Differential Forms in Algebraic Topology: The Mayer-Vietoris Sequence

Sichuan University, Spring 2024

References

Main References

- Section 26 of Tu2011.
- Section 2 of Bott-Tu.

Definition

Let $\mathscr{A} = (A^*, d)$ and $\mathscr{B} = (B^*, d')$ be cochain complexes. Their direct sum $\mathscr{A} \oplus \mathscr{B}$ is the cochain complex such that:

- The space of k-cochains is $A^k \oplus B^k$.
- The differential in degree k is

$$d \oplus d' : A^k \oplus B^k \longrightarrow A^{k+1} \oplus B^{k+1}$$

 $(a, b) \longrightarrow (da, db).$

Remark

We have

$$Z^{k}(\mathscr{A} \oplus \mathscr{B}) = Z^{k}(\mathscr{A}) \oplus Z^{k}(\mathscr{B}),$$
$$B^{k}(\mathscr{A} \oplus \mathscr{B}) = B^{k}(\mathscr{A}) \oplus B^{k}(\mathscr{B})$$

• We then have an exact sequence,

$$0 \longrightarrow B^k(\mathscr{A} \oplus \mathscr{B}) \longrightarrow Z^k(\mathscr{A} \oplus \mathscr{B}) \longrightarrow H^k(\mathscr{A}) \oplus H^k(\mathscr{B}) \longrightarrow 0.$$

This gives the following result:

Lemma

We have a canonical isomorphism,

$$H^k(\mathscr{A} \oplus \mathscr{B}) \simeq H^k(\mathscr{A}) \oplus H^k(\mathscr{B}).$$

Lemma

Let $\varphi : \mathscr{C} \to \mathscr{A}$ and $\psi : \mathscr{C} \to \mathscr{B}$ be cochain maps.

- **1** $\varphi \oplus \psi : \mathscr{C} \to \mathscr{A} \oplus \mathscr{B}$ is a cochain map.
- 2 This induces linear maps,

$$(\varphi \oplus \psi)^* : H^k(\mathscr{C}) \longrightarrow H^k(\mathscr{A} \oplus \mathscr{B}).$$

1 Under the identification $H^k(\mathscr{A} \oplus \mathscr{B}) = H^k(\mathscr{A}) \oplus H^k(\mathscr{B})$, we have

$$(\varphi \oplus \psi)^* = \varphi^* \oplus \psi^* : H^k(\mathscr{C}) \longrightarrow H^k(\mathscr{A}) \oplus H^k(\mathscr{B}).$$

Lemma

Let $\varphi_1: \mathscr{A} \to \mathscr{C}$ and $\varphi_2: \mathscr{B} \to \mathscr{C}$ be cochain maps. Define $\varphi: \mathscr{A} \oplus \mathscr{B} \to \mathscr{C}$ by

$$\varphi(a,b) = \varphi_1(a) + \varphi_2(b), \quad a \in A^k, b \in B^k.$$

Then:

- \bullet φ is a cochain map.
- 2 It induces linear maps,

$$\varphi^*: H^k(\mathscr{A}) \oplus H^k(\mathscr{B}) \longrightarrow H^k(\mathscr{C}).$$

Setup

- M is a smooth manifold.
- U and V are open sets such that $M = U \cup V$.

Facts

• By pullback the inclusion maps $i_U: U \hookrightarrow M$ and $i_V: V \hookrightarrow M$ give rise to cochain maps,

$$i_U^*: \Omega^*(M) \longrightarrow \Omega^*(U), \qquad i_V^*: \Omega^*(M) \longrightarrow \Omega^*(V).$$

• We thus get a cochain map,

$$i := i_U^* \oplus i_V^* : \Omega^*(M) \longrightarrow \Omega^*(U) \oplus \Omega^*(V).$$

Remark

• We know (see Prop. 17.14, Tu2011) that the pullback maps $i_U^*: \Omega^k(M) \to \Omega^k(U)$ and $i_V^*: \Omega^k(M) \to \Omega^k(V)$ agree with the restriction maps,

$$i_U^*\omega = \omega_{|U}, \qquad i_V^*\omega = \omega_{|V}, \qquad \omega \in \Omega^k(M).$$

Thus,

$$i(\omega) = (i_U^* \omega, i_V^* \omega) = (\omega_{|U}, \omega_{|V}), \qquad \omega \in \Omega^k(M).$$

Facts

- We also have inclusion maps $j_U: U \cap V \hookrightarrow U$ and $j_V: U \cap V \hookrightarrow V$.
- They give rise to cochain maps,

$$j_U^*: \Omega^*(U) \longrightarrow \Omega^*(U \cap V), \quad j_U^*\omega = \omega_{|U \cap V},$$

