Differential Forms in Algebraic Topology: Review: Bump Functions and Partitions of Unity

Sichuan University, Spring 2024

References

Main References

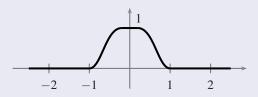
- Section 13 of Tu2011.
- Section 2 of Bott-Tu.

Bump Functions

Definition

Given a point q in a manifold M and an open neighborhood U of q in M, a bump function at q supported in U is any continuous function $\rho: M \to \mathbb{R}$ such that:

$$0 \le \rho \le 1, \qquad \rho = 1 \text{ near } q, \qquad \operatorname{supp}(\rho) \subseteq U.$$



C^{∞} Bump Function on \mathbb{R}

Step 1 (Example 1.3 and Problem 1.2)

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(t) = \begin{cases} e^{-1/t} & \text{for } t > 0, \\ 0 & \text{for } t \le 0. \end{cases}$$

- By definition $0 \le f \le 1$ and f(t) = 0 if and only if $t \le 0$.
- It can also be shown that f is smooth (see Example 1.3 and Problem 1.2 in Tu2011).

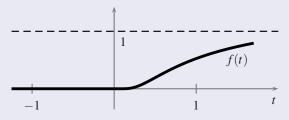


Fig. 13.3. The graph of f(t).

C^{∞} Bump Function on \mathbb{R}

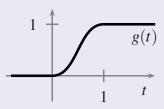
Step 2

Define $g: \mathbb{R} \to \mathbb{R}$ by

$$g(t) = rac{f(t)}{f(t) + f(1-t)}, \qquad t \in \mathbb{R}.$$

- g(t) is well defined and C^{∞} , since f(t) + f(1-t) > 0.
- We have

$$0 \le g \le 1,$$
 $g^{-1}(0) = (-\infty, 0],$ $g^{-1}(1) = [1, \infty).$



C^{∞} Bump Function on \mathbb{R}

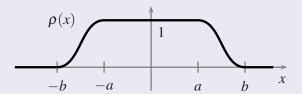
Step 3

Let 0 < a < b, and define $\rho : \mathbb{R} \to \mathbb{R}$ by

$$\rho(x) = 1 - g\left(\frac{x^2 - a^2}{b^2 - a^2}\right), \qquad x \in \mathbb{R}.$$

- $\rho(x)$ is a C^{∞} function.
- We have

$$0 \le \rho \le 1$$
, $\rho^{-1}(1) = [-a, a]$, $\rho^{-1}(0) = (-\infty, -b] \cup [b, \infty)$.



In particular, ρ is a C^{∞} bump function at the origin on \mathbb{R} .

C^{∞} Bump Function on \mathbb{R}^n

Notation

If $q \in \mathbb{R}^n$ and r > 0, then B(q, r) is the open ball about q with radius r in \mathbb{R}^n and $\overline{B}(q, r)$ is its closure.

Lemma

Let $q \in \mathbb{R}^n$, and define $\sigma : \mathbb{R}^n \to \mathbb{R}$ by

$$\sigma(x) = \rho(\|x - q\|), \qquad x \in \mathbb{R}^n.$$

where $\rho(t)$ is as in Step 3. Then $\sigma(x)$ is C^{∞} -function such that

$$0 \le \sigma \le 1$$
, $\sigma^{-1}(1) = \overline{B}(q, a)$, $\sigma^{-1}(0) = \mathbb{R}^n \setminus B(q, b)$.

In particular, σ is a C^{∞} bump function at q supported in $\overline{B}(q,b)$.

C^{∞} Bump Functions on Manifolds

Setup

M is a smooth manifold of dimension n.

Lemma (Extension Lemma)

Assume $U \subseteq M$ is open, and let $f \in C^{\infty}(U)$ have compact support. Define $\tilde{f}: M \to \mathbb{R}$ by

$$ilde{f}_{|U}=f$$
 and $ilde{f}_{M\setminus U}=0.$

Then f is a smooth function on M s.t. $supp(\tilde{f}) = supp(f)$.

