Differential Forms in Algebraic Topology: Homotopy Invariance and Poincaré Lemmas

Sichuan University, Spring 2024

References

Main References

- Sections 27 & 29 of Tu2011.
- Section 4 of Bott-Tu.

Smooth Homotopy

Setup

M and N are smooth manifolds.

Definition

Two smooth maps $f,g:M\to N$ are smoothly homotopic if there is a smooth function $F:M\times\mathbb{R}\to N$ (called homotopy) such that

$$F(x,0) = f(x)$$
 and $F(x,1) = g(x)$ for all $x \in M$.

Remark

In other words there is C^{∞} -family of smooth maps

$$f_t(x) := F(x, t)$$
, $t \in \mathbb{R}$, such that $f_0 = f$ and $f_1 = g$.

Smooth Homotopy

Example (Straight-line homotopy)

Suppose that $N = \mathbb{R}^n$.

• Any pair of smooth maps $f, g: M \to \mathbb{R}^n$ are (smoothly) homotopic by means of the straight-line homotopy,

$$F(x,t) = (1-t)f(x) + tg(x), \qquad (x,t) \in M \times \mathbb{R}.$$

• Given any $x \in M$, if $f(x) \neq g(x)$, then, as $t \in \mathbb{R}$ varies, the point F(x,t) ranges over the straight line through f(x) and g(x).

Example

Any smooth map $f: M \to N$ is homotopic to itself by means of the homotopy,

$$F(x,t) = f(x), \qquad (x,t) \in M \times \mathbb{R}.$$

Smooth Homotopy

Definition

If two smooth maps $f, g: M \to N$ are smoothly homotopic, then we write $f \sim g$.

Fact (Tu2011, Exercise 27.2)

Smooth homotopy \sim is an equivalence relation on smooth maps from M to N.

Notation (see Tu2011)

 $\mathbb{1}_{M}$ is the identity map of M.

Definition

A (smooth) map $f: M \to N$ is a called a homotopy equivalence if it has a homotopy inverse, i.e., there is a smooth map $g: N \to M$ such that

$$g \circ f \sim \mathbb{1}_M$$
 and $f \circ g \sim \mathbb{1}_N$.

Example

Any diffeomorphism $f: M \to N$ is a homotopy equivalence, since

$$f^{-1} \circ f = \mathbb{1}_M \sim \mathbb{1}_M$$
 and $f \circ f^{-1} = \mathbb{1}_N \sim \mathbb{1}_N$.

Definition

We say that M and N have the same homotopy type whenever there is a homotopy equivalence $f: M \to N$.

Remark

Having the same homotopy type is an equivalence relation for manifolds.

Remark

We will see later that if M and N have the same homotopy type, then any homotopy equivalence $f:M\to N$ gives rise to an isomorphism,

$$f^*: H^*(N) \xrightarrow{\sim} H^*(M).$$

Example

The punctured plane $\mathbb{R}^2\setminus\{0\}$ and the sphere \mathbb{S}^1 have the same homotopy type:

- Let $i: \mathbb{S}^1 \to \mathbb{R}^2 \setminus \{0\}$ be the inclusion map.
- ullet Define the smooth map $r:\mathbb{R}^2\setminus\{0\} o\mathbb{S}^1$ by

$$r(x)=\frac{x}{\|x\|}, \qquad x\neq 0.$$

- We have $r \circ i = \mathbb{1}_{\mathbb{S}^1}$.
- Here $i \circ r(x) = ||x||^{-1}x \sim \mathbb{1}_{\mathbb{R}^2 \setminus \{0\}}$ by means of the homotopy,

$$F(x,t) = t^2 x + (1-t)^2 \frac{x}{\|x\|}, \qquad (x,t) \in (\mathbb{R}^2 \setminus \{0\}) \times \mathbb{R}.$$

- Note that if $x \neq 0$, then $F(x, t) \neq 0$ for all $t \in \mathbb{R}$, since $||F(x, t)|| = (t^2 + (1 t)^2 ||x||^{-1}) ||x|| > 0$.
- This shows that $i: \mathbb{S}^1 \to \mathbb{R}^2 \setminus \{0\}$ is a homotopy equivalence.