 $j_V^*: \Omega^*(V) \longrightarrow \Omega^*(U \cap V), \quad j_V^*\tau = \tau_{|U \cap V}.$

• We thus get a cochain map,

$$j: \Omega^*(U) \oplus \Omega^*(V) \longrightarrow \Omega^*(U \cap V),$$
$$j(\omega, \tau) = j_V^* \tau - j_U^* \omega = \tau_{|U \cap V} - \omega_{|U \cap V}.$$

Proposition

We have a short-exact sequence of cochain complexes,

$$0 \longrightarrow \Omega^*(M) \stackrel{i}{\longrightarrow} \Omega^*(U) \oplus \Omega^*(V) \stackrel{j}{\longrightarrow} \Omega^*(U \cap V) \longrightarrow 0.$$

Proof of exactness at $\Omega^*(M)$.

• Recall that $M = U \cup V$. Thus, if $\sigma \in \Omega^k(M)$, then

$$i(\sigma) = 0 \Longleftrightarrow (\sigma_{|U} = 0 \text{ and } \sigma_{|V} = 0) \Longleftrightarrow \sigma = 0 \text{ on } U \cup V = M.$$

• This shows that i is injective and gives exactness at $\Omega^*(M)$.

Proof of exactness at $\Omega^k(U) \oplus \Omega^k(V)$.

- Let $(\omega, \tau) \in \text{im}(i)$, i.e., there is $\sigma \in \Omega^k(M)$ such that $\omega = \sigma_{|U|}$ and $\tau = \sigma_{|V|}$.
- Thus,

$$j(\omega,\tau) = \tau_{|U\cap V} - \omega_{|U\cap V} = \sigma_{|U\cap V} - \sigma_{|U\cap V} = 0.$$

- This shows that $im(i) \subseteq ker(j)$.
- Let $(\omega, \tau) \in \ker(j)$, i.e., $\tau_{|U \cap V} \omega_{|U \cap V} = 0$.
- As $M = U \cup V$, it follows there is a unique $\sigma \in \Omega^k(M)$ such that $\sigma_{|U} = \omega$ and $\sigma_{|V} = \tau$.
- That is, $i(\sigma) = (\omega, \tau)$, and so $(\omega, \tau) \in im(i)$.
- This shows that $ker(j) \subseteq im(i)$, and hence im(i) = ker(j).
- This proves exactness at $\Omega^k(U) \oplus \Omega^k(V)$.

Proof of exactness at $\Omega^*(U \cap V)$.

- This amounts to show that *j* is surjective.
- Let $\omega \in \Omega^k(U \cap V)$, and let (ρ_U, ρ_V) be a C^{∞} partition of unity on M subordinate to the open cover $\{U, V\}$.
- Define $\omega_U: U \to \Lambda^k(T^*U)$ by

$$\omega_U(x) = \left\{ \begin{array}{cc} \rho_V(x)\omega(x) & \text{if } x \in U \cap V, \\ 0 & \text{if } x \in U \setminus (U \cap V). \end{array} \right.$$

- This is a smooth k-form on U (see next slide).
- Likewise, we define a smooth k-form $\omega_V: V \to \Lambda^k(T^*V)$ by

$$\omega_V(x) = \begin{cases} \rho_U(x)\omega(x) & \text{if } x \in U \cap V, \\ 0 & \text{if } x \in V \setminus (U \cap V). \end{cases}$$

• On $U \cap V$, we then have

$$j(-\omega_U, \omega_V) = \rho_V \omega - (-\rho_U \omega) = (\rho_U + \rho_V)\omega = \omega.$$

• This shows that *j* is surjective.

Proof of the smoothness of ω_U and ω_V .

- As $\omega_U = \rho_V \omega$ on $U \cap V$, we see that ω_U is C^{∞} on $U \cap V$.
- We also see that $\omega_U = 0$ on $(U \cap V) \setminus \text{supp}(\rho_V)$.
- As $\omega_U = 0$ on $U \setminus (U \cap V)$, this implies that $\omega_U = 0$ on $U \setminus \text{supp}(\rho_V)$.
- As $U \setminus \text{supp}(\rho_V)$ is an open set, we see that ω_U is C^{∞} there.
- It follows that ω_U is C^{∞} on $(U \cap V) \cup (U \setminus \text{supp}(\rho_V)) = U$.
- Likewise, ω_V is a C^{∞} form on V.

