Differential Forms in Algebraic Topology: Chern-Weil Construction of Characteristic Classes. Pontryagin Classes

Sichuan University, Spring 2024

References

Main References

- Sections 20.4, 22.10, 23, 24, 26 & Appendix B of Tu2017.
- Section 22 of Bott-Tu.

Setup

- $f: N \to N$ is a smooth map between smooth manifolds.
- $E \xrightarrow{\pi} M$ is a smooth vector bundle of rank k.

Definition

As a set the pullback bundle is

$$f^*E := \{(q, v) \in N \times E; \ f(q) = \pi(v)\}.$$

Lemma

 f^*E is regular submanifold of $N \times E$ of dimension dim N+k. In particular, this is a smooth manifold.

Remark

Let $\pi_1: N \times E \to N$ and $\pi_2: N \times E \to E$ the projections on the 1st and 2nd factors.

- By restriction we get smooth maps $\eta := \pi_{1|f^*E} : f^*E \to N$ and $\tilde{f} := \pi_{2|f^*E} : f^*E \to E$.
- We then have a commutative diagram,

$$f^*E \xrightarrow{\tilde{f}} E$$

$$\downarrow^{\eta} \qquad \downarrow^{\pi}$$

$$N \xrightarrow{f} M.$$

• That is, \tilde{f} is a lift of f.

Consequence

If $s: M \to E$ is a smooth section, then the map

$$f^*s: N \longrightarrow f^*E, \quad q \longrightarrow (q, s(f(q))),$$

is smooth and $\eta \circ (f^*s) = \mathbb{1}_N$.

Facts

- The map $\eta: f^*E \to N$ is a surjective submersion.
- Given any $q \in N$, we have

$$\eta^{-1}(q) = \{(q, v); v \in E \text{ s.t. } \pi(v) = f(q)\}.$$

- As $\pi(v)=f(q)\Leftrightarrow v\in\pi^{-1}(f(q))=E_{f(q)}$, we get $\eta^{-1}(q)=\{q\}\times E_{f(q)}.$
- In particular, $\eta^{-1}(q)$ is a vector space that is naturally identified with $E_{f(q)}$.

Remark

At the set theoretic level, we then have

$$f^*E = \bigsqcup_{q \in N} \eta^{-1}(q) \simeq \bigsqcup_{q \in N} E_{f(q)}.$$

Proposition

 $f^*E \xrightarrow{\eta} f^*E$ is a smooth vector bundle.

Remark

The smooth vector bundle structure is such that, if $q \in N$ and (e_1, \ldots, e_k) is a smooth frame of E over an open $U \ni f(q)$, then (f^*e_1, \ldots, f^*e_k) is smooth frame of f^*E over $f^{-1}(U)$.

Proposition

Let $\nabla : \mathscr{X}(M) \times \Gamma(E) \to \Gamma(E)$ be a connection on E.

- **1** There is a unique connection $f^*\nabla: \mathscr{X}(N) \times \Gamma(f^*E) \to \Gamma(f^*E)$ on f^*E such that $(f^*\nabla)_X (f^*s) = f^* (\nabla_{f_*X}s) \quad \forall X \in \mathscr{X}(N) \ \forall s \in \Gamma(E).$
- ② If $\omega = (\omega_j^i)$ is the connection 1-form of ∇ relative to a C^{∞} -fram (e_1, \ldots, e_k) of E, then the connection 1-form of $f^*\nabla$ relative to the frame (f^*e_1, \ldots, f^*e_k) is $f^*\omega = (f^*\omega_i^i)$.

Isomorphisms of Vector Bundles

Setup

• $E_1 : \stackrel{\pi}{\to} M$ and $E_2 : \stackrel{\pi}{\to} N$ are smooth vector bundles over M.

Reminder (Bundle Maps)

A smooth bundle map $\varphi: E_1 \to E_2$ is a smooth map such that:

- (i) $\pi \circ \varphi = \pi$, i.e., $\varphi(E_{1,p}) \subseteq E_{2,p}$ for all $p \in M$.
- (ii) For every $p \in M$, the induced map $\varphi_p : E_{1,p} \to E_{2,p}$ is linear.

Definition

A bundle map $\varphi: E_1 \to E_2$ is an isomorphism if this is a bijection and its inverse is a (smooth) bundle map.

