Differential Forms in Algebraic Topology: Connections and Curvature on Vector Bundles

Sichuan University, Spring 2024

References

Main References

- Sections 7, 10, 11 & 22 of Tu2017.
- Section 5.1 of Chern-Chen.

Connections on a Vector Bundle

Setup

- E is a vector bundle over a smooth manifold M.
- $\Gamma(E)$ is the $C^{\infty}(M)$ -module of smooth sections of E.

Definition

A connection on E is an \mathbb{R} -bilinear map,

$$\nabla: \mathscr{X}(M) \times \Gamma(E) \longrightarrow \Gamma(E) \qquad (X,s) \longrightarrow \nabla_X s.$$

satisfying the following two properties:

(i) C^{∞} -linearity in X:

$$\nabla_{fX}s = f\nabla_X s \qquad \forall f \in C^{\infty}(M).$$

(ii) Leibniz Rule in s:

$$\nabla_X(fs) = (Xf)s + f\nabla_X s \quad \forall f \in C^\infty(M).$$

Here X ranges over $\mathcal{X}(M)$ and s ranges over $\Gamma(E)$.

Connections on a Vector Bundle

Example

An affine connection is just a connection on the tangent bundle *TM*.

In the same way as with affine connections, by using a partition of unity argument we get:

Theorem

Every smooth vector bundle admits a connection.

Curvature of a Connection

Setup

• $\nabla : \mathscr{X}(M) \times \Gamma(E) \to \Gamma(E)$ is a connection on E.

Definition

The curvature of ∇ is the bilinear map,

$$R: \mathscr{X}(M) \times \mathscr{X}(M) \longrightarrow \mathsf{End}(\Gamma(E)),$$

$$R(X,Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}.$$

Curvature of a Connection

Remark

- If $X, Y \in \mathcal{X}(M)$ and $s \in \Gamma(E)$, then $R(X, Y) \in \text{End}(\Gamma(E))$, and so $R(X, Y)s \in \Gamma(E)$.
- Therefore, we may regard the curvature as a map

$$R: \mathscr{X}(M) \times \mathscr{X}(M) \times \Gamma(E) \longrightarrow \Gamma(E),$$
$$(X, Y, s) \longrightarrow R(X, Y).$$

Proposition

The curvature $(X, Y, s) \to R(X, Y)s$ is $C^{\infty}(M)$ -linear in X, Y, and s.

Metric Connections

Definition

A Riemannian metric (or Euclidean metric) on E is the datum for each $p \in M$ of an inner-product product $\langle \cdot, \cdot \rangle_p$ on E_p that depends smoothly on p in the following sense: for all sections $s_1, s_2 \in \Gamma(E)$ the function $M \ni p \to \langle s_1(p), s_2(p) \rangle_p \in \mathbb{R}$ is smooth.

Example

A Riemmanian manifold is manifold together with a Riemannian metric on its tangent bundle.

Definition

A Riemannian bundle is a smooth vector equipped with a Riemannian metric.

Theorem

Every smooth vector bundle admits a Riemannian metric.

Metric Connections

Definition

A metric connection on a Riemannian bundle $(E, \langle \cdot, \cdot \rangle)$ is a connection ∇ on E that is compatible with the metric, i.e.,

$$\langle \nabla_X s_1, s_2 \rangle + \langle s_1, \nabla_X s_2 \rangle = X(\langle s_1, s_2 \rangle), \quad X \in \mathscr{X}(M), \ s_i \in \Gamma(E).$$

Theorem

Every Riemannian bundle admits a metric connection.

Setup

- E and F are smooth vector bundles over M.
- $\Gamma(E)$ and $\Gamma(F)$ are the $C^{\infty}(M)$ -modules of smooth sections.
- If $U \subseteq M$ is open, then $\Gamma(U, E)$ (resp., $\Gamma(U, F)$) is the $C^{\infty}(U)$ -module of smooth sections of E (resp., F) over U.

Definition

A linear operator $\alpha: \Gamma(E) \to \Gamma(F)$ is a local operator if, given any section $s \in \Gamma(E)$ and any open $U \subseteq M$, we have

$$s = 0$$
 on $U \implies \alpha(s) = 0$ on U .

