Noncommutative Geometry Chapter 1: Spectrum and Duality Spaces/Algebras

Sichuan University, Spring 2025

References

Main References

- Connes, A.: Noncommutative geometry. Academic Press, San Diego, 1994.
- Gracia-Bondia, J.M.; Varilly, J.C.; Figueroa, H.: *Elements of Noncommutative Geometry*. Birkhäuser, Boston, 2001.
- Lectures notes to be posted online.

References for this Chapter

- Arveson, W.: A Short Course on Spectral Theory. Graduate Texts in Mathematics, Springer, 2002.
- Gracia-Bondia, J.M.; Varilly, J.C.; Figueroa, H.: Elements of Noncommutative Geometry.

C^* -algebras

Remarks

- All the vector spaces and algebras are vector spaces or algebras over C.
- Unless otherwise mentioned all the topological spaces are Hausdorff.

C^* -algebras

Definition

A Banach algebra is an algebra \emph{A} endowed with a Banach norm $\|.\|$ such that

$$||xy|| \le ||x|| ||y|| \quad \forall x, y \in A.$$

Definition

A C^* -algebra is a Banach algebra A together with an antilinear involution $x \to x^*$ such that

$$(xy)^* = y^*x^* \quad \forall x, y \in A,$$

 $||x^*|| = ||x|| \quad \text{and} \quad ||x^*x|| = ||x||^2 \quad \forall x \in A.$

*-Homomorphisms

Definition

Let A and B be C^* -algebras.

- **1** A *-homomorphism $\phi: A \to B$ is a continuous homomorphism of algebras such that $\phi(x^*) = \phi(x)^*$ for all $x \in A$.
- ② A *-isomorphism $\phi: A \to B$ is *-homomorphism which is bijective.

Remarks

- By the open mapping theorem any bijective continuous linear map between Banach spaces has a continuous inverse.
 Therefore, the inverse of any *-isomorphism is continuous.
- It can be shown that any *-isomorphism between C*-algebras is isometric.

Examples

Example

Let $M_n(\mathbb{C})$ be the algebra of $n \times n$ -matrices with complex entries.

- Its involution is $A \rightarrow A^*$, where A^* is the adjoint of A.
- A C*-algebra norm is given by the norm defined by

$$||A|| := \sup\{||Ax||; x \in \mathbb{C}^n, ||x|| = 1\}, A \in M_n(\mathbb{C}).$$

Examples

Example

Let \mathcal{H} be a Hilbert space and $\mathcal{L}(\mathcal{H})$ the algebra of continuous linear operators $T: \mathcal{H} \to \mathcal{H}$.

• The involution of $\mathcal{L}(\mathcal{H})$ is $T \to T^*$, where T^* is the adjoint of T, i.e., the unique linear operator on \mathcal{H} such that

$$\langle T^*\xi, \eta \rangle = \langle \xi, T\eta \rangle \quad \forall \xi, \eta \in \mathcal{H}.$$

• The norm of $\mathcal{L}(\mathcal{H})$ is

$$||T|| := \sup_{\|\xi\|=1} ||T\xi||$$

• More generally, any closed *-subalgebra of $\mathcal{L}(\mathcal{H})$ is a C^* -algebra.

*-Representations

Definition

A *-representation of a C^* -algebra in a Hilbert space \mathcal{H} is a *-homomorphism from A to $\mathcal{L}(\mathcal{H})$.

Theorem (Gel'fand-Naimark)

Any C^* -algebra A admits an isometric *-representation π in some Hilbert space \mathcal{H} .

Remark

Any isometric linear map between Banach spaces has closed range and is an isomorphism onto its range (Exercise!).

Consequence

Any C^* -algebra A can be *-represented as a closed *-subalgebra of some $\mathcal{L}(\mathcal{H})$.

Further Examples

Example

Let X be a compact (Hausdorff) space and C(X) its algebra of continuous complex-valued functions.

- The involution of C(X) is $f \to \overline{f}$, where \overline{f} is the complex conjugate of f.
- The norm of C(X) is

$$||f||_{C(X)} := \sup_{x \in X} |f(x)|, \qquad f \in C(X).$$

• The constant function 1 is a unit for C(X), and so C(X) is a unital commutative C^* -algebra.

