, then λ is an eigenvalue with finite multiplicity.
- **Sp** *T* is either finite or consists of a sequence of complex numbers converging to 0.

Notation

If $\xi, \eta \in \mathcal{H}$, then $|\xi\rangle\langle\eta| \in \mathcal{L}(\mathcal{H})$ is given by

$$(|\xi\rangle\langle\eta|)\zeta := \langle\eta|\zeta\rangle\xi, \qquad \zeta \in \mathcal{H}.$$

Remarks

- If $\xi \neq 0$ and $\eta \neq 0$, then $|\xi\rangle\langle\eta|$ has rank 1.
- If $\|\xi\| = 1$, then $|\xi\rangle\langle\xi|$ is the orthogonal projection onto $\mathbb{C}\xi$.

Theorem (Hilbert-Schmidt)

Let $T \in \mathcal{K}$ be normal.

• T diagonalizes in an orthonormal basis, i.e., there exists an orthonormal basis $(\xi_n)_{n\geq 0}$ of $\mathcal H$ and a sequence $(\lambda_n)_{n\geq 0}\subset \mathbb C$ converging to 0 such that

$$T\lambda_n = \lambda_n \xi_n \qquad \forall n \geq 0.$$

T is the sum of its Schmidt series,

$$T = \sum \lambda_n |\xi_n \rangle \langle \xi_n|,$$

where the series converges in norm.

Corollary (Borel Functional Calculus for Compact Operators)

Let $T \in \mathcal{K}$ be normal.

1 For every bounded function f on Sp(T), we have

$$f(T) = \sum_{n>0} f(\lambda_n) |\xi_n\rangle \langle \xi_n|,$$

where the series converges strongly.

2 f(T) is a compact operator if and only

$$\lim_{n\to\infty}f(\lambda_n)=0.$$

Moreover, in this case the above series converges in norm.

Example

Suppose that $T \in \mathcal{K}$ is normal, and let T = U|T| be the polar decomposition. Then

$$U = \sum_{\lambda_n \neq 0} |\lambda_n|^{-1} \lambda_n |\xi_n| \langle \xi_n|, \qquad |T| = \sum_{n \geq 0} |\lambda_n| |\xi_n| \langle \xi_n|,$$

where the first series converges strongly and the second series converges in norm.