Noncommutative Geometry Chapter 2: Examples of Noncommutative Quotients

Sichuan University, Spring 2025

Examples of Noncommutative Quotients

Overview

In what follows we're going to look at various examples of noncommutative spaces:

- Crossed-product algebras.
- 2 Dual of a locally compact group.
- 3 Group actions on manifolds.
- Noncommutative tori.

Setup

- $A = C^*$ -algebra.
- G = locally compact group.
- There is a continuous left-action $G \times A \ni (g, x) \to \alpha_g(x) \in A$.

Definition

A covariant representation of (A, G, α) in a Hilbert space \mathcal{H} is a pair (π_A, π_G) such that:

- $\pi_A: A \to \mathcal{L}(\mathcal{H})$ is a *-representation of A in \mathcal{H} .
- $\pi_G: G \to \mathcal{L}(\mathcal{H})$ is a unitary representation of G in \mathcal{H} , i.e., $\pi(g)$ is unitary for all $g \in G$.
- For all $x \in A$ and $g \in G$,

$$\pi_G(g)\pi_A(x)\pi_G(g)^{-1} = \pi_A(\alpha_g(x)).$$

The covariant representation is called isometric if π_A is isometric.

Remark

Isometric covariant representations of (A, G, α) always exist.

Proof.

- By Gel'fand-Naimark Theorem there always exists an isometric *-representation $\pi: A \to \mathcal{L}(\mathcal{H})$, for some Hilbert space \mathcal{H} .
- We then have an isometric covariant representation in the Hilbert space $L^2(G,\mathcal{H})$ with $\pi_A:A\to \mathcal{L}(L^2(G,\mathcal{H}))$ and $\pi_G:G\to \mathcal{L}(L^2(G,\mathcal{H}))$ given by

$$[\pi_A(x)\xi](h) := [\pi(\alpha_{h^{-1}}x)\xi](h), \quad x \in A, \ \xi \in L^2(G,\mathcal{H}), \ h \in G,$$
$$[\pi_G(g)\xi](h) := \xi(g^{-1}h), \quad g, h \in G, \ \xi \in L^2(G,\mathcal{H}).$$

• Here $L^2(G, \mathcal{H})$ is defined as the completion of $C_c(G, \mathcal{H})$ with respect to the inner product,

$$\langle \xi | \eta \rangle = \int_{\mathcal{G}} \langle \xi(h) | \eta(h) \rangle_{\mathcal{H}} \, d\lambda(h), \qquad \xi, \eta \in \mathcal{C}_{c}(\mathcal{G}, \mathcal{H}),$$

where $\lambda(h)$ is the left-invariant Haar measure of G.

Setup

 $C_c(A, G) = \text{algebra of continuous maps } f: G \to A \text{ with compact support.}$

Definition

• The convolution product of $C_c(A, G)$ is given by

$$(f_1*f_2)(g):=\int_G f_1(h)\alpha_h\left[f_2(h^{-1}g)\right]d\lambda(g), \quad f_j\in C_c(G,A), g\in G.$$

Its antilinear involution is given by

$$f^*(g) := \Delta(g)^{-1} f(g^{-1})^*, \qquad f \in C_c(G, A), \ g \in G,$$

where $\Delta(g)$ is the modular function of G so that

$$d\lambda(g^{-1}) = \Delta(g)^{-1}d\lambda(g).$$

Setup

 (π_A, π_G) = covariant *-representation of (A, G, α) in some Hilbert space \mathcal{H} .

Fact

• We define a *-representation $\pi: C_c(G,A) \to \mathcal{L}(\mathcal{H})$ by

$$\pi(f) = \int_G \pi_A(f(g))\pi_G(g)d\lambda(g), \quad f \in C_c(G,A).$$

• In particular, its range $\pi(C_c(G,A))$ is a *-subalgebra of $\mathcal{L}(\mathcal{H})$.

Definition

The (reduced) crossed-product algebra of A by G, denoted $A \rtimes_r G$, is the closure of $\pi(C_c(G, A))$ in $\mathcal{L}(\mathcal{H})$.

Remark

 $A \rtimes_r G$ is a C^* -algebra. Up to *-isomorphism it does not depend on the covariant representation (π_A, π_G) .