Remarks

- The result continues to hold if supp(f) is a closed subset of M contained in U. In general, the result may fail.
- 2 This gives a natural identification,

$$C_c^{\infty}(U) \simeq \{ f \in C_c^{\infty}(M); \text{ supp}(f) \subseteq U \}.$$

C^{∞} Bump Functions on Manifolds

Proposition

Let $p \in M$. Given any open neighborhood U of p in M, there exists a C^{∞} bump function at p with compact support in U.

Sketch of Proof.

- Let (V, ϕ) be a chart near p. Set $q = \phi(p)$, and let r > 0 be s.t. $\overline{B}(q, r) \subseteq \phi(U \cap V)$.
- Let $\sigma \in C_c^{\infty}(\mathbb{R}^n)$ be a C^{∞} -bump function at q with (compact) support in $\overline{B}(q,r)$.
- Set $\psi = \sigma \circ \phi$. Then ψ is a C^{∞} bump function on V at p with compact support in $U \cap V$.
- By the Extension Lemma it uniquely extends to $\tilde{\psi} \in C_c^{\infty}(M)$ such that $\tilde{\psi} = \psi$ on $U \cap V$ and $\operatorname{supp}(\tilde{\psi}) = \operatorname{supp}(\psi)$.
- Thus, $\tilde{\psi}$ is a C^{∞} bump function on M near p with compact support in U.

Application: Extension of Smooth Functions

Remark

Let $f: U \to \mathbb{R}$ be a C^{∞} function on an open U of a manifold M.

- If f is constant outside some compact set (or even some closed subset of M contained in U), then in a similar way as on Slide 8 we may extend f into a C^{∞} -function on the whole manifold M.
- In general this is not possible.

Application: Extension of Smooth Functions

Facts

Assume $U \subseteq M$ is open, $p \in U$. Let $\psi \in C_c^{\infty}(U)$ be a bump function near p (so that $\psi = 1$ near p).

- If $f \in C^{\infty}(U)$, then ψf is a smooth function on U with compact support.
- By the Extension Lemma it uniquely extends to a smooth function $\tilde{f}: M \to \mathbb{R}$ such that $\operatorname{supp}(\tilde{f}) = \operatorname{supp}(\psi f)$.
- In particular, $\tilde{f} = \psi f$ on U, and hence $\tilde{f} = \psi f = f$ near p.

Therefore, we have proved the following result.

Proposition (Proposition 13.2; Extension of smooth functions)

Let $p \in M$ and U an open neighborhood of p. Then, for every smooth function $f: U \to \mathbb{R}$, there exists a smooth function $\tilde{f}: M \to \mathbb{R}$ with compact support in U such that $\tilde{f} = f$ near p.

Definition

Let $(f_{\alpha})_{\alpha \in A}$ be a family of continuous functions on M.

- **1** We say that this family is finite if $\{\alpha \in A; f_{\alpha} \neq 0\}$ is finite.
- ② We say that this family is locally finite if every point $p \in M$ has an open neighborhood V such that the family of restrictions $((f_{\alpha})_{|V})_{\alpha \in A}$ is finite, i.e., $\{\alpha \in A; (f_{\alpha})_{|V} \neq 0\}$ is finite.

Remark

- If V is open, then $(f_{\alpha})_{|V} = 0$ iff $V \subseteq M \setminus (\text{supp}(f_{\alpha}))$.
- Equivalently, $(f_{\alpha})_{|V} \neq 0$ if and only if $V \cap \text{supp}(f_{\alpha}) \neq \emptyset$.
- Thus, $(f_{\alpha})_{\alpha \in A}$ is locally finite if and only if each $p \in M$ has an open neighborhood V s.t. $\{\alpha \in A; V \cap \text{supp}(f_{\alpha}) \neq \emptyset\}$ is finite.

Remark

Let $(f_{\alpha})_{\alpha \in A}$ be a locally finite family of continuous functions. Let $K \subseteq M$ be compact.