Remark

Equivalently, α is a local operator if

$$supp(\alpha(s)) \subseteq supp(s) \quad \forall s \in \Gamma(E).$$

Example

If E and F are the trivial line bundle $M \times \mathbb{R}$, then

$$\Gamma(E) = \Gamma(F) \simeq C^{\infty}(M)$$
.

Any (smooth) vector field $X: C^{\infty}(M) \to C^{\infty}(M)$ then is a local operator.

Proposition

Any $C^{\infty}(M)$ -linear operator $\alpha: \Gamma(E) \to \Gamma(F)$ is a local operator.

Lemma

Let $U \subseteq M$ be an open set. Given any $s \in \Gamma(U, E)$ and $p \in U$, there is a global section $\tilde{s} \in \Gamma(E)$ such that

$$\tilde{s} = s$$
 near p .

Theorem

Let $\alpha: \Gamma(E) \to \Gamma(F)$ be a local operator. Given any open $U \subseteq M$, there is a unique linear operator $\alpha_U: \Gamma(U,E) \to \Gamma(U,F)$, called the restriction to U, such that

$$\alpha(s)_{|U} = \alpha_U(s_{|U}) \quad \forall s \in \Gamma(E).$$

Remark

The operator $\alpha_U : \Gamma(U, E) \to \Gamma(U, F)$ is defined as follows:

• If $s \in \Gamma(U, E)$ and $p \in U$, then

$$\alpha_U(s)(p) := \alpha(\tilde{s})(p),$$

where $\tilde{s} \in \Gamma(E)$ is such that $\tilde{s} = s$ near p.

- If $\tilde{s}, \bar{s} \in \Gamma(E)$ are such that $\tilde{s} = \bar{s} = s$ near p, then $\tilde{s} \bar{s} = 0$ near p.
- ullet As lpha is a local operator, we then have

$$\alpha(\tilde{s}) - \alpha(\bar{s}) = \alpha(\tilde{s} - \bar{s}) = 0$$
 near p .

- In particular, $\alpha(\tilde{s})(p) = \alpha(\bar{s})(p)$.
- This shows that $\alpha(\tilde{s})(p)$ does not depend on the choice of \tilde{s} , and so $\alpha_U(s)(p)$ is well defined.

Remark

If $\alpha: \Gamma(E) \to \Gamma(F)$ is $C^{\infty}(M)$ -linear, then $\alpha_U: \Gamma(U, E) \to \Gamma(U, F)$ is $C^{\infty}(U)$ -linear.

Setup

• E_1 , E_2 , and F are smooth vector bundles over M.

Definition

A bilinear map $\beta: \Gamma(E_1) \times \Gamma(E_2) \to \Gamma(F)$ is a local operator if, given any $s_i \in \Gamma(E_i)$ and any open $U \subseteq M$, we have

$$(s_1 = 0 \text{ or } s_2 = 0 \text{ on } U) \implies \beta(s_1, s_2) = 0 \text{ on } U.$$

Example

Any $C^{\infty}(M)$ -bilinear map $\beta : \Gamma(E_1) \times \Gamma(E_2) \to \Gamma(F)$ is a local operator.

Proposition

If $\beta: \Gamma(E_1) \times \Gamma(E_2) \to \Gamma(F)$ is a local bilinear operator, then, for any open $U \subseteq M$, there is a unique bilinear operator $\beta_U: \Gamma(U, E_1) \times \Gamma(U, E_2) \to \Gamma(U, F)$ such that $\beta(s_1, s_2)_{|U} = \beta_U(s_{1|U}, s_{2|U}) \qquad \forall s_i \in \Gamma(U, E_i).$

Remark

If $s_i \in \Gamma(U, E_i)$ and $p \in U$, then

$$\beta_U(s_{1|U},s_{2|U})(p)=\beta(\tilde{s}_1,\tilde{s}_2)(p),$$

where $\tilde{s}_i \in \Gamma(E_i)$ is such that $\tilde{s}_i = s_i$ near p.

Restricting a Connection to an Open Set

Setup

- E is a smooth vector bundle over M.
- $\nabla : \mathscr{X}(M) \times \Gamma(E) \to \Gamma(E)$ is a connection on E.

Proposition

The connection ∇ is a local operator.