Isomorphisms of Vector Bundles

Remark

Let $\varphi: E_1 \to E_2$ be a bundle map.

- This is an isomorphism if and only if, for each $p \in M$, the induced map $\varphi_p : E_{1,p} \to E_{2,p}$ is a linear isomorphism.
- In particular, if φ is an isomorphism, then E_1 and E_2 must have the same rank.

Proposition

① If $f: N \to M$ and $g: P \to N$ are smooth maps, then we have a canonical vector bundle isomorphism,

$$g^*(f^*E) \simeq (f \circ g)^*E$$
.

② In particular, if $f: M \to M$ is an isomorphism, then $f^*E \simeq E$.

Characteristic Classes

Notation

Let M be a smooth manifold.

- Vect(M) is the set of isomorphism classes of smooth vector bundles over M.
- **2** Vect_k(M), $k \ge 1$, is the subset of isomorphism classes of vector bundles of rank k.

Remark

- By pullback any smooth map f: N → M gives rise to a natural map,
 f*: Vect(M) → Vect(N).
- It follows that $M \to \text{Vect}(M)$ is a functor from the category of manifolds to the category of sets.

Characteristic Classes

Definition

A characteristic class is the datum for each smooth manifold M of a map

$$c_M : \mathsf{Vect}(M) \longrightarrow H^*(M)$$

which is natural in the sense that, for every smooth map $f: N \to M$ between smooth manifolds, we have

$$c_N(f^*E) = f^*c_M(E) \qquad \forall E \in \text{Vect}(M).$$

Remark

In other words, a characteristic class is a natural transformation $c: \mathsf{Vect}(\cdot) \to H^*(\cdot)$ from the Vect-functor to the de Rham cohomology functor.

Setup

- $\mathfrak{gl}_r(\mathbb{R})$ is the Lie algebra of $n \times n$ matrices with real entries.
- $GL_r(\mathbb{R})$ is the Lie group of invertible $n \times n$ matrices with real entries.

Fact

$$\operatorname{\mathsf{GL}}_r(\mathbb{R})$$
 acts on $\mathfrak{gl}_r(\mathbb{R})$ by the adjoint action,
$$\operatorname{\mathsf{Ad}}:\operatorname{\mathsf{GL}}_r(\mathbb{R})\times\mathfrak{gl}_r(\mathbb{R})\longrightarrow\mathfrak{gl}_r(\mathbb{R}),$$

$$\operatorname{\mathsf{Ad}}_A(X)=A^{-1}XA,\qquad (A,X)\in\operatorname{\mathsf{GL}}_r(\mathbb{R})\times\mathfrak{gl}_r(\mathbb{R}).$$

Setup

• $\mathbb{R}[x_j^i]$ is the algebra of polynomials in the indeterminate $r \times r$ matrix $X = (x_i^i)$.

Remark

• We have an adjoint action of $GL_r(\mathbb{R})$ on $\mathbb{R}[x_i^i]$.

$$\mathsf{Ad}: \mathsf{GL}_r(\mathbb{R}) \times \mathbb{R}[x_j^i] \longrightarrow \mathbb{R}[x_j^i],$$
$$\mathsf{Ad}_{\mathcal{A}}(P) = P(\mathcal{A}^{-1}X\mathcal{A}), \qquad (\mathcal{A}, P) \in \mathsf{GL}_r(\mathbb{R}) \times \mathbb{R}[x_j^i].$$

• We then have

$$(\operatorname{Ad}_A P)(X) = P(A^{-1}XA) = P(\operatorname{Ad}_A X) \quad \forall X \in \mathfrak{gl}_r(\mathbb{R}).$$

Definition

A polynomial $P(X) \in \mathbb{R}[x_j^i]$ is invariant (or $\operatorname{Ad}\operatorname{GL}_r(\mathbb{R})$ -invariant) if $\operatorname{Ad}_A(P) = P \qquad \forall A \in \operatorname{GL}_r(\mathbb{R}).$

Remark

Equivalently, polynomial $P(X) \in \mathbb{R}[x]$ is invariant if

$$P(A^{-1}XA) = P(X)$$
 $\forall A \in GL_r(\mathbb{R})$ $\forall X \in \mathfrak{gl}_r(\mathbb{R}).$

Definition

The set of $Ad GL_r(\mathbb{R})$ -invariant polynomials is denoted $Inv(\mathfrak{gl}_r(\mathbb{R}))$.