Remark

- For any $p \in \mathbb{R}^2$, the punctured plane $\mathbb{R}^2 \setminus \{p\}$ and \mathbb{S}^1 have the same homotopy type.
- We just need to replace the maps *i* and *r* by

$$i_p(y)=p+y, \qquad r_p(x)=\frac{x-p}{\|x-p\|}, \qquad x\neq p.$$

- We have $r_p \circ i_p = \mathbb{1}_{\mathbb{S}^1}$.
- We also see that $i_p \circ r_p(x) = p + \|x p\|^{-1}(x p) \sim \mathbb{1}_{\mathbb{R}^2 \setminus \{p\}}$ by using the homotopy,

$$F(x,t) = p + t^{2}(x-p) + (1-t)^{2} \frac{x-p}{\|x-p\|}, \qquad x \neq p, \ t \in \mathbb{R}.$$

Remark

More generally, if $p \in \mathbb{R}^n$, then $\mathbb{R}^n \setminus \{p\}$ and \mathbb{S}^{n-1} have the same homotopy type for any $n \geq 2$.

Definition

We say that M is contractible if it has the same homotopy type as a point.

Remark

- If $N = \{q\}$ is a singleton, then the unique (smooth) map $f: M \to N$ is the constant map $x \to q$.
- In particular, the unique smooth map $N \to N$ is the identity map $\mathbb{1}_N$.

Facts

- Let $f: M \to N$ have homotopy inverse $g: N \to M$, and set p = g(q).
- Then $f \circ g$ maps N to itself, and hence $f \circ g = \mathbb{1}_N$.
- The map $g \circ f : M \to M$ is the constant map $x \to p$.
- By assumption $g \circ f$ is homotopic to the identity map 1_M .

Therefore, we have the following result:

Proposition

The following are equivalent:

- M is contractible.
- 2 The identity map 1_M is homotopic to a constant map.

Remarks

1 The 2nd condition means there are $p \in M$ and a smooth map $F: M \times \mathbb{R} \to M$ such that

$$F(x,1) = x$$
 and $F(x,0) = p$ for all $x \in M$.

This implies that any contractible manifold is path-connected, and hence is connected.

Example

The Euclidean spaces \mathbb{R}^n , $n \ge 1$, are contractible:

• Define $F: \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n$ by

$$F(x,t) = tx, \qquad x \in \mathbb{R}^n, \ t \in \mathbb{R}.$$

- As F(x,1) = x and F(x,0) = 0 we get a smooth homotopy between the identity map $\mathbb{1}_{\mathbb{R}^n}$ and the zero map.
- It follows that \mathbb{R}^n is contractible.

Setup

S is a submanifold of M with inclusion map $i: S \to M$.

Definition

A retraction from M to S is a smooth map $r: M \to S$ such that r(x) = x for all $x \in S$.

Remark

In other words, a retraction $r: M \to S$ is such that $r \circ i = \mathbb{1}_S$, i.e., this is a left-inverse of the inclusion map $i: S \to M$.

Remark

If there exists a retraction $r: M \to S$, then we say that S is a retract of M.

Definition

We say that S is a deformation retract of M is there is a smooth homotopy $F: M \times \mathbb{R} \to M$ such that

- (i) F(x,0) = x for all $x \in M$.
- (ii) $F(x,1) \in S$ for all $x \in M$.
- (iii) F(x, t) = x for all $x \in S$ and $t \in \mathbb{R}$.

Remarks

- Define $r: M \to S$ by r(x) = F(x, 1), $x \in M$.
- By (iii) we have r(x) = F(x, 1) = x for all $x \in S$, i.e., r is a retraction from M to S (and hence $r \circ i = \mathbb{1}_S$).
- Moreover, F(x, t) is a smooth homotopy from $F(\cdot, 1) = i \circ r$ and $F(\cdot, 0) = \mathbb{1}_M$, and hence $i \circ r \sim \mathbb{1}_M$.
- Thus, r is a homotopy inverse of the inclusion $i: S \to M$.

Therefore, we have the following result:

Proposition

If S is a deformation retract of M, then there is a retraction $r:M\to S$ such that

$$r \circ i = \mathbb{1}_S$$
 and $i \circ r \sim \mathbb{1}_M$.

In particular, the inclusion map $i: S \to M$ is a homotopy equivalence.

Corollary

If S is a deformation retract of M, then M has the same homotopy type as S.