Restricting a Connection to an Open Set

Corollary

For every open set $U \subseteq M$, the connection restricts to a bilinear operator, $\nabla^U : \mathscr{X}(U) \times \Gamma(U, E) \longrightarrow \Gamma(U, E).$

Remarks

• $\nabla^U: \mathscr{X}(U) \times \Gamma(U, E) \longrightarrow \Gamma(U, E)$ is the unique bilinear operator such that

$$(\nabla_X^U s)_{|U} = \nabla_{X_{|U}}^U (s_{|U}) \qquad \forall (X, s) \in \mathscr{X}(M) \times \Gamma(E).$$

• If $X \in \mathscr{X}(U)$ and $s \in \Gamma(U, E)$, then

$$(\nabla_X^U s)(p) = (\nabla_{\tilde{X}} \tilde{s})(p),$$

where $\tilde{X} \in \mathcal{X}(M)$ and $\tilde{s} \in \Gamma(E)$ are such that $\tilde{X} = X$ and $\tilde{s} = s$ near p.

Restricting a Connection to an Open Set

Proposition

If $U \subseteq M$ is an open set, then ∇^U is a connection on $E_{|U}$.

Setup

• $E \stackrel{\pi_E}{\to} M$ and $F \stackrel{\pi_F}{\to} M$ are smooth vector bundles over M.

Definition

A smooth bundle map $\varphi: E \to F$ is a smooth map satisfying the following two conditions:

- (i) $\pi_F \circ \varphi = \pi_E$, i.e., $\varphi(E_p) \subseteq F_p$ for all $p \in M$.
- (ii) For every $p \in M$, the induced map $\varphi_p : E_p \to F_p$ is linear.

Facts

Let $\varphi : E \to F$ be a smooth bundle map.

- If $s \in \Gamma(E)$, then $p \to \varphi(s(p))$ is a section of F.
- It can be shown this is a smooth section.
- If $f \in C^{\infty}(M)$, then $\varphi(f(p)s(p)) = f(p)\varphi(s(p))$.

Therefore, we obtain the following result:

Proposition

Any smooth bundle map $\varphi : E \to F$ defines a $C^{\infty}(M)$ -linear map,

$$arphi_{\sharp}: \Gamma(E) \longrightarrow \Gamma(F),$$
 $arphi_{\sharp}(s)(p) := arphi(s(p)), \quad s \in \Gamma(E), \ p \in M.$

Lemma

Let $\alpha: \Gamma(E) \to \Gamma(F)$ be a $C^{\infty}(M)$ -linear map. Given any $s \in \Gamma(E)$ and $p \in M$, we have

$$s(p) = 0 \implies \alpha(s)(p) = 0.$$

Proposition

If $\alpha: \Gamma(E) \to \Gamma(F)$ is a $C^{\infty}(M)$ -linear map, then there is a unique smooth bundle map $\varphi: E \to F$ such that $\varphi_{\sharp} = \alpha$.

Remark

The bundle map $\varphi : E \to F$ is defined as follows:

• If $p \in M$ and $\xi \in E_p$, then

$$\varphi(\xi) = \alpha(s)(p),$$

where $s \in \Gamma(E)$ is such that $s(p) = \xi$.

 Thanks to the previous lemma the r.h.s. does not depend on the choice of s.

Consequence

We have a one-to-one consequence,

$$\left\{\begin{array}{c} \mathsf{smooth} \ \mathsf{bundle} \ \mathsf{maps} \\ \varphi : E \longrightarrow F \end{array}\right\} \longleftrightarrow \left\{\begin{array}{c} C^\infty(M) - \mathsf{linear} \ \mathsf{maps} \\ \alpha : \Gamma(E) \longrightarrow \Gamma(F) \end{array}\right\}.$$

Corollary

Any $C^{\infty}(M)$ -linear map $\omega: \mathscr{X}(M) \to C^{\infty}(M)$ is a smooth 1-form.