Remark

 $\mathsf{Inv}(\mathfrak{gl}_r(\mathbb{R}))$ is a sub-ring of $\mathbb{R}[x_i^i]$.

Example

The trace Tr[X] and the determinant det(X) are invariant polynomials.

Example

Given any $k \ge 1$, the polynomial $\Sigma_k(X) := \text{Tr}[X^k]$ is an invariant polynomial. It is called the k-th trace polynomial.

Example

• The characteristic polynomial of -X is

$$\det(\lambda + X) = \lambda^r + f_1(X)\lambda^{r-1} + \dots + f_{r-1}(X)\lambda + f_r(X),$$

where $f_1(X), \ldots, f_r(X)$ are polynomials in $\mathbb{R}[x_j^i]$ with $f_r(X) = \det(X)$.

• If $\lambda_1, \ldots, \lambda_r$ are the eigenvalues of X counted with multiplicity, then

$$f_k(X) = \sum_{i_1 \leq \dots \leq i_r} \lambda_{i_1} \cdots \lambda_{i_r}.$$

- The Ad $GL_r(\mathbb{R})$ -invariance of $det(\lambda + X)$ implies the invariance of the coefficients $f_1(X), \ldots, f_r(X)$.
- The invariants polynomials $f_1(X), \ldots, f_r(X)$ are called the coefficients of the characteristic polynomials of -X.

Theorem

- **4** As a ring $\operatorname{Inv}(\mathfrak{gl}_r(\mathbb{R}))$ is generated by the trace polynomials $\operatorname{Tr}[X], \ldots, \operatorname{Tr}[X^r]$.
- ② It is also generated by the coefficients $f_1(X), \ldots, f_r(X)$ of the characteristic polynomial $det(\lambda + X)$.

Remark

• A polynomial $P \in \mathbb{R}[x_j^i]$ is a linear combinations of monomials, $E_I^i(X) := x_i^{i_1} \cdots x_i^{i_k},$

where $I = (i_1, ..., j_k)$ and $J = (j_1, ..., j_k)$ range over $\{1, ..., r\}^k$ and k ranges over non-negative integers.

• If $\lambda \in \mathbb{R}$, then $\lambda X = (\lambda x_i^i)$, and so we have

$$E'_J(\lambda X) := (\lambda x_{j_1}^{i_1}) \cdots (\lambda x_{j_k}^{i_k}) = \lambda^k E'_J(X).$$

Definition

A polynomial $P \in \mathbb{R}[x_i^i]$ is homogeneous of degree k, $k \ge 0$, if

$$P(\lambda X) = \lambda^k P(X) \qquad \forall \lambda \in \mathbb{R}.$$

Remark

k must be a non-negative integer.

Lemma

Let $P \in \mathbb{R}[x_i^i]$.

(i) P has a unique decomposition,

$$P(X) = P_0(X) + P_1(X) + \cdots + P_m(X),$$

where $P_k(X) \in \mathbb{R}[x_i^i]$ is homogeneous of degree k.

(ii) If P(X) is $Ad GL_r(\mathbb{R})$ -invariant, then all the homogeneous components $P_0(X), \ldots, P_m(X)$ are $Ad GL_r(\mathbb{R})$ -invariant.

Setup

- \mathscr{A} is an \mathbb{R} -algebra with unit $1_{\mathscr{A}}$.
- We have a natural embedding $\mathbb{R} \ni \lambda \hookrightarrow \lambda 1_{\mathscr{A}} \in \mathscr{A}$.
- $\mathfrak{gl}_r(\mathscr{A})$ is the algebra of $r \times r$ -matrices with entries in \mathscr{A} .