Setup

- G = locally compact group.
- $\alpha = \text{trivial action } G \times \mathbb{C} \to \mathbb{C}, \text{ i.e., } \alpha_{\sigma}(x) = x.$
- $\pi_G: G \to \mathcal{L}(L^2(G))$ is the left-regular representation,

$$[\pi_G(g)\xi](h) = \xi(g^{-1}h), \qquad g,h \in G, \ \xi \in L^2(G).$$

Fact

If $\pi_0 : \mathbb{C} \to \mathcal{L}(L^2(G))$ is the trivial representation, then (π_0, π_G, α) is a covariant representation.

Fact

The corresponding *-representation $\pi: C_c(G) \to \mathcal{L}(L^2(G))$ is given by

$$[\pi(f)\xi](h) = \int_G f(g) [\pi_G(g)\xi](h) d\lambda(g)$$
$$= \int_G f(g)\xi(g^{-1}h) d\lambda(g) = f * \xi(h).$$

Here * is the convolution for functions on G.

Definition

The reduced C^* -algebra of G, denoted $C_r(G)$, is the closure of $\pi(C_c(G))$ in $\mathcal{L}(L^2(G))$.

Remark

$$C_r(G) = \mathbb{C} \rtimes_r G$$
.

Assumption

G is Abelian.

Definition

- A character is any continuous group morphism $\chi: G \to \mathbb{S}^1$.
- The set of all characters is denoted \hat{G} and is called the Pontryagin dual of G.

Remarks

- \hat{G} is a group with respect to the pointwise product.
- It is locally compact with respect to the topology of convergence on compact sets.

Definition

The Fourier transform $F:L^1(G) o C(\hat{G}),\ f o \hat{f}$ is given by

$$\hat{f}(\chi) := \int_G f(g) \overline{\chi(g)} d\lambda(g), \quad f \in L^1(G), \ \chi \in \hat{G}.$$

Example

Let $G = \mathbb{R}$.

- The characters of \mathbb{R} are of the form $\chi_{x}(t) = e^{ixt}$, $x \in \mathbb{R}$.
- If $f \in L^1(\mathbb{R})$, then

$$\hat{f}(\chi_{\mathsf{x}}) = \int_{\mathbb{R}} f(t) \overline{\chi_{\mathsf{x}}(t)} dt = \int_{\mathbb{R}} f(t) e^{-i\mathsf{x}t} dt.$$

Therefore, we recover the usual Fourier transform on \mathbb{R} .

Proposition

- **2** If $f_1, f_2 \in L^1(G)$, then $(f_1 * f_2)^{\wedge} = \hat{f_1} \cdot \hat{f_2}$.
- **3** F extends to an isometric isomorphism $F: L^2(G) \to L^2(\hat{G})$.

Reminder

- The *-representation $\pi: C_c(G) \to \mathcal{L}(L^2(G))$ is given by $\pi(f)\xi = f * \xi, f \in C_c(G), \xi \in L^2(G)$.
- By definition $C_r(G) = \overline{\pi(C_c(G))}$.

Proposition

Let $f \in C_c(G)$.

- $\|\pi(f)\| = \|\hat{f}\|_{C_0(\hat{G})}$. In particular, π is one-to-one.

Proof.

- $\bullet \ [\pi(f)\xi]^{\wedge} = [f * \xi]^{\wedge} = \hat{f}\hat{\xi}.$
- As the Fourier transform is an isometric isomorphism from $L^2(G)$ onto $L^2(\hat{G})$, we have

$$\|[\pi(f)\xi\|_{L^2(G)} = \|[\pi(f)\xi]^{\wedge}\|_{L^2(\hat{G})} = \|\hat{f}\hat{\xi}\|_{L^2(\hat{G})}.$$

Thus,

$$\|\pi(f)\| = \sup_{\|\xi\|_{L^2(G)} = 1} \|\pi(f)\xi\|_{L^2(G)} = \sup_{\|\xi\|_{L^2(G)} = 1} \|\hat{f}\hat{\xi}\|_{L^2(\hat{G})}.$$

• Using once again the fact that the Fourier transform is an isometric isomorphism, we get

$$\|\pi(f)\| = \sup_{\|\eta\|_{L^2(\hat{G})} = 1} \|\hat{f}\eta\|_{L^2(\hat{G})} = \|\hat{f}\|_{C_0(\hat{G})}.$$

• In particular $\|\pi(f)\| \Rightarrow \hat{f} = 0 \Rightarrow f = 0$, i.e., π is one-to-one.