Remark

Any 2-form $\omega \in \Omega^2(M)$ gives rise to an alternating $C^{\infty}(M)$ -bilinear map,

$$\mathscr{X}(M) \times \mathscr{X}(M) \ni (X,Y) \longrightarrow \omega(X,Y) \in C^{\infty}(M)$$

Lemma

If $\beta: \mathscr{X}(M) \times \mathscr{X}(M) \to C^{\infty}(M)$ is $C^{\infty}(M)$ -linear, then, given any $X, Y \in \mathscr{X}(M)$ and $p \in M$, we have

$$(X(p) = 0 \text{ or } Y(p) = 0) \implies \beta(X, Y)(p) = 0.$$

Proposition

Let $\omega: \mathscr{X}(M) \times \mathscr{X}(M) \to C^{\infty}(M)$ be $C^{\infty}(M)$ -bilinear and alternating. Then ω is a smooth 2-form on M.

Setup

- ∇ is a connection on a vector bundle E of rank r over M.
- (e_1, \ldots, e_r) is a frame of E over an open subset $U \subseteq M$.
- Any (smooth) section s of E over U can then be uniquely written as $s = \sum a^j e_i$ with $a^i \in C^{\infty}(U)$.
- We denote by ∇ the restriction to U of ∇ .

Facts

- If $X \in \mathcal{X}(U)$, then $\nabla_X e_j$ is a smooth section of E over U.
- We thus have a unique decomposition,

$$abla_X e_j = \sum_i \omega_j^i(X) e_i, \qquad \omega_j^i(X) \in C^{\infty}(U).$$

Lemma

Each map $\mathscr{X}(U) \ni X \to \omega_j^i(X) \in C^{\infty}(U)$ is $C^{\infty}(U)$ -linear, and hence is a smooth 1-form on U.

Definition

- **1** The 1-forms ω_j^i are called the connection 1-forms of ∇ relative to the frame (e_1, \ldots, e_r) .
- 2 The matrix $\omega = (\omega_j^i)$ is called the connection matrix of ∇ relative to the frame (e_1, \ldots, e_r) .

Facts

- If $X, Y \in \mathcal{X}(U)$, then $R(X, Y)e_j$ is a smooth section of E over U.
- We thus have a unique decomposition,

$$R(X,Y)e_j = \sum_i \Omega^i_j(X,Y)e_i, \qquad \Omega^i_j(X,Y) \in C^\infty(U).$$

Lemma

Each map $\mathscr{X}(U) \times \mathscr{X}(U) \ni (X,Y) \to \Omega^i_j(X,Y) \in C^{\infty}(U)$ is $C^{\infty}(U)$ -bilinear and alternating, and hence is a smooth 2-form.

Definition

- **1** The 2-forms Ω_j^i are called the curvature forms of ∇ relative to the frame (e_1, \ldots, e_r) .
- ② The matrix $\Omega = (\Omega_j^i)$ is called the curvature matrix of ∇ relative to the frame (e_1, \dots, e_r) .

Theorem (Second Structural Equation)

For $i, j = 1, \ldots, r$, we have

$$\Omega_j^i = d\omega_j^i + \sum_k \omega_k^i \wedge \omega_j^k.$$

Remark

• If $A = (\alpha_j^i)$ and $B = (\beta_j^i)$ are matrices whose entries are differential forms, then we set

$$dA = (d\alpha_j^i),$$

$$A \wedge B = ((A \wedge B)_j^i), \quad \text{with } (A \wedge B)_j^i = \sum_k A_k^i \wedge B_j^k.$$

• Thus, with $\omega = (\omega_j^i)$ and $\Omega = (\Omega_j^i)$ the structural equation takes the form,

$$\Omega = d\omega + \omega \wedge \omega.$$

Proposition

Assume E is a Riemannian bundle and ∇ is a metric connection. If (e_1, \ldots, e_r) is an orthonormal frame, the connection matrix $\omega = (\omega_j^i)$ and the curvature matrix $\Omega = (\Omega_j^i)$ are both skew-symmetric.

We have the following converse result:

Proposition

Assume E is a Riemannian bundle. If near any point $p \in M$ there is an orthonormal frame relative to which the connection matrix is skew-symmetric, then ∇ is a metric connection.

Bianchi Identity

Proposition (Second Bianchi identity)

We have

$$d\Omega = \Omega \wedge \omega - \omega \wedge \Omega$$
.

Proof.