Further Examples

Example

Let X be a locally compact topological space and $C_0(X)$ its algebra of continuous functions "vanishing at infinity".

- Recall that $f \in C(X)$ vanishes at infinity iff, for all $\epsilon > 0$, there $K \subset X$ compact s.t. $|f(x)| \le \epsilon$ on $X \setminus K$.
- The involution of $C_0(X)$ is $f \to \overline{f}$.
- The norm of $C_0(X)$ is

$$||f||_{C_0(X)} := \sup_{x \in X} |f(x)|, \qquad f \in C_0(X).$$

• The C^* -algebra $C_0(X)$ is commutative, but it is not unital, since $1 \notin C_0(X)$.

Remark

It can be shown that C(X) and $C_0(X)$ are essentially the only examples of commutative C^* -algebras.

Adding a Unit

Definition

Let A be a (possibly non-unital) Banach algebra. Define

$$A^+ = A \oplus \mathbb{C}$$
.

We endow A^+ with the product and norm given by

$$(x_1, \lambda_1).(x_2, \lambda_2) := (x_1x_2 + \lambda_1x_2 + \lambda_2x_1, \lambda_1\lambda_2), \quad (x_j, \lambda_j) \in A^+, \|(x, \lambda)\|_{A^+} := \sup\{\|xy + \lambda y\|_A; \ y \in A, \ \|y\|_A = 1\}, \quad (x, \lambda) \in A^+.$$

Proposition

- **1** A^+ is a Banach algebra with unit $1_{A^+} := (0,1)$.
- ② The map $x \to (x,0)$ is an isometric embedding of A into A^+ .

Definition

 A^+ is called the unitalization of A.

Adding a Unit

Remark

- The embedding of $x \to (x, 0)$ identifies A with the closed ideal $A \oplus \{0\}$ of A^+ .
- This allows us to write any element of A^+ as

$$(x,\lambda) = x + \lambda 1_{A^+}, \qquad x \in A, \quad \lambda \in \mathbb{C}.$$

Proposition

Assume A is a C^* -algebra, and equip A^+ with the involution

$$(x + \lambda 1_{A^+})^* = x^* + \overline{\lambda} 1_{A^+}, \qquad x \in A, \quad \lambda \in \mathbb{C}.$$

Then A is a C^* -algebra.

Adding a Unit

Example

Let $A = C_0(\Omega)$, where $\Omega \subset \mathbb{R}^n$ is a bounded open set with boundary $\partial \Omega$.

Here

$$C_0(\Omega) = \left\{ f \in C(\overline{\Omega}); \ f = 0 \text{ on } \partial\Omega \right\}.$$

• The unitalization of A is

$$A^+ = \{ f \in C(\overline{\Omega}); \ f_{|\partial\Omega} \text{ is constant} \}.$$

Spectrum

Setup

- A is a Banach algebra with a unit 1_A such that $||1_A|| = 1$.
- This is always satisfied if A is a C*-algebra.
- A^{-1} is the group of invertible elements of A. This is an open subset of A.

Definition

Let $x \in A$. The spectrum of x is

$$\operatorname{\mathsf{Sp}}_{A}(x) := \{ \lambda \in \mathbb{C}; \ x - \lambda \not\in A^{-1} \}.$$

The complement of $Sp_{\Delta}(x)$ is called the resolvent set of x.

Spectrum

Proposition

- $\operatorname{Sp}_A(x)$ is a non-empty compact subset of $\mathbb C$ contained in the disk $\overline{D(0,\|x\|)}$.
- ② The resolvent $\lambda \to (x \lambda)^{-1}$ is an analytic map from $\mathbb{C} \setminus \operatorname{Sp}_A(x)$ to A.

Partial Proof.

- By definition $\lambda \in \mathbb{C} \setminus \operatorname{Sp}_A(x) \Leftrightarrow x \lambda \in A^{-1}$.
- Here $\mathbb{C} \ni \lambda \to x \lambda \in A$ is continuous and A^{-1} is an open set of A.
- Thus, $\mathbb{C} \setminus \mathsf{Sp}_A(x)$ is an open set, and hence $\mathsf{Sp}_A(x)$ is closed.

Spectrum

Partial Proof (Continued).