Example

The singleton $\{0\}$ is a deformation retract of \mathbb{R}^n :

• We use the straight-line homotopy,

$$F(x,t) = (t-1)x, \qquad x \in \mathbb{R}^n, \ t \in \mathbb{R}.$$

We have

$$F(x,0) = x$$
, $F(x,1) = 0$, $F(0,t) = 0$.

• Thus, F is a deformation retraction from \mathbb{R}^n to $\{0\}$.

Example

The circle \mathbb{S}^1 is a deformation retract of $\mathbb{R}^2 \setminus \{0\}$:

• We use the homotopy $F: (\mathbb{R}^2 \setminus 0) \times \mathbb{R} \to \mathbb{R}^2 \setminus 0$ given by

$$F(x,t) = \cos^2(\pi t/2)x + \sin^2(\pi t/2)\frac{x}{\|x\|}, \qquad x \neq 0, \ t \in \mathbb{R}.$$

We have

$$F(x,0) = x \quad \text{and} \quad F(x,1) = \frac{x}{\|x\|} \in \mathbb{S}^1 \qquad \text{for } x \neq 0,$$

$$F(x,t) = (\cos^2(\pi t/2)x + \sin^2(\pi t/2))x = x \qquad \text{for all } x \in \mathbb{S}^1.$$

• Thus F is a deformation retraction from $\mathbb{R}^2 \setminus \{0\}$ to \mathbb{S}^1 .

Theorem (Homotopy axiom for de Rham cohomology)

If two smooth maps $f_0, f_1: M \to N$ are homotopic, then they induce the same map on de Rham cohomology,

$$f_0^* = f_1^* : H^*(N) \longrightarrow H^*(M).$$

Remark

The proof of the theorem is postponed to the end of these slides.

Corollary

If $f: M \to N$ is a smooth homotopy equivalence, then it descends to an isomorphism,

$$f^*: H^*(N) \xrightarrow{\sim} H^*(M).$$

Proof.

- Let $g: N \to M$ be a homotopy inverse of g, i.e., $g \circ f \sim \mathbb{1}_M$ and $f \circ g \sim \mathbb{1}_N$.
- The fact that $g \circ f \sim \mathbb{1}_M$ ensures that at the level of cohomology, we have

$$f^* \circ g^* = (g \circ f)^* = 1_M^* = \text{id}$$
 on $H^*(M)$.

Likewise,

$$g^* \circ f^* = (f \circ g)^* = \mathbb{1}_N^* = \text{id}$$
 on $H^*(N)$.

• Thus, $f^*: H^*(N) \to H^*(M)$ and $g^*: H^*(M) \to H^*(N)$ are inverses of each other, and hence are isomorphisms.

Corollary

If a submanifold $S \subseteq M$ is a deformation retract of M, then the inclusion map $i: S \to M$ gives rise to an isomorphism,

$$i^*: H^*(M) \xrightarrow{\sim} H^*(S).$$

Proof.

- If S is a deformation retract of M, then the inclusion map $i: S \to M$ is a homotopy equivalence.
- It then induces an isomorphism on cohomology.

Remark

- The pullback map $i^*: \Omega^*(M) \to \Omega^*(S)$ agrees with the restriction map $\omega \to \omega_{|S}$.
- Therefore, if S is a deformation retract, then the restriction map induces an isomorphism on cohomology.

Remark

If $N = \{q\}$, then dim N = 0, and hence $H^k(N) = 0$ for $k \ge 1$.

Corollary

If M is contractible, then

$$H^k(M) = \begin{cases} \mathbb{R} & \text{for } k = 0, \\ 0 & \text{for } k \ge 1. \end{cases}$$

Proof.

- As M is contractible, it is connected, and so $H^0(M) = \mathbb{R}$.
- M has the same homotopy type as a singleton $N = \{q\}$.
- Thus $H^k(M) = H^k(N) = 0$ for $k \ge 1$.

Poincaré Lemma

As a special case of the previous result we get:

Theorem (Poincaré Lemma)

For all $n \ge 1$, we have

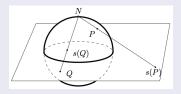
$$H^k(\mathbb{R}^n) = \begin{cases} \mathbb{R} & \text{for } k = 0, \\ 0 & \text{for } k \ge 1. \end{cases}$$

In particular, for $k \geq 1$, every closed k-form on \mathbb{R}^n is exact.

De Rham Cohomology of \mathbb{S}^n – Stereographic Projection

Lemma

Set $N = (0, ..., 0, 1) \in \mathbb{S}^n$.