- For every $q \in K$ there is an open neighborhood V_q of q such that $J(V_q) := \{\alpha; (f_\alpha)_{|V_q} \neq 0\}$ is finite.
- Here $K \subseteq \bigcup_{q \in K} V_q$. As K is compact, we can find a finite family $\{q_1, \ldots, q_m\}$ in K such that $K \subseteq \bigcup_{i=1}^m V_{q_i}$.
- If $f_{\alpha} \neq 0$ on K, then there is $q \in K$ and $i \in \{1, ..., m\}$ such that $f_{\alpha}(q) \neq 0$ and $q \in V_{q_i}$, and hence $\alpha \in J(V_{q_i})$.
- Thus,

$$J(K) := \{\alpha; (f_{\alpha})_{|K} \neq 0\} \subseteq \bigcup_{i=1}^{m} J(V_{q_i}).$$

• In particular, J(K) is finite.

In fact, we have the following result:

Lemma

Let $(f_{\alpha})_{\alpha \in A}$ be a family of continuous functions on M. TFAE:

- **1** The family $(f_{\alpha})_{\alpha \in A}$ is locally finite.
- **2** For every compact subset $K \subseteq M$, the set $J(K) := \{\alpha \in A; (f_{\alpha})_{|K} \neq 0\}$ is finite.

Remarks

- Specializing this to $K = \{pt\}$ shows that, for every $p \in M$, the set $J(p) := \{\alpha \in A; f_{\alpha}(p) \neq 0\}$ is finite.
- ② If *M* is compact, then every locally finite family of continuous functions is finite.

Facts

Let $(f_{\alpha})_{\alpha \in A}$ be a finite family in $C^{\infty}(M)$.

- The index set $J := \{ \alpha \in A; f_{\alpha} \neq 0 \}$ is finite.
- We then can set

$$\sum_{\alpha \in A} f_{\alpha} := \sum_{\alpha \in J} f_{\alpha}.$$

• This defines a smooth function on *M*.

Facts

Let $(f_{\alpha})_{\alpha \in A}$ be a locally finite family in $C^{\infty}(M)$.

- Given any $p \in M$, the set $J(p) := \{\alpha \in A; f_{\alpha}(p) \neq 0\}$ is finite.
- We then set

$$\sum_{\alpha\in A} f_{\alpha}(p) := \sum_{\alpha\in J(p)} f_{\alpha}(p).$$

- This defines a function $\sum_{\alpha \in A} f_{\alpha} : M \to \mathbb{R}$.
- Such a function is called a locally finite sum.

Facts (continued)

- Let V be an open neighborhood of p such that $J(V) := \{\alpha; V \cap \text{supp}(f_{\alpha}) \neq \emptyset\}$ is finite.
- If $q \in V$, then $J(q) \subseteq J(V)$ and $f_{\alpha}(q) = 0$ if $\alpha \in J(V) \setminus J(q)$.
- Thus, $\sum_{\alpha \in A} f_{\alpha}(q) = \sum_{\alpha \in J(q)} f_{\alpha}(q) = \sum_{\alpha \in J(V)} f_{\alpha}(q).$
- This shows that

$$\sum_{\alpha\in A}f=\sum_{\alpha\in J(V)}f_{\alpha}\quad\text{on }V.$$

- As J(V) is finite, we then see that $\sum_{\alpha \in A} f$ is C^{∞} on V.
- Thus, $\sum_{\alpha \in A} f_{\alpha}$ is C^{∞} near every point $p \in M$, and so this is a smooth function on M

Reminder

An open cover of M is a family of open sets $(U_{\alpha})_{\alpha \in A}$ such that $M = \bigcup_{\alpha \in A} U_{\alpha}$.

Definition

- A C^{∞} partition of unity on M is a <u>locally finite</u> family $(\rho_{\alpha})_{\alpha \in A}$ in $C^{\infty}(M)$ such that
 - (i) $\rho_{\alpha} \geq 0$ for all $\alpha \in A$.
 - (ii) $\sum \rho_{\alpha} = 1$ on M.
- ② If $(U_{\alpha})_{\alpha \in A}$ is an open cover of M such that $\operatorname{supp}(\rho_{\alpha}) \subseteq U_{\alpha}$, then we say that the partition of unity is subordinate to $(U_{\alpha})_{\alpha \in A}$.