By the Zig-Zag Lemma the short exact sequence gives rise to a long exact sequence in cohomology. Namely:

Theorem (Mayer-Vietoris Sequence)

If U and V are open subsets of M such that $M = U \cup V$, then we have a long exact sequence,

$$\cdots \longrightarrow H^k(M) \stackrel{i^*}{\longrightarrow} H^k(U) \oplus H^k(V) \stackrel{j^*}{\longrightarrow} H^k(U \cap V) \stackrel{\delta}{\longrightarrow} H^{k+1}(M) \longrightarrow \cdots$$

Remark

1 The map $i^*: H^k(M) \to H^k(U) \oplus H^k(V)$ is given by

$$i^*[\sigma] = [i(\sigma)] = [(\sigma_{|U}, \sigma_{|V})] = ([\sigma_{|U}], [\sigma_{|V}]).$$

2 The map $j^*: H^k(U) \oplus H^k(V) \to H^k(U \cap V)$ is given by

$$j^*([\omega], [\tau]) = [j(\omega, \tau)] = [\tau_{|U \cap V} - \omega_{|U \cap V}].$$

Proposition

Let $\{\rho_U, \rho_V\}$ be a C^{∞} -partition of unity subordinate to $\{U, V\}$. Given any closed form $\omega \in \Omega^k(U \cap V)$, we have

$$\delta([\omega]) = [\sigma],$$

where $\sigma \in \Omega^{k+1}(M)$ is the unique (closed) form on M such that $\sigma = d\rho_U \wedge \omega$ on $U \cap V$, $\sigma = 0$ on $M \setminus (U \cap V)$.

Proof.

- Let $\sigma: M \to \Lambda^{k+1}(T^*M)$ be the (k+1)-form such that $\sigma = d\rho_U \wedge \omega$ on $U \cap V$, $\sigma = 0$ on $M \setminus (U \cap V)$.
- As $\sigma = d\rho_U \wedge \omega$ on $U \cap V$, we see that σ is C^{∞} on $U \cap V$.

Proof.

- As $\rho_U + \rho_V = 1$, we have $d\rho_U + d\rho_V = 0$, i.e., $d\rho_V = -d\rho_U$.
- As $supp(d\rho_U) \subseteq U$ and $supp(d\rho_V) \subseteq V$, we have

$$\operatorname{supp}(d\rho_U) = \operatorname{supp}(-d\rho_V) \subseteq U \cap V.$$

- Thus, $\sigma = 0$ on $(U \cap V) \setminus \text{supp}(d\rho_U)$ and $\sigma = 0$ on $M \setminus (U \cap V)$, i.e., $\sigma = 0$ on $M \setminus \text{supp}(d\rho_U)$.
- As $M \setminus \text{supp}(d\rho_U)$ is open, we see that σ is C^{∞} there.
- Thus, σ is C^{∞} on $(U \cap V) \cup (M \setminus \text{supp}(d\rho_U)) = M$, i.e., $\sigma \in \Omega^{k+1}(M)$.
- Here $d\sigma = 0$ on $M \setminus \text{supp}(d\rho_U)$, since $\sigma = 0$ there.
- As $d\omega = 0$, on $U \cap V$ we have

$$d\sigma = d(d\rho_U \wedge \omega) = -d\rho_U \wedge d\omega = 0.$$

• It follows that σ is a closed (k+1)-form on M.

Proof.

• We know that $\omega = j(-\omega_U, \omega_V)$, with $\omega_U \in \Omega^k(U)$ and $\omega_V \in \Omega^k(V)$ such that

$$\omega_U = \rho_V \omega$$
 and $\omega_V = \rho_U \omega$ on $U \cap V$, $\omega_U = 0$ on $U \setminus (U \cap V)$, $\omega_V = 0$ on $V \setminus (U \cap V)$.

• As $d\omega = 0$ and $d\rho_V = -d\rho_U$, on $U \cap V$ we have

$$d\omega_U = d(\rho_V \omega) = d\rho_V \wedge \omega = -d\rho_U \wedge \omega = -\sigma,$$

$$d\omega_V = d(\rho_U \omega) = d\rho_U \wedge \omega = \sigma.$$

We also have

$$d\omega_U = 0 = -\sigma$$
 on $U \setminus (U \cap V)$, $d\omega_V = 0 = \sigma$ on $V \setminus (U \cap V)$.

 \bullet Thus, $\sigma_{|U}=-d\omega_{U}$ and $\sigma_{|V}=d\omega_{V}$, and hence

$$d(-\omega_U, \omega_V) = (-d\omega_U, d\omega_V) = i(\sigma).$$

• We then have $\delta[\omega] = [\sigma]$.