• In Cartesian coordinates, the stereographic projection $\varphi: \mathbb{S}^n \setminus \{N\} \to \mathbb{R}^n$ is given by

$$\varphi(x) = \frac{1}{1 - x^{n+1}} (x^1, \dots, x^n), \qquad x = (x^1, \dots, x^{n+1}) \in \mathbb{S}^n.$$

2 This is a smooth diffeomorphism with inverse,

$$\varphi^{-1}(y) = \frac{1}{\|y\|^2 + 1} (2y^1, \dots, 2y^n, \|y\|^2 - 1), \quad y = (y^1, \dots, y^n) \in \mathbb{R}^n$$

Proposition

We have

$$H^k(\mathbb{S}^n) = \begin{cases} \mathbb{R} & \text{for } k = 0, n, \\ 0 & \text{otherwise.} \end{cases}$$

Proof.

• As \mathbb{S}^n is a connected manifold of dimension n, we have

$$H^0(\mathbb{S}^n) = \mathbb{R}, \qquad H^k(\mathbb{S}^n) = 0 \quad \text{for } k \ge n+1.$$

- To prove the result for $1 \le k \le n$ we proceed by induction.
- We know the result for n = 1 already.
- Suppose that the result is known for n-1 with $n \ge 2$.
- We have an open covering $\mathbb{S}^n = U \cup V$, where

$$U = \mathbb{S}^n \setminus \{N\}, \quad V = -U = \mathbb{S}^n \setminus \{S\}, \quad U \cap V = \mathbb{S}^n \setminus \{N, S\}.$$

We thus have a Mayer-Vietoris long exact sequence,

$$\cdots o H^{k-1}(U) \oplus H^{k-1}(V) o H^{k-1}(U \cap V) o H^k(\mathbb{S}^n) o H^k(U) \oplus H^k(V) o \cdots$$

Proof (continued).

- The stereographic projection gives a diffeomorphism $U \simeq \mathbb{R}^n$.
- Thus, $H^k(U) = H^k(\mathbb{R}^n) = 0$ for k > 1.
- As V is diffeomorphic to U under the involution $x \to -x$, we also have

$$H^{k}(V) = H^{k}(U) = 0$$
 for $k \ge 1$.

- The stereographic projection of $S \in \mathbb{S}^n$ is the origin $0 \in \mathbb{R}^n$.
- We thus get a diffeomorphism $U \cap V = \mathbb{S}^n \setminus \{N, S\} \simeq \mathbb{R}^n \setminus 0$.
- We know that \mathbb{S}^{n-1} is a deformation retract of $\mathbb{R}^n \setminus 0$.
- Thus,

$$H^k(U \cap V) = H^k(\mathbb{R}^n \setminus 0) = H^k(\mathbb{S}^{n-1}).$$

Proof (continued).

• If $k \geq 2$, then

$$H^{k-1}(U) \oplus H^{k-1}(V) = H^k(U) \oplus H^k(V) = 0,$$

 $H^{k-1}(U \cap V) = H^{k-1}(\mathbb{S}^{n-1}).$

• The Mayer-Vietoris sequence then yields an exact sequence,

$$0 \longrightarrow H^{k-1}(\mathbb{S}^{n-1}) \longrightarrow H^k(\mathbb{S}^n) \longrightarrow 0.$$

• We then get

$$H^k(\mathbb{S}^n) \simeq H^{k-1}(\mathbb{S}^{n-1}) = \left\{ egin{array}{ll} \mathbb{R} & ext{for } k=n, \\ 0 & ext{for } 2 \leq k \leq n-1. \end{array} \right.$$

Proof (continued).

- It remains to compute $H^1(\mathbb{S}^n)$.
- As $H^1(U) \oplus H^1(V) = 0$, the Mayer-Vietoris sequence yields an exact sequence,

$$0 \to H^0(\mathbb{S}^n) \to H^0(U) \oplus H^0(V) \to H^0(U \cap V) \to H^1(\mathbb{S}^n) \to 0.$$

- Here $H^0(U) = H^0(V) = H^0(U \cap V) = H^0(\mathbb{S}^n) = \mathbb{R}$.
- We thus get an exact sequence,

$$0 \longrightarrow \mathbb{R} \longrightarrow \mathbb{R}^2 \longrightarrow \mathbb{R} \longrightarrow H^1(\mathbb{S}^n) \longrightarrow 0.$$

• Taking the alternating sum of dimensions then gives

$$1-2+1-\dim H^1(\mathbb{S}^n)=0.$$

• That is, dim $H^1(\mathbb{S}^n) = 0$, and hence $H^1(\mathbb{S}^n) = 0$.