Proposition (Proposition 13.6)

Assume that M is a compact. Given any open cover $(U_{\alpha})_{\alpha \in A}$ of M, there exists a (finite) C^{∞} partition of unity $(\rho_{\alpha})_{\alpha \in A}$ which is subordinate to $(U_{\alpha})_{\alpha \in A}$.

Remark

If M is compact, then every C^{∞} -partition of unity is a finite family in $C^{\infty}(M)$.

Proof of Proposition 13.6 (Part 1)

- For every $q \in M$ there is $\alpha(q) \in A$ be such that $q \in U_{\alpha(q)}$.
- Let ψ_q be a C^{∞} bump function at q supported in U_{α} . In particular, $0 \le \psi_q \le 1$ and $\psi_q = 1$ near q.
- Set $W_q = \{\psi_q > 0\}$. Then W_q is an open neighborhood of q.
- Here $M = \bigcup_{q \in M} W_q$. As M is compact there are q_1, \dots, q_m in M such that $M = \bigcup_{i=1}^m W_{q_i}$.
- Set $\psi = \sum_{i=1}^m \psi_{q_i} \in C^{\infty}(M)$. Given any $q \in M$, there i such that $q \in W_{q_i} = \{\psi_{q_i} > 0\}$.
- $egin{aligned} egin{aligned} \Psi(q) = \sum \psi_{q_j}(q) \geq \psi_{q_i}(q) > 0. \end{aligned}$

This shows that ψ is > 0 on M.

Proof of Proposition 13.6 (Part 1, continued)

• For $i = 1, \ldots, m$, set

$$\varphi_i = \frac{\psi_{q_i}}{\psi} \in C^{\infty}(M).$$

• We have $\varphi_i \geq 0$, and

$$\sum_{1 \le i \le m} \varphi_i = \frac{1}{\psi} \sum_{i=1}^m \psi_{q_i} = \frac{1}{\psi} \psi = 1.$$

- For $i=1,\ldots,m$, set $\tau(i)=\alpha_{q_i}$ (so that $\operatorname{supp}(\psi_{q_i})\subseteq U_{\alpha_{q_i}}$).
- We then have

$$supp(\varphi_i) = supp(\psi_{q_i}) \subseteq U_{\alpha_{q_i}} = U_{\tau(i)}.$$

• Therefore, $(\varphi_i)_{i=1}^m$ is a (finite) C^{∞} partition of unity such that, for each i there is $\alpha = \tau(i)$ in A so that supp $\varphi_i \subseteq U_{\alpha}$.

Proof of Proposition 13.6 (Part 2)

- Set $I = \{1, ..., m\}$. We then have a map $\tau : i \to \tau(i)$ from I to A such that supp $\varphi_i \subseteq U_{\tau(i)}$.
- For $\alpha \in A$, set

$$\rho_{\alpha} = \sum_{i \in \tau^{-1}(\alpha)} \varphi_i \quad \text{if } \alpha \in \tau(I), \qquad \rho_{\alpha} = 0 \quad \text{if } \alpha \notin \tau(I).$$

- As $\tau(I)$ is finite, $\{\rho_{\alpha}\}_{{\alpha}\in A}$ is a finite family in $C^{\infty}(M)$.
- As $I = \bigcup_{\alpha \in \tau(I)} \tau^{-1}(\alpha)$ is a partition of I, we have

$$\sum_{\alpha \in A} \rho_{\alpha} = \sum_{\alpha \in \tau(I)} \rho_{\alpha} = \sum_{\alpha \in \tau(I)} \sum_{i \in \tau^{-1}(\alpha)} \varphi_i = \sum_{i \in I} \varphi_i = 1.$$

• Thus, $\{\rho_{\alpha}\}_{{\alpha}\in A}$ is a C^{∞} -partition of the unity on M.