Consequence

• As $\pi: C_c(G) \to \mathcal{L}(L^2(G))$ is one-to-one there is a unique linear map $\hat{\phi}: \pi(C_c(G)) \to C_0(\hat{G})$ such that

$$\hat{\phi}(\pi(f)) = \hat{f} \quad \forall f \in C_c(G).$$

• As π and $f \to \hat{f}$ are *-homomorphisms, $\hat{\phi}$ is *-homomorphism as well.

Reminder

By definition $C_r(G)$ is the closure of $\pi(C_c(G))$ in $\mathcal{L}(L^2(G))$.

Proposition

 $\hat{\phi}$ uniquely extends to an isometric *-isomorphism,

$$\hat{\phi}: C_r(G) \stackrel{\sim}{\longrightarrow} C_0(\hat{G})$$

Proof.

• $\hat{\phi}$ is isometric, since, for all $f \in C_c(G)$,

$$\|\hat{\phi}(\pi(f))\| = \|\hat{f}\| = \|\pi(f)\|.$$

• Thus, $\hat{\phi}$ uniquely extends to an isometric *-homomorphism,

$$\hat{\phi}: C_r(G) \stackrel{\sim}{\longrightarrow} C_0(\hat{G}).$$

- Its range is closed and contains $\hat{\phi}(\pi(C_c(G)))$ as a dense subspace.
- $\hat{\phi}(\pi(C_c(G)))$ is a *-subalgebra of $C_0(\hat{G})$ separating the points of \hat{G} , and so it's dense by Stone-Weierstrass Theorem.
- Thus, the range of $\hat{\phi}$ is all $C_0(\hat{G})$, and hence we have an isomorphism.

Remarks

- If G is not Abelian, then the Pontryagin dual \hat{G} is defined in terms of irreducible unitary representations.
- Its topology need not be Hausdorff, and point set topology cannot be used to get information on \hat{G} .
- However, the C*-algebra C_r*(G) always makes sense and its representations are closely related to the unitary representations of G.
- This the main impetus for studying other C^* -algebra $C_r^*(G)$ to gain information on G and its unitary representations.

Setup

- $M = \text{smooth manifold equipped with a smooth measure } \rho(x)$.
- G = Lie group acting smoothly on M, i.e., we have a smooth map $G \times M \ni (g, x) \to g \cdot x \in M$.
- We then get a continuous action $\alpha: G \times C_0(M) \to C_0(M)$,

$$\alpha_g(f) = f(g^{-1} \cdot x), \quad f \in C_0(M), g \in G.$$

Definition

• The regular representation $\pi_1: C_0(M) \to \mathcal{L}(L^2(M))$ is

$$\pi_1(f)\xi = f\xi, \qquad f \in C_0(M) \ \forall \xi \in L^2(M).$$

• The unitary representation $\pi_2: G \to \mathcal{L}(L^2(M))$ is given by

$$[\pi_2(g)\xi](x) := \kappa_g(x)^{\frac{1}{2}}\xi(g^{-1}.x), \quad g \in G, \ \xi \in L^2(M), \ x \in M,$$

where
$$\kappa_g(x) = \frac{d\rho(g.x)}{d\rho(x)}$$
.

Proposition

The pair (π_1, π_2) is an isometric covariant representation of $(G, C_0(M), \alpha)$.

Facts

- We get an isometric *-representation π of $C_c(G, C_0(M))$ in $\mathcal{L}(L^2(M))$.
- If $f \in C_c(G \times M) \subset C_c(G, C_0(M))$, then

$$[\pi(f)\xi](x) = \int_{G} f(g,x)\xi(g^{-1}.x)\kappa_{g}(x)^{\frac{1}{2}}d\lambda(g), \quad \xi \in L^{2}(M), \ x \in M.$$

Proposition

The crossed-product algebra $G \rtimes_r C_0(M)$ is the closure of $\pi[C_c(G \times M)]$ in $\mathcal{L}(L^2(M))$.

Definition

- The action of G on M is called free if no $g \in G \setminus \{1\}$ has fixed points.
- It is called proper if $G \times M \ni (g, x) \to (x, g \cdot x) \in M \times M$ is a proper map.

Proposition

If the action is free and proper, then M/G is a smooth manifold and the canonical map $\pi: M \to M/G$ is a submersion.