This completes the proof.

Proof of Homotopy Invariance: Reduction to Two Sections

Setup

- $f,g:M\to N$ are homotopic smooth maps.
- $F: M \times \mathbb{R} \to N$ is a smooth homotopy such that

$$F(x,0) = f(x)$$
 and $F(x,1) = g(x)$ for all $x \in M$.

We want to prove:

Theorem

f and g induce the same map on de Rham cohomology,

$$f^* = g^* : H^*(N) \longrightarrow H^*(M).$$

Proof of Homotopy Invariance: Reduction to Two Sections

Definition

The C^{∞} -maps $i_0: M \to M \times \mathbb{R}$ and $i_1: M \to M \times \mathbb{R}$ are given by $i_0(x) = (x,0)$ and $i_1(x) = (x,1)$, $x \in M$.

Facts

We have

$$f(x) = F(x,0) = f \circ i_0(x),$$
 $g(x) = F(x,1) = f \circ i_1(x).$

• Thus, at the level of cohomology, we get:

$$f^* = (F \circ i_0)^* = i_0^* \circ F^*, \qquad g^* = (F \circ i_1)^* = i_1^* \circ F^*.$$

• Therefore, in order to show that $f^* = g^*$ it is enough to prove that $i_0^* = i_1^*$.

Proof of Homotopy Invariance: Cochain Homotopy

Setup

- $\mathscr{A} = (A^*, d)$ and $\mathscr{B} = (B^*, d)$ are cochain complexes.
- $\varphi, \psi : A^* \to B^*$ are cochain maps.

Definition

A cochain homotopy from φ to ψ is a degree -1 linear map $K:A^*\to B^{*-1}$ such that

$$\varphi - \psi = d \circ K + K \circ d.$$

Proposition

If there is a cochain homotopy from φ to ψ , then φ and ψ induce the same map on cohomology,

$$\varphi^* = \psi^* : H^*(\mathscr{A}) \longrightarrow H^*(\mathscr{B}).$$

Proof of Homotopy Invariance: Cochain Homotopy

Proof.

• Given any cocycle $a \in \mathbb{Z}^k(\mathscr{A})$, we have

$$\varphi^*[a] - \psi^*[a] = [\varphi(a)] - [\psi(a)] = [\varphi(a) - \psi(a)].$$

• As $\varphi - \psi = dK + Kd$ and da = 0, we have

$$\varphi(a) - \psi(a) = d(K(a)) + K(da) = d(K(a)).$$

Thus,

$$\varphi^*[a] - \psi^*[a] = [d(K(a))] = 0.$$

This proves the result.

Setup

- M is a smooth manifold of dimension n.
- $i_0, i_1: M \to M \times \mathbb{R}$ are the embeddings $x \to (x, 1)$ and $x \to (x, 0)$.
- They give rise to cochain maps $i_0^*, i_1^*: \Omega^*(M \times \mathbb{R}) \to \Omega^*(M)$.

Strategy

- We shall construct a linear map $K: \Omega^*(M \times \mathbb{R}) \to \Omega^{*-1}(M)$ such that $i_1^* i_0^* = d \circ K + K \circ d.$
- This will exhibit a cochain homotopy from i_1^* to i_0^* .
- It will then follow that i_1^* and i_0^* induce the same map on de Rham cohomology.

Facts

- If $(U, x^1, ..., x^n)$ are local coordinates for M, then $(U \times \mathbb{R}, x^1, ..., x^n, t)$ are local coordinates for $M \times \mathbb{R}$.
- Thus, on $U \times \mathbb{R}$, any $\omega \in \Omega^k(M)$, can be uniquely written as

$$\omega = \sum_{I} a_{I}(x,t) dx^{I} + \sum_{I} b_{J}(x,t) dx^{J} \wedge dt,$$

where I ranges over $\mathcal{I}_{n,k}$ and J ranges over $\mathcal{I}_{n,k-1}$.