• As $\Omega = d\omega + \omega \wedge \omega$, we get

$$d\Omega = d(\omega \wedge \omega) = d\omega \wedge \omega - \omega \wedge d\omega.$$

• As $d\omega = \Omega - \omega \wedge \omega$ we get

$$d\Omega = (\Omega - \omega \wedge \omega) \wedge \omega - \omega \wedge (\Omega - \omega \wedge \omega)$$

= $\Omega \wedge \omega - \omega \wedge \Omega$.

The result is proved.

Change of Frame

Setup

- $(\overline{e}_1, \dots, \overline{e}_r)$ is another frame of E over U.
- We thus have

$$\overline{e}_j = \sum_i a^i_j e_i, \quad ext{with } a = (a^i_j) \in C^\infty(U, \operatorname{GL}_r(\mathbb{R})).$$

Theorem

Let $\overline{\omega}$ and $\overline{\Omega}$ be the connection matrix and curvature matrix relative to $(\overline{e}_1, \dots, \overline{e}_r)$. Then, we have

$$\overline{\omega} = a^{-1}\omega a + a^{-1}da,$$

$$\overline{\Omega} = a^{-1}\Omega a.$$

Affine Connections

Setup

- ∇ is an affine connection, i.e., a connection on TM.
- (e_1, \ldots, e_n) is a tangent frame over an open $U \subseteq M$.
- $(\theta^1, \dots, \theta^n)$ is the dual coframe, i.e., the frame of T^*M such that $\theta^i(e_j) = \delta^i_j$.
- We let θ be the column vector with entries θ^i .

Remarks

- If $(U, x^1, ..., x^n)$ are local coordinates, then as tangent frame and dual coframe we may take $(\partial_{x^1}, ..., \partial_{x^n})$ and $(dx^1, ..., dx^n)$.
- For every vector field $X \in \mathcal{X}(U)$, we have

$$X = \sum_{i} \theta^{i}(X)e_{i}.$$

Affine Connections

Facts

• The torsion of ∇ is

$$T(X,Y) = \nabla_X Y - \nabla_Y X - \nabla_{[X,Y]}, \qquad X,Y \in \mathscr{X}(U).$$

• As T(X, Y) is a smooth vector field on U, we may write

$$T(X,Y) = \sum_{i} \tau^{i}(X,Y)e_{i}, \qquad \tau^{i}(X,Y) \in C^{\infty}(U).$$

Lemma

Each $\mathscr{X}(U) \times \mathscr{X}(U) \ni (X,Y) \to T(X,Y) \in C^{\infty}(U)$ is $C^{\infty}(U)$ -bilinear and alternating, and hence is a smooth 2-form.

Definition

The 2-forms τ^i are called the torsion forms of ∇ relative to the frame (e_1, \ldots, e_r) .

Affine Connections

Remark

We denote by τ the *r*-column matrix whose entries are τ^1, \ldots, τ^r .

Theorem (Structural Equations)

We have

$$\tau = d\theta + \omega \wedge \theta,$$
$$\Omega = d\omega + \omega \wedge \omega.$$

Corollary

Assume M is a Riemannian manifold and ∇ is the Levi-Civita connection. If (e_1, \ldots, e_n) is an orthonormal tangent frame, then the connection form ω is the unique skew-symmetric matrix of 1-forms such that

$$d\theta + \omega \wedge \theta = 0.$$

Bianchi Identities

$\mathsf{Theorem}$

We have

$$\begin{split} d\tau &= \Omega \wedge \theta - \omega \wedge \tau, \\ d\Omega &= \Omega \wedge \omega - \omega \wedge \Omega. \end{split}$$

Proof.

- The 2nd equality is known already. We only need to prove the 1st equality.
- As $\tau = d\theta + \omega \wedge \theta$, we get

$$d\tau = d(\omega \wedge \theta) = d\omega \wedge \theta - \omega \wedge d\theta.$$

• As $d\theta = \tau - \omega \wedge \theta$ and $d\omega = \Omega - \omega \wedge \omega$, we get

$$d\tau = (\Omega - \omega \wedge \omega) \wedge \theta - \omega \wedge (\tau - \omega \wedge \theta)$$
$$= \Omega \wedge \theta - \omega \wedge \tau.$$

The proof is complete.

Bianchi Identities

Remark

If ∇ is torsion-free (e.g., ∇ is a Levi-Civita connection), then the 1st Bianchi identity reduces to

$$\Omega \wedge \theta = 0$$
.