Proposition

Assume that U, V and $U \cap V$ are connected with $U \cap V \neq \emptyset$. Then:

- M is connected.
- 2 We have an exact sequence,

$$0 \longrightarrow H^0(M) \stackrel{i^*}{\longrightarrow} H^0(U) \oplus H^0(V) \stackrel{j^*}{\longrightarrow} H^0(U \cap V) \longrightarrow 0.$$

- **3** In the Mayer-Vietoris sequence the connected map δ vanishes in degree 0.
- The Mayer-Vietoris sequence may start with

$$0 \longrightarrow H^1(M) \stackrel{j^*}{\longrightarrow} H^1(U) \oplus H^1(V) \stackrel{j^*}{\longrightarrow} H^1(U \cap V) \stackrel{\delta}{\longrightarrow} \cdots.$$

Proof.

- A topological space X is connected if and only if every continuous function $f: X \to \{0,1\}$ is constant.
- If $f: M \to \{0,1\}$ is continuous, then it is constant on U, V and $U \cap V$ and it takes the same constant value on these sets.
- Therefore, f is constant on M. This shows that M is connected.
- As M is connected, we know that

$$H^0(M) = \{ \text{constant functions } f : M \to \mathbb{R} \} \simeq \mathbb{R}1.$$

Likewise,

$$H^0(U) \simeq \mathbb{R}1, \qquad H^0(V) \simeq \mathbb{R}1, \qquad H^0(U \cap V) \simeq \mathbb{R}1.$$

• With these identifications $i^*: H^0(M) \to H^0(U) \oplus H^0(V)$ becomes

$$\mathbb{R} \ni \lambda \longrightarrow (\lambda, \lambda) \in \mathbb{R} \oplus \mathbb{R} = \mathbb{R}^2.$$

Proof (Continued).

- The map $j*: H^0(U) \oplus H^0(V) \longrightarrow H^0(U \cap V)$ becomes $\mathbb{R}^2 \ni (\lambda, \mu) \longrightarrow \mu - \lambda \in \mathbb{R}.$
- The map i* is injective, the map i* is surjective, and $\ker i^* = \{(\lambda, \lambda); \ \lambda \in \mathbb{R}\} = \operatorname{im}(i^*).$
- Therefore, we have an exact sequence,

$$0 \longrightarrow H^0(M) \stackrel{j^*}{\longrightarrow} H^0(U) \oplus H^0(V) \stackrel{j^*}{\longrightarrow} H^0(U \cap V) \longrightarrow 0.$$

- We then have $\ker \delta = \operatorname{im} j^* = H^0(U \cap V)$, and so $\delta = 0$ on $H^0(U\cap V)$.
- Therefore, we may start the Mayer-Vietoris sequence with $0 \longrightarrow H^1(M) \xrightarrow{j^*} H^1(U) \oplus H^1(V) \xrightarrow{j^*} H^1(U \cap V) \xrightarrow{\delta} \cdots$

Lemma (Alternating Sum of Dimensions; Exercise 26.2)

Suppose that we have an exact sequence of vector spaces,

$$0 \longrightarrow A^0 \xrightarrow{d_0} A^1 \xrightarrow{d_1} A^2 \xrightarrow{d_2} \cdots \longrightarrow A^m \longrightarrow 0.$$

Then, we have

$$\sum_{i=0}^{m} (-1)^j \dim A^j = 0.$$

Reminder

If $M = I_1 \cup \cdots \cup I_m$ is a disjoint unions of intervals, then

$$H^{k}(M) = \begin{cases} \mathbb{R}^{r} & \text{if } k = 0, \\ 0 & \text{for } k \ge 1. \end{cases}$$

Facts

ullet As \mathbb{S}^1 is a connected 1-dimensional manifold, we know that

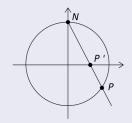
$$H^0(\mathbb{S}^1) = \mathbb{R}, \qquad H^k(\mathbb{S}^1) = 0 \quad \text{for } k \ge 2.$$

• Therefore, we only need to compute $H^1(\mathbb{S}^1)$.

De Rham Cohomology of \mathbb{S}^1 – Stereographic Projection

Lemma

Set $N = (0,1) \in \mathbb{S}^1$.



• In Cartesian coordinates, the stereographic projection $\varphi:\mathbb{S}^1\setminus\{\mathit{N}\}\to\mathbb{R}$ is given by

$$\varphi(x,y) = \frac{x}{1-y}, \qquad (x,y) \in \mathbb{S}^1.$$

2 This is a smooth diffeomorphism with inverse,

$$\varphi^{-1}(t) = \frac{1}{t^2 + 1}(2t, t^2 - 1), \qquad t \in \mathbb{R}.$$

Lemma

$$H^1(\mathbb{S}^1) = \mathbb{R}$$
.

Proof.

Set N = (0, 1) and S = (0, 1).