• Thus, if we set $\omega_0:=\sum a_I dx^I$ and $\omega_1:=\sum b_J dx^J$, then $\omega=\omega_0+\omega_1\wedge dt$.

Lemma

There a well-defined linear map $K: \Omega^k(M \times \mathbb{R}) \to \Omega^{k-1}(M \times \mathbb{R})$ such that, given any $\omega \in \Omega^k(M \times \mathbb{R})$, if (U, x^1, \dots, x^n) are local coordinates for M and $\omega = \sum a_I dx^I + \sum b_J dx^J \wedge dt$ on $U \times \mathbb{R}$, then

$$K\omega = (-1)^{k-1} \sum_{I} \left(\int_{0}^{1} b_{J}(x,t) dt \right) dx^{J}$$
 on U .

Proof.

- The map K is well defined in a local chart.
- We need to show that the definition does not depend on the choice of the local coordinates.
- Namely, if $(U, y^1, ..., y^n)$ are local coordinates on U and $\omega = \sum_I c_I dy^I + \sum_J d_J y^J$, then we need to show that, for all $p \in U$, we have

$$\sum_{J} \left(\int_{0}^{1} b_{J}(p,t) dt \right) dx^{J} = \sum_{J} \left(\int_{0}^{1} d_{J}(p,t) dt \right) dy^{J}.$$

On *U* we may write

$$y^I = \sum_{l'} \varepsilon_{l'}^I dx^{l'}, \qquad \varepsilon_{l'}^I = \frac{\partial (y^{i_1}, \dots, y^{i_k})}{\partial (x^{i'_1}, \dots, x^{i'_k})} \in C^{\infty}(U),$$

with
$$I = (i_1, ..., i_k)$$
 and $I' = (i'_1, ..., i'_k)$.

Proof.

• Let $p \in U$. We have

$$\omega(p) = \sum_{IJ} a_{I'}(p,t) dx^{I'} + \sum_{IJ} b_{J'}(p,t) dx^{J'} \wedge dt.$$

We also have

$$\begin{split} \omega(p) &= \sum_{I} c_{I}(p,t) dy^{I} + \sum_{J} d_{J}(p,t) dy^{J} \wedge dt \\ &= \sum_{I,I'} c_{I}(p,t) \varepsilon_{I'}^{I}(p) dx^{I'} + \sum_{J,J'} d_{J}(p,t) \varepsilon_{J'}^{J}(p) dx^{J'} \wedge dt \\ &= \sum_{I'} \left(\sum_{I} c_{I}(p,t) \varepsilon_{I'}^{I}(p) \right) dx^{I'} \\ &+ \sum_{I'} \left(\sum_{J} d_{J}(p,t) \varepsilon_{J'}^{J}(p) \right) dx^{J'} \wedge dt. \end{split}$$

Thus,

$$b_{J'}(p,t) = \sum_{j} \varepsilon_{J'}^{J}(p) d_{J}(p,t).$$

Proof.

• Therefore, we have

$$\sum_{J'} \left(\int_0^1 b_{J'}(p,t)dt \right) dx^{J'} = \sum_{J',J} \left(\int_0^1 \varepsilon_{J'}^J(p)d_J(p,t)dt \right) dx^{J'}$$
$$= \sum_J \left(\int_0^1 d_J(p,t)dt \right) \sum_{J'} \varepsilon_{J'}^J(p)dx^{J'}.$$

• As $dy^J = \sum_J \varepsilon_{J'}^J(p) dx^{J'}$, we then get

$$\sum_{J'} \left(\int_0^1 b_{J'}(p,t) dt \right) dx^{J'} = \sum_{J} \left(\int_0^1 d_J(p,t) dt \right) dy^J.$$

This completes the proof.

Lemma

For all $\omega \in \Omega^k(M \times \mathbb{R})$, we have

$$i_1^*\omega - i_0^*\omega = d(K\omega) + K(d\omega).$$

Proof.

- It's enough to prove the result in local coordinates.
- Let (U, x^1, \dots, x^n) be local coordinates for M.
- $(U \times \mathbb{R}, x^1, \dots, x^n, t)$ then are local coordinates for $M \times \mathbb{R}$.
- Thus, we may write $\omega = \sum a_I dx^I + \sum b_J dx^J \wedge dt$ on $U \times \mathbb{R}$.

Proof – Computation of $i_1^*\omega - i_0^*\omega$.