- If ||x|| < 1, then $\sum_{>0} x^n = (1-x)^{-1}$.
- If $\lambda > ||x||$, then $\lambda^{-1}||x|| < 1$, and so

$$\sum \lambda^{-n-1} x^n = \lambda^{-1} \sum (\lambda^{-1} x)^n = \lambda^{-1} (1 - \lambda^{-1} x)^{-1} = (\lambda - x)^{-1}.$$

In particular, $x - \lambda \in A^{-1}$, i.e., $\lambda \in \mathbb{C} \setminus \operatorname{Sp}_A(x)$.

- Thus, $\mathbb{C} \setminus \overline{D}(0, ||x||) \subset \mathbb{C} \setminus \operatorname{Sp}_A(x)$, i.e., $\operatorname{Sp}_A(x) \subset \overline{D}(0, ||x||)$.
- Therefore, Sp_A(x) is a bounded closed set, and so this is a compact set.

Spectrum. Non-unital Case

Remarks

• If A is not unital, we define the spectrum of $x \in A$ to be its spectrum in A^+ , i.e.,

$$\operatorname{\mathsf{Sp}}_{A}(x) := \operatorname{\mathsf{Sp}}_{A^{+}}(x).$$

- 0 is always contained in $\operatorname{Sp}_{A^+}(x)$, since the proper ideal A cannot contained invertible elements of A^+ .
- If A is unital, then $\operatorname{Sp}_{A^+}(x) = \operatorname{Sp}_A(x) \cup \{0\}$.

Examples

Example

Let A = C(X), where X is a compact (Hausdorff) space.

• If $f \in C(X)$ and $\lambda \in \mathbb{C}$, then

$$f - \lambda$$
 invertible \iff $(f(x) - \lambda \neq 0 \ \forall x \in X) \iff \lambda \notin f(X)$.

• Thus, $\mathbb{C} \setminus \operatorname{Sp}_{C(X)}(f) = \mathbb{C} \setminus f(X)$, i.e.,

$$\operatorname{Sp}_{C(X)}(f) = f(X).$$

Examples

Example

Let $A = C_0(\Omega)$, where $\Omega \subset \mathbb{R}^n$ is a bounded open set.

- Here $A^+ = \{ f \in C(\overline{\Omega}); f_{|\partial\Omega} \text{ is constant } \}.$
- Thus, if $f \in C_0(\Omega)$, then, by spectral permanence,

$$\operatorname{\mathsf{Sp}}_{C_0(\Omega)}(f) = \operatorname{\mathsf{Sp}}_{\mathcal{A}^+}(f) = \operatorname{\mathsf{Sp}}_{C(\overline{\Omega})}(f) = f(\overline{\Omega}) = f(\Omega) \cup \{0\}.$$

ullet More generally, if X is a locally compact Hausdorff space, then

$$\operatorname{\mathsf{Sp}}_{C_0(X)}(f) = f(X) \cup \{0\} \qquad \forall f \in C_0(X).$$

Definition

Let $x \in A$. The spectral radius of x is

$$\rho(x) = \sup\{|\lambda|; \ \lambda \in \mathsf{Sp}_A(x)\}.$$

Remark

We always have $\rho(x) \leq ||x||$.

Proposition (Gel'fand-Mazur)

For all $x \in A$.

$$\rho(x) = \lim_{n \to \infty} \sqrt[n]{\|x^n\|}.$$

Proposition

Let A be a C*-algebra. If $x \in A$ is normal (i.e., $x^*x = xx^*$), then

$$\rho(x) = \|x\|.$$

Proof.

• As A is a C^* -algebra and $x^*x = xx^*$, we have

$$||x^2|| = ||(x^2)^*x^2||^{\frac{1}{2}} = ||(x^*x)^*(x^*x)||^{\frac{1}{2}} = ||x^*x|| = ||x||^2.$$

- An induction shows that $||x^{2^n}|| = ||x||^{2^n} \ \forall n \in \mathbb{N}$.
- By Gel'fand-Mazur's result,

$$\rho(x) = \lim_{n \to \infty} \|x^{2^n}\|^{\frac{1}{2^n}} = \|x\|.$$

Remark

If A is a Banach algebra with an antilinear involution $x \to x^*$, we call C^* -norm any norm such that

$$||x||^2 = ||x^*||^2 = ||x^*x|| \quad \forall x \in A.$$

Proposition

If A is a C^* -algebra, then its norm is its unique C^* -norm.