Remark

- The embedding $\mathbb{R} \hookrightarrow \mathscr{A}$ gives rise to an algebra embedding $\mathfrak{gl}_r(\mathbb{R}) \hookrightarrow \mathfrak{gl}_r(\mathscr{A})$.
- We thus have an $\operatorname{Ad}\operatorname{GL}_r(\mathbb{R})$ -action on $\mathfrak{gl}_r(\mathscr{A})$,

$$\operatorname{\mathsf{Ad}}:\operatorname{\mathsf{GL}}_r(\mathbb{R})\times\mathfrak{gl}_r(\mathscr{A})\longrightarrow\mathfrak{gl}_r(\mathscr{A}),\qquad\operatorname{\mathsf{Ad}}_A(X)=A^{-1}XA.$$

Theorem

If
$$P \in Inv(\mathfrak{g}_r(\mathbb{R}))$$
, then

$$P(A^{-1}XA) = P(X)$$
 $\forall A \in GL_r(\mathbb{R}) \ \forall X \in \mathfrak{gl}_r(\mathscr{A}).$

Setup

• $P \in Inv(\mathfrak{gl}_r(\mathbb{R}))$ is a homogeneous polynomial of degree k.

Setup

- M is a smooth manifold of dimension n.
- $E \xrightarrow{\pi} M$ is a smooth vector bundle of rank r.
- ∇ is a connection on E.

Setup

- (e_1, \ldots, e_r) is a C^{∞} -frame of E over an open $U \subseteq M$.
- $\Omega = (\Omega_j^i)$ is the curvature matrix of ∇ relative to (e_1, \ldots, e_r) .

Facts

- The exterior algebra $\Omega^*(U) = \oplus \Omega^j(U)$ is an \mathbb{R} -algebra.
- Each curvature form $\Omega_i^i \in \Omega^2(U)$, and so $\Omega \in \mathfrak{gl}_r(\Omega^*(U))$.
- Therefore, we may define

$$P(\Omega) \in \Omega^*(U)$$
.

Facts

 As P(X) is a homogeneous of degree k it is linear combinations of monomials,

$$x_{j_1}^{i_1}x_{j_2}^{i_2}\cdots x_{j_k}^{i_k},$$

where (i_1, \ldots, i_k) and (j_1, \ldots, j_k) range over $\{1, \ldots, r\}^k$.

• Thus, $P(\Omega)$ is a linear combination of monomials,

$$\Omega_{j_1}^{i_1} \wedge \Omega_{j_2}^{i_2} \wedge \cdots \wedge \Omega_{j_k}^{i_k} \in \Omega^{2k}(U).$$

It then follows that

$$P(\Omega) \in \Omega^{2k}(U)$$
.

• In particular, $P(\Omega) = 0$ for $k > \frac{1}{2}n$.

Facts

- If $p \in U$, then $\Lambda^* T_p^* M$ is an \mathbb{R} -algebra as well.
- $\Omega_p = ((\Omega_i^i)_p) \in \mathfrak{gl}_r(\Lambda^* T_p^* M).$
- Therefore, we may also define $P(\Omega_p)$, and we then have

$$P(\Omega_p) = P(\Omega)_p \in \Lambda^{2k} T_p^* M.$$

Setup

- $(\overline{e}_1, \dots, \overline{e}_r)$ is another C^{∞} -frame of E over U.
- We then may write $e_j = \sum a_j^i e_i$, with $a = (a_i^i) \in C^{\infty}(U, \operatorname{GL}_r(\mathbb{R}))$.
- $\overline{\Omega}$ is the curvature matrix of ∇ relative to $(\overline{e}_1, \dots, \overline{e}_r)$.

Reminder

We have

$$\overline{\Omega} = a^{-1}\Omega a$$
.

• In particular, at p we have

$$\overline{\Omega}_p = a(p)^{-1}\Omega_p a_p = \operatorname{Ad}_{a(p)}\Omega_p.$$

Lemma

$$P(\overline{\Omega})_p = P(\Omega)_p.$$

Proof.

Thanks to the $Ad GL_r(\mathbb{R})$ -invariance of P, we have

$$P(\overline{\Omega})_p = P(\overline{\Omega}_p) = P(\operatorname{Ad}_{a(p)}\Omega_p) = P(\Omega_p) = P(\Omega)_p.$$

Consequence

 $P(\Omega)_p$ does not depend on the choice of the frame (e_1, \ldots, e_r) near p.

To sum up we have proved:

Proposition

If $P \in \operatorname{Inv}(\mathfrak{gl}_r(\mathbb{R}))$ is homogeneous of degree k, then there is a unique differential form $P(\Omega) \in \Omega^k(U)$, such that, given any $p \in M$, we have $P(\Omega)_p = P(\Omega_p),$

where Ω is the curvature matrix of ∇ relative to any C^{∞} -frame of E near p.