• We have an open covering $\mathbb{S}^1 = U \cup V$, where

$$U = \mathbb{S}^1 \setminus \{N\}, \quad V = -U = \mathbb{S}^1 \setminus \{S\}, \quad U \cap V = \mathbb{S}^1 \setminus \{N, S\}.$$

• The stereographic projection gives an isomorphism $U \simeq \mathbb{R}^n$. Thus.

$$H^{0}(U) = H^{0}(\mathbb{R}) = \mathbb{R}, \qquad H^{1}(U) = H^{1}(\mathbb{R}) = 0.$$

• As V is diffeomorphic to U under the involution $z \to -z$, we also have

$$H^0(V) = H^0(U) = \mathbb{R}, \qquad H^1(V) = H^1(U) = 0.$$

Proof (continued).

- The stereographic projection of $S \in \mathbb{S}^1$ is the origin $0 \in \mathbb{R}$.
- We thus get a diffeomorphism of $U \cap V = \mathbb{S}^1 \setminus \{N, S\} \simeq \mathbb{R} \setminus 0$.
- As $\mathbb{R} \setminus 0 = (-\infty, 0) \cup (0, \infty)$ is the union of two disjoint open intervals, we get

$$H^0(U \cap V) = H^0((-\infty, 0) \cup (0, \infty)) = \mathbb{R}^2.$$

• As $H^1(U) \oplus H^1(V) = 0$ the Mayer-Vietoris sequence induces the exact sequence,

$$0 \longrightarrow H^0(\mathbb{S}^1) \longrightarrow H^0(U) \oplus H^0(V) \longrightarrow H^0(U \cap V) \longrightarrow H^1(\mathbb{S}^1) \longrightarrow 0.$$

• Thus, by taking the alternating sum of dimensions, we get

$$\dim H^0(\mathbb{S}^1) - \dim \left(H^0(U) \oplus H^0(V)\right) + \dim H^0(U \cap V) - \dim H^1(\mathbb{S}^1) = 0$$

Proof (continued).

We have

$$\dim H^0(\mathbb{S}^1)=1,\qquad \dim H^0(U\cap V)=2,$$

$$\dim (H^0(U)\oplus H^0(V))=\dim H^0(U)+\dim H^0(V)=2.$$

• Therefore, we get

$$1-2+2-\dim H^1(\mathbb{S}^1)=0.$$

• Thus, dim $H^1(\mathbb{S}^1) = 1$, and hence $H^1(\mathbb{S}^1) = \mathbb{R}$.

The proof is complete.

To sum up we have:

Proposition

$$H^k(\mathbb{S}^1) = \left\{ egin{array}{ll} \mathbb{R} & ext{for } k = 0, 1, \\ 0 & ext{for } k \geq 2. \end{array} \right.$$

Remark

We will see later that, for all $n \ge 2$, we have

$$H^k(\mathbb{S}^n) = \begin{cases} \mathbb{R} & \text{for } k = 0, n, \\ 0 & \text{otherwise.} \end{cases}$$

Setup

 $i: V \to U$ is an inclusion of open subsets of M.

Reminder

By pullback we get a cochain map,

$$i^*: \Omega^*(U) \longrightarrow \Omega^*(V), \qquad i^*\omega = \omega_{|V}.$$

Remark

- As the inclusion $i: V \to U$ need not be a proper map, it does not map $\Omega_c^*(U)$ to $\Omega_c^*(V)$.
- For instance, if $f \in C_c^{\infty}(U)$ and $V \subseteq \operatorname{supp}(f)$, then $i^*f = f_{|V|}$ does not have compact support.

Reminder (Extension by zero)

Let
$$\omega \in \Omega^k_c(V)$$
 and define $\tilde{\omega}: U \to \Lambda^k(T^*U)$ by

$$\tilde{\omega} = \omega$$
 on V , $\tilde{\omega} = 0$ on $U \setminus V$.

Then $\tilde{\omega}$ is a smooth k-form on U such that $\operatorname{supp}(\tilde{\omega}) = \operatorname{supp}(\omega)$, and hence $\tilde{\omega} \in \Omega_c^k(U)$. It is called the extension by zero of ω to U.

Fact

This gives rise to a pushforward map,

$$i_*: \Omega_c^k(V) \longrightarrow \Omega_c^k(U),$$

 $\omega \longrightarrow$ extension by zero of ω .

Proposition

- **1** The linear map $i_*: \Omega_c^k(V) \to \Omega_c^k(U)$ is injective.
- 2 Its image is

$$\Omega_{c,V}^k(U) := \left\{ \omega \in \Omega_c^k(U); \ \operatorname{supp}(\omega) \subseteq V \right\}.$$

3 The inverse $(i_*)^{-1}: \Omega^k_{c,V}(U) \to \Omega^k_c(V)$ is the pullback map $\sigma \to i^*\sigma = \sigma_{|V}$ on $\Omega^k_{c,V}(U)$.