Proof.

• If $x \in A$, for any C^* -norm we have

$$||x|| = \sqrt{||x^*x||} = \sqrt{\rho(x^*x)}.$$

• The spectral radius $\sqrt{\rho(x^*x)}$ does not depend on the norm, so this uniquely defines the C^* -norm.

Corollary

Every *-isomorphism between C*-algebras is isometric.

Proof.

- Let $\phi: A_1 \to A_2$ be a *-isomorphism between C^* -algebras A_1 and A_2 .
- In this case $x \to \|\phi(x)\|_{A_2}$ is a C^* -norm on A_1 .
- Therefore, it agrees with the original C^* -norm of A_1 .
- That is, ϕ is isometric.

Holomorphic Functional Calculus

Setup

- A is a Banach algebra with unit 1 such that ||1|| = 1.
- $x \in A$ and we set $S = \operatorname{Sp}_A(x)$ (this a compact subset of \mathbb{C}).
- $\Omega \subset \mathbb{C}$ is an open containing S.
- $\mathsf{Hol}(\Omega)$ is the algebra of holomorphic functions on Ω , equipped with the topology of uniform convergence on compact sets.

Holomorphic Functional Calculus

Remarks

• By Cauchy's formula, if $f \in Hol(\Omega)$, then

$$f(z) = \frac{1}{2i\pi} \int_{\Gamma} f(\lambda)(\lambda - z)^{-1} d\lambda \qquad \forall z \in S,$$

Here Γ is any oriented contour in Ω whose interior contains S.

• The map $\lambda \to (x - \lambda)^{-1}$ is analytic on $\mathbb{C} \setminus S$.

Definition

If $f \in Hol(\Omega)$, then we define

$$f(x) := \frac{1}{2i\pi} \int_{\Gamma} f(\lambda)(\lambda - x)^{-1} d\lambda \in A,$$

where the integral is meant as a Riemann integral.

Remark

The integral does not depend on Γ .

Holomorphic Functional Calculus

Theorem (Holomorphic Functional Calculus)

- **1** The map $f \to f(x)$ is a continuous unital homomorphism of algebras from $Hol(\Omega)$ to A.
- ② If f and g are elements of $Hol(\Omega)$ that agree on S, then f(x) = g(x).
- **3** For all $f \in Hol(\Omega)$, we have

$$\operatorname{Sp}_A f(x) = f(S).$$

Example

Example

Let $f(z) = \sum_{n \ge 0} a_n z^n$ have convergence radius R > ||x||.

• Let $\Gamma = \{|\lambda| = r\}$ with ||x|| < r < R. By definition,

$$f(x) = \frac{1}{2i\pi} \int_{\Gamma} f(\lambda)(\lambda - x)^{-1} d\lambda.$$

• If $|\lambda| > ||x||$, then $||\lambda^{-1}x|| < 1$, and so

$$(\lambda - x)^{-1} = \lambda^{-1} (1 - \lambda^{-1} x)^{-1} = \sum_{n \ge 0} \lambda^{-(n+1)} x^n.$$

Thus,

$$f(x) = \sum_{n \geq 0} \left(\frac{1}{2i\pi} \int_{\Gamma} \lambda^{-(n+1)} f(\lambda) d\lambda \right) x^n = \sum_{n \geq 0} a_n x^n.$$

Spectral Permanence

Proposition

Let B be a closed subalgebra of A containing the unit 1_A .

- If $x \in B$ is invertible in A, then x^{-1} belongs to B.
- ② For all $x \in B$ we have

$$\operatorname{Sp}_B(x) = \operatorname{Sp}_A(x).$$

Proof.

• If $x \in B$ is invertible in A, then

$$x^{-1} = \frac{1}{2i\pi} \int_{\Gamma} \frac{\lambda^{-1}}{\lambda - x} d\lambda \in B$$

- Thus, $x \in B^{-1}$, and hence $A \cap B^{-1} = B^{-1}$.
- Therefore, if $x \in B$, then

$$\lambda \not\in \operatorname{Sp}_A(x) \Longleftrightarrow x - \lambda \in A^{-1} \Longleftrightarrow x - \lambda \in B^{-1} \Longleftrightarrow \lambda \not\in \operatorname{Sp}_B(x).$$

That is,
$$Sp_B(x) = Sp_A(x)$$
.