Proof of Proposition 13.6 (Part 2, continued).

- If $\alpha \notin \tau(I)$, then $supp(\rho_{\alpha}) = \emptyset \subseteq U_{\alpha}$.
- If $\alpha \in \tau(I)$, then supp $(\varphi) \subseteq U_{\alpha}$ for $i \in \tau^{-1}(i)$, and hence

$$\operatorname{supp} \rho_{\alpha} = \operatorname{supp} \big(\sum_{i \in \tau^{-1}(\alpha)} \varphi_i \big) \subseteq U_{\alpha}.$$

• Therefore, the partition of the unity $\{\rho_{\alpha}\}_{{\alpha}\in A}$ is subordinate to the open cover $\{U_{\alpha}\}_{{\alpha}\in A}$.

The proof is complete.

In general, we have the following result:

Theorem (Theorem 13.7)

Let $\{U\}_{\alpha \in A}$ be an open cover of M.

- (i) There is a C^{∞} partition of unity $(\varphi_k)_{k\geq 1}$ such that, for each integer $k\geq 1$, the support of φ_k is compact and contained in some U_{α} .
- (ii) If we do not require compact support, then there is a C^{∞} -partition of the unity $\{\rho_{\alpha}\}_{{\alpha}\in A}$ subordinate to $\{U_{\alpha}\}_{{\alpha}\in A}$.

Setup

U is an open subset of \mathbb{R}^n with coordinates x^1, \ldots, x^n .

Definition

Let $\omega = f(x)dx^1 \wedge \cdots \wedge dx^n \in \Omega^n(U)$. The *integral* of ω over a Borel set $A \subseteq U$ is defined by

$$\int_A \omega = \int_A f(x) dx^1 \wedge \cdots \wedge dx^n := \int_A f(x) dx.$$

Lemma

Let $\phi: V \to U$ an orientation-preserving diffeomorphism. For every $\omega \in \Omega^n_c(U)$, we have

$$\int_{V} \phi^* \omega = \int_{U} \omega.$$

Setup

M is an oriented manifold of dimension n.

Definition

Let (U,ϕ) be an oriented chart. The integral of any $\omega\in\Omega^n_c(U)$ is defined by

$$\int_{U} \omega := \int_{\phi(U)} (\phi^{-1})^* \omega.$$

Setup

- $\{(U_{\alpha}, \phi_{\alpha})\}_{\alpha \in A}$ is an oriented atlas.
- $\{\rho_{\alpha}\}$ is a C^{∞} partition of unity subordinate to the open cover $\{U_{\alpha}\}$.

Facts

Let $\omega \in \Omega_c^n(M)$.

- Here $supp(\omega)$ is compact and the family (ρ_{α}) is locally finite.
- Thus, $J := \{ \alpha \in A; \ \rho_{\alpha} \neq 0 \text{ on supp}(\omega) \}$ is finite.
- If $\alpha \notin J$, then $\rho_{\alpha}\omega = 0$.
- As $\sum_{\alpha \in A} \rho_{\alpha} = 1$, we get

$$\omega = \sum_{\alpha \in J} \rho_{\alpha} \omega = \sum_{\alpha \in A} \rho_{\alpha} \omega$$
 (finite sum).

Facts (Continued)

- $supp(\rho_{\alpha}\omega) \subseteq supp(\rho_{\alpha}) \subseteq U_{\alpha}$.
- Therefore, the integral $\int_{U_{\alpha}} \rho_{\alpha} \omega$ is well defined.
- We have $\int_{U_{\alpha}} \rho_{\alpha} \omega = 0$ if $\alpha \notin J$.

Definition

The integral of ω over M is defined by

$$\int_{M} \omega = \sum_{\alpha} \int_{U_{\alpha}} \rho_{\alpha} \omega \qquad \text{(finite sum)}.$$

Remark

The integral $\int_{M} \omega$ doesn't depend on the choice of the partition of unity $\{\rho_{\alpha}\}$, and hence is well defined (see Tu's book).