Proof.

- If $\omega \in \Omega_c^k(V)$, then $(i_*\omega)_{|V} = \omega$, i.e., $i^* \circ i_* = \mathrm{id}$ on $\Omega_c^k(V)$.
- ullet This implies that i_* is injective (since it has a right-inverse). \Box

Proof, Continued.

- If $\omega \in \Omega_c^k(V)$, then $\operatorname{supp}(i_*\omega) = \operatorname{supp}(\omega) \subseteq V$, and hence $\operatorname{im}(i_*) \subseteq \Omega_{c,V}^k(U)$.
- Let $\sigma \in \Omega_c^k(U)$ be such that $supp(\sigma) \subseteq V$, and set $\omega = \sigma_{|V}$.
- Then $\omega \in \Omega^k(V)$ and $\operatorname{supp}(\omega) \subseteq \operatorname{supp}(\sigma)$ is compact, and hence $\omega \in \Omega^k_c(V)$.
- Here $\sigma = \omega$ on V and $\sigma = 0$ on $U \setminus V$ (since $supp(\sigma) \subseteq V$).
- Thus, σ is the extension by zero of ω , and hence $\sigma = i_* \omega \in \text{im}(i_*)$.
- It follows that $\operatorname{im}(i_*) \subseteq \Omega_{c,V}^k(U)$.
- This also shows that $\sigma = i_*(\sigma_{|V}) = i_* \circ i^*(\sigma)$, and hence $i_* \circ i^* = \operatorname{id}$ on $\Omega^k_{c,V}(U)$.
- As $i^* \circ i_* = \text{id}$ on $\Omega_c^k(V)$, we see that $(i_*)^{-1} = i^*$ on $\Omega_{c,V}^k(U)$.

The proof is complete.

Lemma

The pushforward map $i_*: \Omega_c^*(V) \to \Omega_c^*(U)$ is a cochain map.

Proof.

- Let $\omega \in \Omega_c^k(V)$. As $i_*\omega = \omega$ on V, we see that $d(i_*\omega) = d\omega$ on V.
- As $supp(i_*\omega) = supp(\omega)$, we see that $\omega = 0$ on the open set $U \setminus supp(\omega)$.
- Thus $d(i_*\omega) = 0$ on $U \setminus \text{supp}(\omega)$, and hence $d(i_*\omega) = 0$ on $U \setminus V$.
- This shows that $d(i_*\omega)$ is the extension by zero of $d\omega$, i.e., $d(i_*\omega) = i_*(d\omega)$.

This proves the result.

Lemma

Let $j: W \to V$ be the inclusion of an open set W into V. Then $i \circ j: W \to U$ is the inclusion of W into U, and we have

$$i_* \circ j_* = (i \circ j)_*$$
 on $\Omega_c^*(W)$.

Proof.

- It's immediate that $i \circ j$ is the inclusion of W into U.
- Let $\omega \in \Omega_c^k(W)$. We have

$$i_*(j_*\omega)_{|W} = (i_*(j_*\omega)_V)_{|W} = (j_*\omega)_{|W} = \omega.$$

- We have $\operatorname{supp}(i_*(j_*\omega)) = \operatorname{supp}(j_*\omega) = \operatorname{supp}(\omega)$, and hence $i_*(j_*\omega) = 0$ on $U \setminus (\operatorname{supp}(\omega))$.
- As $supp(\omega) \subseteq W$, we see that $i_*(j_*\omega) = 0$ on $U \setminus W$.
- This shows that $i_*(j_*\omega)$ is the extension by zero to U of ω , i.e., $i_*(j_*\omega)=(i\circ j)_*\omega$.

This proves the result.

Setup

U and V are open subsets of M such that $M = U \cup V$.