Proposition

If the action of G on M is free and proper, then we have a strong Morita equivalence,

$$C_0(M) \rtimes_r G \simeq_{M.E.} C_0(M/G).$$

Remark

- Two algebras A and B are said to be Morita equivalent if there is an (A, B)-bimodule \mathcal{M}_1 and a (B, A)-bimodule \mathcal{M}_2 such that $\mathcal{M}_1 \otimes_B \mathcal{M}_2 \simeq A$ and $\mathcal{M}_2 \otimes_A \mathcal{M}_1 \simeq B$.
- Strong Morita equivalence is an analogous notion in the setting of C*-algebras.
- Many key properties of C*-algebras are preserved by Morita equivalence.

Remark

- If the action is not free or proper, then M/G need not be Hausdorff.
- However, the crossed-product algebra $C_0(M) \rtimes_r G$ always make sense.
- This is the impetus for using this C*-algebra to extract info on the action of G on M.

Group Actions on Manifolds. Discrete Groups

Assumption

G is discrete and its action preserves the measure $\rho(x)$, that is, $\rho(g \cdot x) = \rho(x)$ (i.e., $\kappa_g(x) = 1$).

Notation

- For $f \in C_0(M)$ denote $\pi_1(f)$ by f and set $g \cdot f = \alpha_g(f)$, i.e., $(g \cdot f)(x) = f(g^{-1} \cdot x)$.
- For $g \in G$, set $U_g = \pi_2(g)$. This a unitary operator of $\mathcal{L}(L^2(M))$ such that $U_g^* = U_g^{-1} = U_{g^{-1}}$.

Proposition

 $C_0(M) \rtimes_r G$ is the C^* -subalgebra of $\mathcal{L}(L^2(M))$ generated by the operators, fU_g , $f \in C_0(M)$, $g \in G$,

with relations.

$$U_g f = (g \cdot f) U_g$$
.

Group Actions on Manifolds. Discrete Groups

Proof.

• For $g \in G$, let $\delta_g : G \to \mathbb{C}$ be such that

$$\delta_g(g) = 1, \qquad \delta_g(h) = 0, \ h \neq g.$$

- $C_c(G, C_0(M))$ is spanned by $f\delta_g$, $f \in C_0(M)$, $g \in G$.
- If $f \in C_0(M)$ and $g \in G$, then, for all $\xi \in L^2(M)$,

$$[\pi(f\delta_g)\xi](x) = \int_G f(x)\delta_g(h)\xi(h^{-1}.x)d\lambda(h)$$
$$= f(x)\xi(g^{-1}.x) = f(x)(U_\sigma\xi)(x).$$

That is, $\pi[f\delta_g] = fU_g$.

- Thus, $\pi(C_0(G, C_0(M)))$ is spanned by the fU_g , and so they generate $C_0(M) \rtimes G$.
- Moreover,

$$(U_g f)\xi(x) = U_g(f\xi)(x) = f(g^{-1} \cdot x)\xi(g^{-1} \cdot x) = (g \cdot f)(x)(U_g \xi)(x).$$

That is, $U_{\sigma}f = (g \cdot f)U_{\sigma}$.

Setup

Given $\theta \in \mathbb{R}$, we let \mathbb{Z} act on \mathbb{S}^1 by

$$k \cdot z := e^{-2ik\pi\theta}z, \qquad (k,z) \in \mathbb{Z} \times \mathbb{S}^1.$$

Proposition

If $\theta \notin \mathbb{Q}$, then the orbits are dense. In particular, the orbit space \mathbb{S}^1/\mathbb{Z} is not Hausdorff.

Facts

• We represent $C(\mathbb{S}^1)$ by multiplication operators on $L^2(\mathbb{S}^1)$,

$$\pi_1(f)\xi = f\xi, \qquad f \in C(\mathbb{S}^1), \ \xi \in L^2(M).$$

ullet The action of $\mathbb Z$ on $\mathbb S^1$ yields an action of $\mathbb Z$ on $\mathcal C(\mathbb S^1)$ by

$$\alpha_k(f) = f(e^{2ik\pi\theta}z), \qquad f \in C(\mathbb{S}^1), \ k \in \mathbb{Z}.$$

• We also have the unitary representation $\pi_{\mathbb{Z}}: \mathbb{Z} \to \mathcal{L}(L^2(\mathbb{T}))$,

$$\pi_2(k)\xi = \xi(e^{2ik\pi\theta}z), \qquad k \in \mathbb{Z}, \ \xi \in L^2(\mathbb{T}).$$

Proposition

 (π_1, π_2, α) is an isometric covariant representation in $L^2(\mathbb{S}^1)$.