Remark

If \mathscr{A} is an \mathbb{R} -algebra with unit, then, given any $X \in \mathfrak{gl}_r(\mathscr{A})$, the map $\mathbb{R}[x_i^i] \ni P \to P(X) \in \mathfrak{gl}_r(\mathscr{A})$ is an algebra map.

Lemma

If $P \in \operatorname{Inv}(\mathfrak{g}_r(\mathbb{R}^n))$ is homogeneous of degree k and $Q \in \operatorname{Inv}(\mathfrak{g}_r(\mathbb{R}^n))$ is homogeneous of degree ℓ , then

$$(PQ)(\Omega) = P(\Omega) \wedge Q(\Omega) \in \Omega^{k+\ell}(M).$$

Remark

- The above considerations can be extended to non-homogeneous polynomials in $Inv(\mathfrak{gl}_r(\mathbb{R}))$.
- If $P \in Inv(\mathfrak{gl}_r(\mathbb{R}))$ and we put $P = P_0 + \cdots + P_m$, where P_k is homogeneous of degree k, then we define

$$P(\Omega) := P_0(\Omega) + \cdots + P_m(\Omega) \in \Omega^*(M).$$

Therefore, we arrive at the following result:

Proposition

The data of (E, ∇) define a graded algebra map,

$$\operatorname{Inv}(\mathfrak{gl}_r(\mathbb{R})) \longrightarrow \Omega^*(M), \qquad P \longrightarrow P(\Omega).$$

Proposition

Let $P \in Inv(\mathfrak{gl}_r(\mathbb{R}))$ be a homogeneous of degree k.

- **1** The differential form $P(\Omega) \in \Omega^{2k}(M)$ is closed.
- ② Its cohomology class $[P(\Omega)] \in H^{2k}(M)$ does not depend on ∇ .

Remark

If $P \in Inv(\mathfrak{gl}_r(M))$ and we put $P = P_0 + \cdots + P_m$, with P_k homogeneous of degree k, then

$$[P(\Omega)] = [P_0(\Omega)] + \cdots + [P_m(\Omega)] \in H * (M)$$

does not depend on ∇ .

Therefore, we arrive at the following result:

Theorem

The datum of E uniquely define a graded algebra map,

$$c_E : \mathsf{Inv}(\mathfrak{gl}_r(\mathbb{R})) \longrightarrow H^*(M), \qquad P \longrightarrow [P(\Omega)].$$

This map is called the Chern-Weil homomorphism.

Remark

Let $\varphi : F \to E$ be a vector bundle isomorphism.

• We have a connection $\varphi^* \nabla$ on F given by

$$(\varphi^*\nabla)_X s = \varphi^{-1}(\nabla_X(\varphi \circ s)), \qquad X \in \mathscr{X}(M), \ s \in \Gamma(F).$$

- If (f_1, \ldots, f_r) is a local frame of E, then $\varphi(f_1), \ldots, \varphi(f_r)$.
- If ω is a connection matrix of ∇ relative to $(\varphi(f_1), \ldots, \varphi(f_r))$, then this is also the connection matrix of $\varphi^*\nabla$ relative to (f_1, \ldots, f_r) .
- It follows that $\varphi^*\nabla$ and ∇ have the same curvature matrix.
- We then deduce that, for all $P \in Inv(\mathfrak{gl}_r(\mathbb{R}))$, we have

$$c_F(P) = [P(\Omega)] = c_E(P).$$

 This shows that the Chern-Weil homomorphism c_E depends only on the isomorphism class of E

Lemma

If $f: \mathbb{N} \to M$ be a smooth map, then

$$c_{f^*E}(P) = f^*c_E(P) \qquad \forall P \in \mathsf{Inv}(\mathfrak{gl}_r(\mathbb{R})).$$

Proof.