Facts

• The inclusions $i_U: U \to M$ and $i_V: V \to M$ give rise to cochain maps,

$$(i_U)_*: \Omega_c^*(U) \longrightarrow \Omega_c^*(M), \qquad (i_V)_*: \Omega_c^*(V) \longrightarrow \Omega_c^*(M).$$

• Therefore, we get a cochain map,

$$i: \Omega_c^*(U) \oplus \Omega_c^*(V) \longrightarrow \Omega_c^*(M),$$

 $(\omega, \tau) \longrightarrow (i_U)_*\omega + (i_V)_*\tau.$

Facts

• The inclusions $j_U: U \cap V \to U$ and $j_V: U \cap V \to V$ also give rise to cochain maps,

$$(j_U)_*: \Omega_c^*(U\cap V) \longrightarrow \Omega_c^*(U), \qquad (j_V)_*: \Omega_c^*(U\cap V) \longrightarrow \Omega_c^*(V).$$

• We thus get a cochain map $j := (-(j_U)_*) \oplus (j_V)_*$, i.e.,

$$j: \Omega_c^*(U \cap V) \longrightarrow \Omega_c^*(U) \oplus \Omega_c^*(V),$$
$$\omega \longrightarrow (-(j_U)_*\omega, (j_V)_*\omega).$$

Proposition (see Bott-Tu)

We have an exact sequence of cochain complexes,

$$0 \longrightarrow \Omega_c^*(U \cap V) \stackrel{j}{\longrightarrow} \Omega_c^*(U) \oplus \Omega_c^*(V) \stackrel{i}{\longrightarrow} \Omega_c^*(M) \longrightarrow 0.$$

Exactness at $\Omega_c^*(U \cap V)$.

- The pushforward maps $(j_U)_* : \Omega_c^*(U \cap V) \to \Omega_c^*(U)$ and $(j_V)_* : \Omega_c^*(U \cap V) \to \Omega_c^*(V)$ are injective.
- Therefore the direct sum $j = (-(j_U)_*) \oplus (j_V)_*$ is injective.
- This gives exactness at $\Omega_c^*(U \cap V)$.

Exactness at $\Omega_c^*(M)$.

- By definition $i(\omega, \tau) = (i_U)_*\omega + (i_V)_\tau$, where i_U and i_V are the inclusions of U and V into M.
- Thus,

$$im(i) = im((i_U)_*) + im((i_V)_*) = \Omega_{c,U}^*(M) + \Omega_{c,V}^*(M).$$

- Let $\omega \in \Omega_c^*(M)$ and let $\{\rho_U, \rho_V\}$ be a C^{∞} partition of unity subordinate to the cover $\{U, V\}$.
- We have $\omega = \rho_U \omega + \rho_V \omega$ (since $\rho_U + \rho_V = 1$).
- Here $\operatorname{supp}(\rho_U \omega) \subseteq \operatorname{supp}(\rho_U) \cap \operatorname{supp}(\omega) \subseteq U \cap \operatorname{supp}(\omega)$.
- The support of $\rho_U \omega$ is compact and contained in U, i.e., $\rho_U \omega \in \Omega_{c,U}^*(M)$. Likewise, $\rho_V \omega \in \Omega_{c,V}^*(M)$.
- Thus, $\omega = \rho_U \omega + \rho_V \omega$ is in $\Omega_{c,U}^*(M) + \Omega_{c,V}^*(M) = \operatorname{im}(i)$.
- This shows that $i: \Omega_c^*(U) \oplus \Omega_c^*(V) \to \Omega_c^*(M)$ is surjective.
- This gives exactness at $\Omega_c^*(M)$.

Exactness at $\Omega_c^*(U) \oplus \Omega_c^*(V)$.

- We have to show that im(j) = ker(i).
- Let $\omega \in \Omega_c^k(U \cap V)$. We have

$$i \circ j(\omega) = i \left(-(j_U)_* \omega, (j_V)_* \omega \right) = -(i_U)_* \circ (j_U)_* \omega + (i_V)_* \circ (j_V)_* \omega.$$

- Let $\ell: U \cap V \to M$ be the inclusion of $U \cap V$ into M.
- As $\ell = i_U \circ j_U = i_V \circ j_V$, we have

$$(i_U)_* \circ (j_U)_* \omega = (i_U \circ j_U)_* \omega = \ell_* \omega,$$

$$(i_V)_* \circ (j_V)_* \omega = (i_V \circ j_V)_* \omega = \ell_* \omega.$$

- We then see that $i \circ j(\omega) = -\ell_*\omega + \ell_*\omega = 0$.
- This shows that $i \circ j = 0$, i.e., $im(j) \subseteq ker(i)$.

Exactness at $\Omega_c^*(U) \oplus \Omega_c^*(V)$.

