Sichuan University

Differential Forms in Algebraic Topology – Spring 2024

Homeworks 1–4

Due date: June 22, 2024

Homework 1

Problem 1 (Grassmannian manifolds). For $n \geq 1$ and k = 1, ..., n, the Grassmannian G(n, k) is the set of all linear subspaces of \mathbb{R}^n that have dimension k. Problem 7.8 in Tu2011 is about showing that G(n, k) is a smooth manifold. Parts (a)–(d) of this problem show that G(n, k) naturally inherits a quotient topology which is Hausdorff and 2nd countable. Assuming this result do the remaining parts (e)–(h) on the construction of a C^{∞} -atlas for G(n, k).

Homework 2

Problem 2 (Cohomology of multi-punctured planes).

- (1) Let p and q be distinct points of \mathbb{R}^n . Compute the de Rham cohomology of $\mathbb{R}^n \setminus \{p,q\}$.
- (2) Let p_1, \ldots, p_m be distinct points in \mathbb{R}^n compute the de Rham cohomology of $\mathbb{R}^n \setminus \{p_1, \ldots, p_m\}$.

Problem 3. Recall that any open interval $I \subseteq \mathbb{R}$ is diffeomorphic to \mathbb{R} . Therefore, any product of n open intervals in \mathbb{R} is diffeomorphic to \mathbb{R}^n .

- (1) Find a finite good cover for $\mathbb{R}^2 \setminus \{0\}$. Deduce from this that $\mathbb{R}^2 \setminus 0$ satisfies Poincaré duality.
- (2) Compute the compactly supported de Rham cohomology of $H_c^2(\mathbb{R}^2 \setminus 0)$.
- (3) Let p_1, \ldots, p_m be distinct points in \mathbb{R}^2 compute the compactly supported de Rham cohomology $\mathbb{R}^2 \setminus \{p_1, \ldots, p_m\}$.

Homework 3

Problem 4. Let M and N be smooth manifolds. The goal of this problem is to show that smooth homotopy is an equivalence relation on smooth maps from M to N. We let $\psi : \mathbb{R} \to \mathbb{R}$ be the function defined by

$$\psi(t) = \frac{\varphi(t)}{\varphi(t) + \varphi(1-t)}, \quad \text{where } \varphi(t) = \begin{cases} e^{-1/t} & \text{if } t > 0, \\ 0 & \text{if } t \leq 0. \end{cases}$$

We saw in the section on bump functions that φ and ψ are C^{∞} -functions, and we have

$$\psi^{-1}(0) = (-\infty, 0], \qquad 0 \le \psi \le 1, \qquad \psi^{-1}(1) = [1, \infty).$$

(1) Show that smooth homotopy relation is reflexive and symmetric.

(2) Let $f,g:M\to N$ be smooth maps and $F:M\times\mathbb{R}\to N$ a smooth homotopy such that F(x,0)=f(x) and F(x,1)=g(x) for all $x\in M$. Define $\tilde{F}:M\times\mathbb{R}\to N$ by

$$\tilde{F}(x,t) = F(x,\psi(t)), \qquad (x,t) \in M \times \mathbb{R}.$$

Check that \tilde{F} is a smooth homotopy between f and g such that

$$\tilde{F}(x,t) = f(x)$$
 for $t \le 0$, $\tilde{F}(x,t) = g(x)$ for $t \ge 1$.

(3) Suppose that $h:M\to N$ is a smooth map which is smoothly homotopic to g. Construct a smooth map $H:M\times\mathbb{R}\to N$ such that

$$H(x,t) = f(x) \quad \text{for } t \le 0, \qquad H(x,t) = h(x) \quad \text{for } t \ge 4,$$

$$H(x,t) = g(x) \quad \text{for } 1 \le t \le 3.$$

- (4) Use (3) to show that f and h are smoothly homotopic.
- (5) Deduce from this that smooth homotopy is an equivalence relation on smooth maps from M to N.

Problem 5. The aim of this problem is to show that homotopy type is an equivalence relation on smooth manifolds.

- (1) Show that the homotopy type relation is reflexive and symmetric.
- (2) Use the previous problem to show that if M and N have the same homotopy type and N and P have the same homotopy type, then M and P have the same homotopy type.
- (3) Deduce from this that homotopy type is an equivalence relation.

Problem 6. Show that if M is a smooth manifold, then M is a deformation retract of $M \times \mathbb{R}^n$, and hence $H^k(M \times \mathbb{R}^n) \simeq H^k(M)$ for all $k \geq 0$.

Homework 4

Problem 7. Suppose that M is an oriented manifold of dimension n.

- (1) Construct a top form $\eta \in \Omega_c^n(M)$ such that $\int \eta = 1$.
- (2) Assume that M is connected and has a finite good cover. Show that η generates $H_c^n(M)$.
- (3) What does the above result means for compact connected oriented manifolds of dimension n?

Problem 8. We know from Problem 3 that $\mathbb{R}^2 \setminus 0$ satisfies Poincaré duality. We let $I_+ = \{((x,0); x > 0)\}$ be the positive real axis in $\mathbb{R}^2 \setminus \{0\}$. We also regard the unit circle \mathbb{S}^1 as a submanifold of $\mathbb{R}^2 \setminus 0$. Note that polar coordinates (r,θ) provide us with a diffeomorphism of $\mathbb{R}^2 \setminus 0$ with $I_+ \times \mathbb{S}^1$. With $r = \sqrt{x^2 + y^2}$ we then have $dr = r^{-1}(xdx + ydy)$ and $d\theta = r^{-2}(xdy - ydx)$.

- (1) Show that $(2\pi)^{-1}d\theta$ is a generator of $H^1(\mathbb{R}^2\setminus 0)$ and is the Poincaré dual of I_+ .
- (2) Let $\rho \in C_c^{\infty}(0,\infty)$ be such that $\int_0^{\infty} \rho(t)dt = 1$. Show that $\rho(r)dr$ is a generator of $H_c^1(\mathbb{R}^2 \setminus 0)$ and is the compact Poincaré dual of \mathbb{S}^1 .
- (3) What is the closed Poincaré dual of \mathbb{S}^1 ?