- Let ∇ be a connection on E. Then $f^*\nabla$ is a connection on f^*E .
- Let (e_1, \ldots, e_r) be a C^{∞} -frame of E over an open $U \subseteq M$.
- If ω is the connection matrix of ∇ relative to this frame, then the connection matrix of $f^*\nabla$ is $\overline{\omega} = f^*\omega$.
- If Ω and $\overline{\Omega}$ be the curvature matrices of ∇ and $f^*\nabla$, then

$$\overline{\Omega} = d\overline{\omega} + \overline{\omega} \wedge \overline{\omega} = f^*\omega + f^*\omega \wedge f^*\omega = f^*(d\omega + \omega \wedge \omega) = f^*\Omega.$$

• Therefore, on $f^{-1}(U)$ we have

$$P(\overline{\Omega}) = P(f^*\Omega) = f^*P(\Omega).$$

It then follows that

$$c_{f^*E}(P) = [P(\overline{\Omega})] = [f^*P(\Omega)] = f^*[P(\Omega)] = f^*c_E(P).$$

The result is proved.

Combining all this we then arrive at the following result:

Theorem

The datum of any invariant polynomial $P \in Inv(\mathfrak{gl}_r(\mathbb{R}))$ defines a characteristic class,

$$c_M : \mathsf{Vect}_r(M) \longrightarrow H^*(M), \qquad E \longrightarrow c_E(P).$$

Reminder

• The algebra $\operatorname{Inv}(\mathfrak{gl}_r(\mathbb{R}))$ is generated by the trace polynomials $\operatorname{Tr}[X^k]$, $k=1,\ldots,r$.

Lemma

Suppose that \mathscr{A} be an \mathbb{R} -algebra with unit. Let $A=(a_j^i)\in\mathfrak{gl}_r(\mathscr{A})$ be skew-symmetric, i.e., $A^T=-A$.

- (i) $Tr[A] = a_1^1 + \cdots + a_r^r = 0$.
- (ii) If k is odd, then A^k is skew-symmetric, and hence $Tr[A^k] = 0$.

Proof.

- We have $Tr[A] = Tr[A^T] = -Tr[A] = 0$.
- If k is odd, then

$$(A^k)^T = (A^T)^k = (-A)^k = (-1)^k A^k = -A^k.$$

• That is, A^k is skew-symmetric, and hence $Tr[A^k] = 0$.

Lemma

If k is odd, then the characteristic class $[Tr[\Omega^k]]$ vanishes.

Proof.

- Every vector bundle admits a Riemannian metric and a connection compatible with that metric.
- We may assume that E has a Riemannian metric and ∇ is a metric connection.
- If (e_1, \ldots, e_r) is an orthonormal frame of E over an open U, then the curvature matrix $\Omega = (\Omega_i^i)$ is skew-symmetric.
- By the previous lemma, for all $p \in U$, we then have

$$\operatorname{Tr}[\Omega^k]_p = \operatorname{Tr}[(\Omega_p)^k] = 0.$$

- It then follows that $Tr[\Omega^k] = 0$.
- As the class $[\text{Tr}[\Omega^k]] \in H^{2k}(M)$ does not depend on the connection, this gives the result.

Facts

- Each trace polynomial $\Sigma_k(X) = \text{Tr}[X^k]$, k = 1, ..., r, is homogeneous of degree k.
- These polynomials generate $Inv(\mathfrak{gl}_r(\mathbb{R}))$.
- Therefore, if $P \in Inv(\mathfrak{gl}_r(\mathbb{R}))$ is homogeneous of degree k, then it is a linear combination of products,

$$\Sigma_1^{\alpha_1} \Sigma_2^{\alpha_2} \cdots \Sigma_r^{\alpha_r}, \qquad \alpha_1 + 2\alpha_2 + \cdots + r\alpha_r = k.$$

- If k is odd, then there must be $j \in \{1, \dots r\}$ such that j is odd and $\alpha_i \neq 0$.
- As $[\Sigma_i(\Omega)] = [\operatorname{Tr}[\Omega^j]] = 0$ since j is odd, we then have

$$\big[\Sigma_1^{\alpha_1}\cdots\Sigma_r^{\alpha_r}(\Omega)\big]=[\Sigma_j(\Omega)]^{\alpha_j}\big[\Sigma_1^{\alpha_1}\cdots\Sigma_{j-1}^{\alpha_{j-1}}\Sigma_{j+1}^{\alpha_{j+1}}\cdots\Sigma_r^{\alpha_r}(\Omega)\big]=0.$$

Therefore, we arrive at the following result:

Proposition

If $P \in \operatorname{Inv}(\mathfrak{gl}_r(\mathbb{R}))$ is homogeneous of odd degree, then the corresponding characteristic class $[P(\Omega)] \in H^{2k}(M)$ vanishes.