- It remains to show that $ker(i) \subseteq im(j)$.
- Let $(\omega, \tau) \in \Omega_c^k(U) \oplus \Omega_c^k(V)$ be such that $i(\omega, \tau) = 0$.
- This means that $(i_U)_*\omega + (i_V)_*\tau = 0$, i.e., $(i_U)_*\omega = -(i_V)_*\tau$.
- Set $\sigma = \tau_{|U \cap V}$. By restriction to $U \cap V$ we get

$$-\omega_{|U\cap V} = -((i_U)_*\omega)_{|U\cap V} = ((i_V)_*\tau)_{|U\cap V} = \tau_{|U\cap V} = \sigma.$$

- As $supp(\omega) = supp((i_U)_*\omega)$ and $supp(\tau) = supp((i_V)_*\tau)$, we then see that $supp(\omega) = supp(\tau)$.
- By assumption $supp(\omega) \subseteq U$ and $supp(\tau) \subseteq V$.
- Therefore, we see that $supp(\omega) = supp(\tau) \subseteq U \cap V$.
- This ensures that ω and τ are in $\Omega_{c,U\cap V}^k(U)$.

Exactness at $\Omega_c^*(U) \oplus \Omega_c^*(V)$.

• As $\tau \in \Omega_{c,U \cap V}^{k}(V)$, we have

$$\tau = (j_V)_* \circ (j_V)^* \tau = (j_V)_* (\tau_{|U \cap V}) = (j_V)_* \sigma.$$

• Likewise, as $\omega \in \Omega_{c,U\cap V}^k(U)$, we also have

$$\omega = (j_U)_*(\omega_{|U\cap V}) = -(j_U)_*\sigma.$$

Thus,

$$(\omega, \tau) = (-(j_U)_*\sigma, (j_V)_*\sigma) = j(\sigma) \in \operatorname{im}(j).$$

- This shows that $ker(i) \subseteq im(j)$.
- As $im(j) \subseteq ker(i)$, we deduce that im(j) = ker(i).
- This proves exactness at $\Omega_c^*(U) \oplus \Omega_c^*(V)$.

The proof is complete.

By applying Zig-Zag Lemma we obtain:

Theorem (Mayer-Vietoris Sequence)

If U and V are open subsets of M such that $M = U \cup V$, then we have a long exact sequence,

$$\cdots \longrightarrow H_c^k(U \cap V) \xrightarrow{j_*} H_c^k(U) \oplus H_c^k(V) \xrightarrow{i_*} H_c^k(M) \xrightarrow{\delta} H_c^{k+1}(U \cap V) \longrightarrow$$

Remark

- **1** The map $j_*: H_c^k(U \cap V) \to H_c^k(U) \oplus H_c^k(V)$ is given by $j_*[\sigma] = [j(\sigma)] = [(-(j_U)_*\sigma, (j_V)_*\sigma)] = (-[(j_U)_*\sigma], [(j_V)_*\sigma]),$ where $(j_U)_*\sigma$ and $(j_V)_*\sigma$ are extensions by 0 of σ to U and V.
- ② The map $i_*: H^k_c(U) \oplus H^k_c(V) \to H^k_c(M)$ is given by $i_*([\omega], [\tau]) = [i(\omega, \tau)] = [(i_U)_*\omega + (i_V)_*\tau]$, where $(i_U)_*\omega$ and $(i_V)_*\tau$ are extensions by 0 of ω and τ to M.

Proposition

Let $\{\rho_U, \rho_V\}$ be a C^{∞} -partition of unity subordinate to $\{U, V\}$. Given any closed form $\omega \in \Omega_c^k(M)$, we have

$$\delta([\omega]) = -[(d\rho_U \wedge \omega)_{|U \cap V}].$$

Proof.

• We have $\omega = \rho_U \omega + \rho_V \omega = i(\omega_U, \omega_V)$, where

$$\omega_U := (\rho_U \omega)_{|U}, \qquad \omega_V := (\rho_U \omega)_{|V}.$$

- As $d\omega=0$ and $d\rho_V=-d\rho_V$, we have $d\omega_U=(d\rho_U\wedge\omega)_{|U},\quad d\omega_V=(d\rho_V\wedge\omega)_{|V}=-(d\rho_U\wedge\omega)_{|V}.$
- As $\operatorname{supp}(d\rho_U) = \operatorname{supp}(d\rho_V) \subseteq U \cap V$, we see that $d\omega_U$ and $d\omega_V$ are supported in $U \cap V$.
- Therefore, if we set $\sigma := -(d\rho_U \wedge \omega)_{|U \cap V}$, then

$$d\omega_{U} = (j_{U})_{*}((d\omega_{U})_{|U\cap V}) = -(j_{U})_{*}\sigma,$$

$$d\omega_{V} = (j_{V})_{*}((d\omega_{V})_{|U\cap V}) = (j_{V})_{*}\sigma.$$

Thus,

$$d(\omega_U, \omega_V) = (d\omega_U, d\omega_V) = (-(j_U)_* \sigma, (j_V)_* \sigma) = j(\sigma).$$

• We then have $\delta([\omega]) = [\sigma] = -[(d\rho_U \wedge \omega)_{|U \cap V}].$