Spectral Permanence

Proposition

Assume that A is a C^* -algebra.

- If $x \in A$ is unitary (i.e., $x^*x = xx^* = 1$), then $\operatorname{Sp}_A(x) \subset S^1$.
- ② If $x \in A$ is selfadjoint (i.e., $x^* = x$), then $Sp_A(x) \subset \mathbb{R}$.

Proof of (1).

Let $x \in A$ be unitary.

- As $||x||^2 = ||x^*x|| = ||1_A|| = 1$, we have $\mathsf{Sp}_A(x) \subset \overline{D(0,1)}$.
- Since $x^{-1} = x^*$ is unitary, we also have $\operatorname{Sp}_A(x^{-1}) \subset \overline{D(0,1)}$.
- If $f(z) = z^{-1}$, then

$$\operatorname{\mathsf{Sp}}_{\mathsf{A}}(x) = \operatorname{\mathsf{Sp}}_{\mathsf{A}}(f(x^{-1})) = f(\operatorname{\mathsf{Sp}}_{\mathsf{A}}(x^{-1})) \subset \mathbb{C} \setminus D(0,1).$$

Thus,

$$\operatorname{\mathsf{Sp}}_A(\mathsf{x}) \subset \overline{D(0,1)} \cap \left[\mathbb{C} \setminus D(0,1)\right] = \mathbb{S}^1.$$

Proof of (2).

Let $x \in A$ be selfadjoint.

• Set $u = \exp(ix) = \sum_{n=1}^{\infty} \frac{1}{n!} (ix)^n$. We have

$$u^* = \sum \frac{1}{n!} ((ix)^n)^* = \sum \frac{1}{n!} (-ix^*)^n = \exp(-ix).$$

• As $f \to f(x)$ is an algebra homomorphism and $\exp(-iz) \exp(iz) = \exp(iz) \exp(-iz) = 1$, we have

$$uu^* = u^*u = \exp(-ix) \exp(ix) = 1.$$

- Thus, u is unitary, and hence $\operatorname{Sp}_A(u) \subset \mathbb{S}^1$.
- By spectral permanence,

$$\operatorname{\mathsf{Sp}}_A(u) = \operatorname{\mathsf{Sp}}_A(\exp(ix)) = \exp(i\operatorname{\mathsf{Sp}}_A(x)) \subset \mathbb{S}^1$$

• It follows that $Sp_A(x) \subset \mathbb{R}$.

Setup

A is a unital commutative C^* -algebra.

Definition

• A character of A is a linear map $\chi: A \to \mathbb{C}$ such that

$$\chi(xy) = \chi(x)\chi(y) \quad \forall x, y \in A,$$

 $\chi(1_A) = 1.$

 The set of characters of A is called the Gel'fand spectrum of A and is denoted Sp A.

Remark

It can be shown that characters are in one-to-one correspondence with maximal ideals of A.

Example

Let A = C(X), where X is a compact space.

• Every $x \in X$ defines a character of C(X) by

$$\chi_{X}(f) = f(X), \in C(X).$$

- The map $X \ni x \to \chi_x \in \operatorname{Sp}(A)$ is one-to-one.
- It can be shown it is onto.
- Therefore, the characters of C(X) are in one-to-one correspondence with the points of X.

The relationship between Gel'fand spectrum and the spectra of the points of A is provided by the following result.

Proposition

For all $x \in A$, we have

$$\operatorname{Sp}_A(x) = \{\chi(x); \ \chi \in \operatorname{Sp}(A)\}.$$

Proof.

Set $S = {\chi(x); \chi \in Sp(A)}.$

- If $\lambda \in \mathbb{C} \setminus \operatorname{Sp}_A(x)$ and $\chi \in \operatorname{Sp} A$, then
 - $\chi\left((x-\lambda)^{-1}\right)\left(\chi(x)-\lambda\right)=\chi\left((x-\lambda)^{-1}(x-\lambda)\right)=\chi(1)=1.$
- In particular, $\chi(x) \neq \lambda$ for all $\chi \in \operatorname{Sp}(A)$, and so $\lambda \notin S$.
- Thus, $\mathbb{C} \setminus \operatorname{Sp}_A(x) \subset \mathbb{C} \setminus S$, i.e., $S \subset \operatorname{Sp}_A(x)$.
- It can be shown that $\operatorname{Sp}_A(x) \subset S$ (see Arveson, Thm. 1.9.5), and hence $S = \operatorname{Sp}_A(x)$.