Reminder

The algebra $Inv(\mathfrak{gl}_r(\mathbb{R}))$ is generated by the following homogeneous polynomials:

- The trace polynomials $Tr[X], \ldots, Tr[X^r]$.
- The coefficients $f_k(X), \ldots, f_r(X)$ of the characteristic polynomial of -X.

Consequence

Set $\ell = \lfloor r/2 \rfloor$. The characteristic classes of E are generated by the following classes:

• The even degree trace polynomials,

$$\big[\,\mathsf{Tr}[\Omega^2]\big],\,\,\big[\,\mathsf{Tr}[\Omega^4]\big],\,\,\ldots,\big[\,\mathsf{Tr}[\Omega^{2\ell}]\big].$$

• The even degree coefficients of the characteristic polynomial $\det(\lambda I + \Omega)$, $f_2(\Omega), f_4(\Omega), \dots, f_{2\ell}(\Omega)$.

Pontryagin Classes

Definition

The k-th Pontryagin class of E is

$$p_k(E) := \left[f_{2k} \left(\frac{i}{2\pi} \Omega \right) \right] \in H^{4k}(M).$$

Definition

Set $\ell = \lceil r/2 \rceil$. The total Pontryagin class of *E* is

$$p(E) := \det \left[I + \frac{i}{2\pi} \Omega \right]$$

= $1 + p_1(E) + \dots + p_{\ell}(E)$.

Pontryagin Classes

Theorem (Whitney Product Formula)

If E and E' are smooth vector bundles over M, then

$$p(E \oplus E') = p(E)p(E').$$

Setup

- M is a compact oriented manifold of dimension <u>4m</u>.
- E is a smooth vector bundle over M of rank r.

Facts

Set $\ell = [r/2]$.

• If $\alpha_1, \alpha_2, \dots, \alpha_\ell$ are non-negative integers, then the product $f_2^{\alpha_1} f_4^{\alpha_2} \cdots f_{2\ell}^{\alpha_\ell}$ is homogeneous of degree

$$k = 2\alpha_1 + 4\alpha_2 + \cdots + 2\ell\alpha_\ell$$
.

Thus,

$$p_1(E)^{\alpha_1}\cdots p_\ell(E)^{\alpha_\ell}=\left[\left(f_2^{\alpha_1}\cdots f_{2\ell}^{\alpha_\ell}\right)\left(\frac{i}{2\pi}\Omega\right)\right]\in H^{2k}(M).$$

• In particular, if $\alpha_1 + 2\alpha_2 + \cdots + \ell \alpha_\ell = m$, then 2k = 4m, and hence

$$p_1(E)^{\alpha_1}p_2(E)^{\alpha_2}\cdots p_\ell(E)^{\alpha_\ell}\in H^{4m}(M).$$

Definition

The integrals,

$$\int_{M} p_1(E)^{\alpha_1} p_2(E)^{\alpha_2} \cdots p_{\ell}(E)^{\alpha_{\ell}}, \qquad \alpha_1 + 2\alpha_2 + \cdots + \alpha_{\ell} = m,$$

are called Pontryagin numbers of E.

Remark

- If $\alpha_1 + 2\alpha_2 + \cdots + \ell \alpha_\ell = m$, then we must have $\alpha_j = 0$ for j > m.
- ② Therefore, only the Pontryagin classes $p_k(E)$ with $k \leq \min(\ell, m)$ comes into play in the definition of the Pontryagin numbers.

Remark

- If E = TM, then r = 4m, and hence $\ell = 2m$.
- We then have $\min(\ell, m) = m$.

Definition

The Pontryagin numbers of M are the Pontryagin numbers of TM, i.e., the integrals,

$$\int_{M} p_1(TM)^{\alpha_1} p_2(TM)^{\alpha_2} \cdots p_m(TM)^{\alpha_m}, \quad \alpha_1 + 2\alpha_2 + \cdots + m\alpha_m = m.$$

Example

If dim M=4 (i.e., m=1), then the only Pontryagin number is $\int_{-p_1(TM)} p_1(TM).$

Example

If dim M=8 (i.e., m=2), then the only Pontryagin numbers are $\int_{M} p_1(TM)^2 \quad \text{and} \quad \int_{M} p_2(TM).$

Question

What manifolds appear as boundaries of manifolds with boundary?