Lemma

Define

$$U := \pi_1(z)$$
 and $V := \pi_2(1)$.

- U and V both are unitary operators on $L^2(\mathbb{S}^1)$.
- 2 They satisfy the relation,

$$VU = e^{2i\pi\theta}UV$$
.

Proof.

• As $\overline{z} = z^{-1}$ we have

$$V^* = \pi_1(\bar{z}) = \pi_1(z^{-1}) = \pi_1(z)^{-1} = U^{-1}.$$

That is, U is a unitary operator.

- As $V = \pi_2(1)$ is unitary, since π_2 is a unitary representation.
- Given any $\xi \in L^2(\mathbb{S}^1)$, we have

$$UV\xi = z(V\xi) = z\xi(e^{2i\pi\theta}z),$$

$$VU\xi = V(z\xi) = e^{2i\pi\theta}z\xi(e^{2i\pi\theta}z) = e^{2i\pi\theta}UV\xi.$$

That is, $UV = e^{2i\pi\theta}UV$.

Proposition

 $C(\mathbb{S}^1) \rtimes_{r,\theta} \mathbb{Z}$ is the C*-subalgebra of $\mathcal{L}(L^2(\mathbb{S}^1))$ generated by the unitaries U and V

Proof.

• As \mathbb{Z} is discrete $C(\mathbb{S}^1) \rtimes_{r,\theta} \mathbb{Z}$ is generated by the operators,

$$\pi_1(f)\pi_2(k), \qquad f \in C(\mathbb{S}^1), \ k \in \mathbb{Z}.$$

- $\pi_2(k) = \pi_2(1)^k = V^k$ with $V^{-1} = V^*$.
- As a C^* -algebra $C(S^1)$ is generated by z with $\bar{z} = z^{-1}$.
- Thus $C(\mathbb{S}^1) \rtimes_{r,\theta} \mathbb{Z}$ is generated by $\pi_1(z) = U$ and V.

Definition

The noncommutative torus $C(\mathbb{T}^2_{\theta})$ is the universal C^* -algebra generated by unitaries U and V subject to the relation,

$$VU = e^{2i\pi\theta}UV$$
.

Remarks

- Universal here means that any other C^* -algebra with unitary generators U and V satisfying the above relations is isomorphic to $C(\mathbb{T}^2_\theta)$.
- If $\theta \notin \mathbb{Q}$, then $C(\mathbb{T}^2_{\theta}) \simeq C(\mathbb{S}^2) \rtimes_{r,\theta} \mathbb{Z}$.

Remark

• If $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$, then as a C^* -algebra $C(\mathbb{T}^2)$ is generated by the multiplication operators,

$$U = e^{2i\pi x}$$
 and $V = e^{2i\pi y}$.

- They are unitaries such that UV = VU.
- Thus,

$$C(\mathbb{T}^2_{\theta}) \simeq C(\mathbb{T}^2)$$
 for $\theta = 0$.

Higher Dimensional Noncommutative Tori

Setup

- $\theta = (\theta_{jk})$ real anti-symmetric $n \times n$ -matrix.
- $\theta_1, \ldots, \theta_n$ column vectors of θ .

Definition

The noncommutative torus $C(\mathbb{T}_{\theta}^n)$ is the C^* -algebra generated by the unitary operators,

$$U_j: L^2(\mathbb{T}^n) \longrightarrow L^2(\mathbb{T}^n), \quad (U_j \xi)(x) = e^{ix_j} \xi(x + \pi \theta_j),$$

subject to the relations,

$$U_k U_j = e^{2i\pi\theta_{jk}} U_j U_k.$$

Remark

For $\theta = 0$ we get the C^* -algebra $C(\mathbb{T}^n)$ represented by multiplication operators.

Higher Dimensional Noncommutative Tori

Remark

For n = 2 we recover the previous definition under the correspondence,

$$\mathbb{R}\ni \theta\longleftrightarrow egin{pmatrix} 0& heta\ - heta&0 \end{pmatrix}\in M_2(\mathbb{R}).$$