Corollary

If $\chi \in \operatorname{Sp}(A)$, then

$$\chi(x^*) = \overline{\chi(x)} \qquad \forall x \in A.$$

Proof.

Let $x \in A$.

- If $x^* = x$, then $\chi(x) \in \operatorname{Sp}_A(x) \subset \mathbb{R}$.
- In general, $x = x_1 + ix_2$, with $x_i^* = x_i$. Then

$$\chi(x) = \chi(x_1 + ix_2) = \chi(x_1) + i\chi(x_2),$$

$$\chi(x^*) = \chi(x_1 - ix_2) = \chi(x_1) - i\chi(x_2).$$

• As $\chi(x_1)$ and $\chi(x_2)$ are in \mathbb{R} , we see that $\chi(x^*) = \overline{\chi(x)}$.

Setup

• A^* = topological dual of A. Banach space with norm,

$$\|\varphi\| := \sup_{\|x\|=1} |\langle \varphi, x \rangle|, \qquad \varphi \in A^*.$$

- Ω = unit sphere A^* .
- By Banach-Alaoglu theorem Ω is compact with respect to the weak-* topology, i.e., the topology of pointwise convergence.

Proposition

Sp A is a closed subset of Ω , and hence is compact with respect to the weak-* topology.

Proof.

- Let $\chi \in A$. If $x \in A$, then $\chi(x) \in \operatorname{Sp}_A(x)$, and hence $|\chi(x)| \leq ||x||$.
- This shows that $\chi \in A^*$ and $||\chi|| \le 1$.
- As $\chi(1)=1$, we see that $\|\chi\|=1$, i.e., $\chi\in\Omega$. Thus, $\operatorname{Sp}(A)\subset\Omega$.
- By definition Sp(A) is the intersection of the sets,

$$\{\varphi\in A^*;\ \varphi(1)=1\},\quad \{\varphi\in A^*;\ \varphi(x)\varphi(y)=\varphi(xy)\},\ x,y\in A.$$

- There are closed subsets of A* w.r.t. the weak-* topology.
- Therefore, Sp(A) is closed with respect to that topology.

Gel'fand Transform

Definition

The Gel'fand transform of A is the map

$$G_A: A \longrightarrow C(\operatorname{Sp}(A)), \quad x \longrightarrow \hat{x},$$

where

$$\hat{x}(\chi) = \chi(x), \qquad x \in A, \quad \chi \in \operatorname{Sp}(A).$$

Remark

 G_A is an algebra homomorphism.

Theorem (Gel'fand-Naimark)

 G_A is an (isometric) *-isomorphism from A onto C(Sp A).

Gel'fand Transform

Proof.

• Let $x \in A$. If $\chi \in \operatorname{Sp}(A)$, then

$$\overline{\hat{x}(\chi)} = \overline{\chi(x)} = \chi(x^*) = (x^*)^{\wedge}.$$

This shows that G_A is a *-homomorphism.

We have

$$\operatorname{\mathsf{Sp}}_{A}(x) = \{\chi(x); \ \chi \in \operatorname{\mathsf{Sp}}(A)\} = \hat{x}\left(\operatorname{\mathsf{Sp}}(A)\right) = \operatorname{\mathsf{Sp}}_{C(\operatorname{\mathsf{Sp}} A)}(\hat{x}).$$

- In particular, $\rho(x) = \rho(\hat{x})$ for all $x \in A$.
- Thus,

$$||x||^2 = ||x^*x|| = \rho(x^*x) = \rho(\widehat{x^*x}) = \rho(\widehat{\hat{x}}\hat{x}) = ||\widehat{\hat{x}}\hat{x}|| = ||\hat{x}||^2.$$

It follows that G_A is isometric.

• It can be shown that $G_A(A)$ separates the points of Sp(A), and so $G_A(A) = C(Sp(A))$ by Stone-Weierstrass theorem.

Gel'fand Transform

Consequence

The Gel'fand transform provides a one-to-one correspondence,

Remark

It can be shown this is actually an equivalence of categories.