Theorem

Assume that $M = \partial N$, where N is a compact oriented manifold with boundary. Then all the Pontryagin numbers of M vanish.

Corollary

If M has a non-zero Pontryagin number, then M cannot be the boundary of a compact oriented manifold.

Idea of Proof.

• By Stokes' theorem, for any closed form $\omega \in \Omega^{4m}(N)$, we have

$$\int_{\partial N} [\omega] = \int_{\partial N} \omega = \int_{N} d\omega = 0.$$

- It can be shown that the Pontryagin classes on ∂N are restrictions of Pontryagin classes on N.
- The Pontryagin classes are represented by closed forms, and so are their products.
- Thus, if $\alpha_1 + \cdots + m\alpha_m = m$, then

$$\int_{\partial N} p_1^{\alpha_1} \cdots p_m^{\alpha_m} = \int_M d(p_1^{\alpha_1} \cdots p_m^{\alpha_m}) = 0.$$

This gives the result.

Remark

If a manifold M is oriented, then -M is the manifold M with the opposite orientation.

Definition

If M_1 and M_2 are compact oriented manifolds, then we say that M_1 and M_2 are cobordant if there is a compact oriented manifold with boundary N such that $\partial N = M_1 \sqcup (-M_2)$.

Remark

More precisely, this means there are smooth embeddings

 $i_1:M_1\to\partial N$ such that

- $i_1(M_1)$ and $i_2(M_2)$ are disjoint open subsets of ∂N such that $i_1(M_1) \cup i_2(M_2) = \partial N$.
- i_1 is orientation-preserving and i_2 is orientation-reversing.

Example

Any compact oriented manifold M is cobordant to itself, since for $N=M\times [0,1]$, we have

$$\partial N = M \sqcup (-M).$$

Theorem

If M_1 and M_2 are compact oriented manifolds of dimension 4m that are cobordant, then their Pontryagin numbers agree.

Corollary

If M_1 and M_2 don't have the same Pontryagin numbers, then they cannot be cobordant.

Proof.

- Suppose that $M_1 \sqcup (-M_2) = \partial N$, where N is a compact oriented manifold with boundary.
- If $\alpha_1 + 2\alpha_2 + \cdots + m\alpha_m = m$, then

$$\int_{M_1} p_1^{\alpha_1} \cdots p_m^{\alpha_m} - \int_{M_2} p_1^{\alpha_1} \cdots p_m^{\alpha_m} = \int_{M_1 \cup (-M_2)} p_1^{\alpha_1} \cdots p_m^{\alpha_m}$$

$$= \int_{N} p_1^{\alpha_1} \cdots p_m^{\alpha_m}$$

$$= 0$$

This gives the result.

The Embedding Problem

Theorem (Whitney)

Any smooth manifold of dimension n has an embedding into \mathbb{R}^{2n+1} .

Question

What manifolds of dimension n can be embedded into \mathbb{R}^{n+1} ?

Theorem

If M is a compact oriented manifold of dimension 4m that can be embedded into \mathbb{R}^{4m+1} , then all its Pontryagin classes vanish.

Corollary

If one of the Pontryagin classes of M is non-zero, then M cannot be embedded into \mathbb{R}^{4m+1} .

The Embedding Problem

Sketch of Proof.

- By definition, the total Pontryagin class of M is $p(TM) = 1 + p_1(TM) + \cdots + p_m(TM)$.
- Thus, the Pontryagin classes vanish if and only if p(TM) = 1.
- If M is an oriented submanifold of codimension 1 in \mathbb{R}^{4m+1} , then it can be shown there is a nowhere vanishing vector field ν along M such that

$$T(\mathbb{R}^{4m+1})_{|M} = TM \oplus N,$$
 where $N = \mathbb{R}\nu$.

Whitney product formula then gives

$$p(T(\mathbb{R}^{4m+1})_{|M}) = p(TM)p(N).$$

- As N is a line bundle p(N) = 1.
- By naturality $p(T(\mathbb{R}^{4m+1})_{|M}) = p(T(\mathbb{R}^{4m+1})) = 0$.
- It then follows that $p(TM) = p(T(\mathbb{R}^{4m+1})_{|M}) = 1$, which gives the result.