Consequence

We may regard unital C^* -algebras as the noncommutative analogue of compact spaces.

Setup

A is a possibly non-unital C^* -algebra.

Definition

- A character of A is any non-zero algebra homomorphism $\chi:A\to\mathbb{C}.$
- The Gel'fand spectrum of A is the set of all characters of A. It is denoted Sp(A).

Remar<u>ks</u>

- If A is unital and $\chi: A \to \mathbb{C}$ is an algebra homomorphism, then $\chi(1) = 1$.
- If A^+ is the unitalization of A, then any character $\chi:A\to\mathbb{C}$ uniquely extends to a character $\tilde{\chi}:A^+\to\mathbb{C}$ by letting

$$\tilde{\chi}(x + \lambda \cdot 1) = \chi(x) + \lambda, \quad x \in A, \ \lambda \in \mathbb{C}.$$

Proposition

Sp(A) is contained in the (closed) unit ball B_{A^*} of A^* and is locally compact w.r.t. the weak-* topology.

Proof.

- If $\chi \in A$, then $\|\chi\| \leq \|\tilde{\chi}\| = 1$. Thus $Sp(A) \subset B_{A^*}$.
- We have $Sp(A) = K \setminus 0$, where

$$K = \bigcap_{x,y \in A} \{ \varphi \in B_{A^*}; \varphi(xy) = \varphi(x)\varphi(y) \}.$$

- B_{A*} is compact w.r.t. the weak-* topology.
- K is weak-* closed, and hence is weak-* compact.
- A basis of the weak *-topology of Sp(A) is given by the compact sets,

$$\{\chi \in K; |\chi(\chi)| \ge \epsilon\}, \quad \chi \in A \setminus 0, \ \epsilon > 0.$$

• Thus, Sp(A) is weak-* locally compact.

Definition

The Gel'fand transform of A is the map

$$G_A: A \longrightarrow C_0(\operatorname{Sp}(A)), \quad x \longrightarrow \hat{x},$$

where

$$\hat{x}(\chi) = \chi(x), \qquad x \in A, \quad \chi \in \mathsf{Sp}(A).$$

Remark

• If $x \in A$, then $\hat{x} \in C_0(\operatorname{Sp}(A))$, since, for any $\epsilon > 0$,

$$\begin{aligned} \{\chi \in \mathsf{Sp}(A); \ |\hat{x}(\chi)| < \epsilon\} &= \{\chi \in \mathsf{Sp}(A); \ |\chi(x)| < \epsilon\} \\ &= \mathsf{Sp}(A) \setminus \{\chi \in \mathsf{Sp}(A); \ |\chi(x)| \ge \epsilon\}. \end{aligned}$$

- Here $\{\chi \in \operatorname{Sp}(A); |\chi(x)| \ge \epsilon\}$ is a compact set of $\operatorname{Sp}(A)$ (see previous slide).
- Thus, $|\hat{x}| < \epsilon$ outside some compact set.

Theorem (Gel'fand-Naimark)

 G_A is an (isometric) *-isomorphism from A onto $C_0(\operatorname{Sp} A)$.

Consequence

We have a one-to-one correspondence,

Setup

- $A = unital C^*$ -algebra.
- $x \in A$ is normal, i.e., $x^*x = xx^*$, and $S = \operatorname{Sp}_A(x)$.
- $\mathcal{P} = *$ -algebra of polynomials $\sum c_{mn} z^m \overline{z}^n$.

Definition

If $f = \sum c_{mn} z^m \bar{z}^n \in \mathcal{P}$, we set

$$f(x) := \sum c_{mn} x^m (x^*)^n.$$

Facts

- $\mathcal{P} \ni f \to f(x) \in A$ is a *-homomorphism of algebras.
- Set \mathcal{B} be its range. This is sub-*-algebra of A.
- Let B be the closure of B in A. This is a unital sub- C^* -algebra; this is the (unital) C^* -algebra generated by X.

Remark

- B is a unital commutative C*-algebra.
- Therefore, its Gel'fand transform $G_B: B \to C(\operatorname{\mathsf{Sp}}(B))$ is a *-isomorphism.

Lemma

Set $\xi = G_B(x)$. Then:

- (i) $f(x) = G_B^{-1}(f \circ \xi)$ for all $f \in \mathcal{P}$.
- (ii) $\xi(\operatorname{Sp}(B)) = S$.

Proof of (i).

- $G_B: B \to C(Sp(B))$ is a *-isomorphism.
- Therefore, if $f = \sum c_{mn} z^m \bar{z}^n \in \mathcal{P}$, then

$$G_{B}(f(x)) = \sum c_{mn}G(x^{m}(x^{*})^{n})$$

$$= \sum c_{mn}G(x)^{m}\overline{G(x)}^{n}$$

$$= \sum c_{mn}\xi^{m}\overline{\xi}^{n} = f \circ \xi.$$

• Thus, $f(x) = G_B^{-1}(f \circ \xi)$.

Proof of (ii).

We have

$$\xi(\mathsf{Sp}(B)) = \mathsf{Sp}_{C(\mathsf{Sp}(B))}(\xi) = \mathsf{Sp}_{C(\mathsf{Sp}(B))}(G_B(x))$$

• As $G_B: B \to C(Sp(B))$ is an isomorphism, we have

$$\operatorname{Sp}_{C(\operatorname{Sp}(B))}(G(x)) = \operatorname{Sp}_B(x)$$

By spectral permanence,

$$\operatorname{\mathsf{Sp}}_B(x) = \operatorname{\mathsf{Sp}}_A(x) = S.$$

Thus,

$$\xi(\operatorname{Sp}(B)) = S.$$

Definition

If $f \in C(S)$, we define

$$f(x) := G_B^{-1}(f \circ \xi).$$

Remark

If $f \in C(S)$, then $f \circ \xi$ is well defined, since $\xi(\operatorname{Sp}(B)) = S$.

Theorem (Continuous Functional Calculus)

- **1** The map $\Phi: x \to f(x)$ is an isometric *-homomorphism from C(S) to A, whose image is the C*-algebra generated by x.
- ② If $f = \sum c_{mn} z^m \bar{z}^n \in \mathcal{P}$, then

$$\phi(f) = f(x) = \sum c_{mn} x^m (x^*)^n.$$

3 For all $f \in C(S)$, we have

$$\operatorname{Sp}_A f(x) = f(S).$$

Proof of (1)+(2).

- The 2nd part is immediate. In particular, $\mathcal{B} \subset \Phi(\mathcal{C}(S))$.
- As G_B^{-1} maps onto B, we have $\Phi(C(S)) \subset B$.
- The map $\Psi: C(S) \ni f \to f \circ \xi \in C(\operatorname{Sp}(B))$ is a *-homomorphism.
- As $\xi(\operatorname{Sp}(B)) = S$, for any $f \in C(S)$, we have

$$||f \circ \xi||_{C(\operatorname{Sp} B)} = \sup_{\chi \in \operatorname{Sp} B} |f(\xi(\chi))| = \sup_{z \in S} |f(z)| = ||f||_{C(S)}.$$

- Thus, Ψ is an isometric *-homomorphism.
- As $\Phi = G_B^{-1} \circ \Psi$, it follows that Φ an isometric *-homomorphism.
- As $\mathcal{B} \subset \Phi(C(S)) \subset B$ and \mathcal{B} is dense in B, it follows that $\Phi(C(S)) = B$.

Proof of (3).

Let $f \in C(S)$. Need to show that $Sp_A(f(x)) = f(S)$.

- We have $\operatorname{Sp}_{C(S)} f = f(S)$.
- Φ is a *-isomorphism from C(S) onto B. Thus,

$$\operatorname{Sp}_B(f(x)) = \operatorname{Sp}_B(\Phi(f)) = \operatorname{Sp}_{C(S)} f = f(S).$$

By spectral permanence,

$$\operatorname{Sp}_A(f(x)) = \operatorname{Sp}_B(f(x)) = f(S).$$

50 / 51

Remark

- The map $C(S) \ni f \to f(x) \in A$ is a *-homorphism.
- Thus, if f is real-valued, then f(x) is selfadjoint.

Remark

- The homomorphism $C(S) \ni f \to f(x) \in A$ is continuous.
- Thus, if $(f_k) \subset \mathcal{P}$ converges uniformly on S to f, then

$$f(x) = \lim_{k \to \infty} f_k(x).$$

• This gives an alternative definition of f(x).