- In local coordinates, $i_0: M \to M \times \mathbb{R}$ is just the embedding $(x^1, \dots, x^n) \to (x^1, \dots, x^n, 0)$, and hence $(i_0)_*(\partial_{x^i}) = \partial_{x^i}$.
- Thus, if $I = (i_1, \dots, i_k)$ and $\partial_I = (\partial_{x^{i_1}}, \dots, \partial_{x^{i_k}})$, then $(i_0^* \omega)(\partial_I)(p) = \omega(i_0^* \partial_{x^{i_1}}, \dots, i_0^* \partial_{x^{i_1}})(i_0(p)) = \omega(\partial_I)(p, 0).$
- If $\omega = \sum a_I dx^I + \sum b_J dx^J \wedge dt$, then $\omega(\partial_I) = a_I$.
- It then follows that $(i_0^*\omega)(p)$ is equal to

$$\sum (i_0^*\omega)(\partial_I)(p)dx^I = \sum_I \omega(\partial_I)(p,0)dx^I = \sum_I a_I(p,0)dx^I.$$

• Likewise, we have

$$(i_1^*\omega)(p)=\sum_I a_I(p,1)dx^I.$$

Proof – Computation of $i_1^*\omega - i_0^*\omega$.

• We then see that $(i_1^*\omega)(p) - (i_0^*\omega)(p)$ is equal to

$$\sum_{I} a_{I}(p,1) dx^{I} - \sum_{I} a_{I}(p,0) dx^{I} = \sum_{I} (a_{I}(p,1) - a_{I}(p,0)) dx^{I}.$$

Note that

$$a_I(p,1)-a_I(p,0)=\int_0^1\partial_t a_I(x,t)dt.$$

Thus,

$$(i_1^*\omega)(p)-(i_0^*\omega)(p)=\sum_I\left(\int_0^1\partial_ta_I(x,t)dt\right)dx^I.$$

Proof – Computation of $d(K\omega)$.

By definition, on *U* we have

$$K\omega = (-1)^{k-1} \sum_{J} \left(\int_0^1 b_J(x,t) dt \right) dx^J.$$

Thus, on *U* we have

$$K\omega = (-1)^{k-1} \sum_{i} \sum_{J} \partial_{x^{i}} \left(\int_{0}^{1} b_{J}(x, t) dt \right) dx^{i} \wedge dx^{J}$$
$$= (-1)^{k-1} \sum_{i} \left(\int_{0}^{1} \partial_{x^{i}} b_{J}(x, t) dt \right) dx^{i} \wedge dx^{J}.$$

Proof – Computation of $K(d\omega)$.

• As $\omega = \sum a_I dx^I + \sum b_J dx^J \wedge dt$ on U, we have $d\omega = \sum_{i,l} \partial_{x^i} a_l dx^i \wedge dx^l + \sum_{l} \partial_t a_l dt \wedge dx^l$ $+\sum_{i,j}\partial_{x^i}b_Jdx^i\wedge dx^J\wedge dt$ $= \sum_{i,l} \partial_{x^i} a_l dx^i \wedge dx^l + (-1)^k \sum_l \partial_t a_l dx^l \wedge dt$ $+\sum_{i,J}\partial_{x^i}b_Jdx^i\wedge dx^J\wedge dt.$

Proof – Computation of $K(d\omega)$.

• Thus, taking into account that $d\omega$ has degree k+1, we get

$$K(d\omega)(p) = \sum_{I} \left(\int_{0}^{1} \partial_{t} a_{I}(p, t) dt \right) dx^{I}$$

$$+ (-1)^{k} \sum_{i,J} \left(\int_{0}^{1} \partial_{x^{i}} b_{J}(p, t) dt \right) dx^{i} \wedge dx^{J}$$

$$= i_{1}^{*} \omega(p) - i_{0}^{*} \omega(p) - d(K\omega)(p).$$

This shows that

$$i_1^*\omega - i_0^*\omega = K(d\omega) + d(K\omega).$$

The proof is complete.

Setup

M is a smooth manifold of dimension n.

For the compactly supported de Rham cohomology we are going to show the following result:

Proposition (see Bott-Tu)

We have

$$H_c^k(M \times \mathbb{R}) \simeq H_c^{k-1}(M).$$

Corollary (Poincaré Lemma for Compact Cohomology)

We have

$$H_c^k(\mathbb{R}^n) = \begin{cases} \mathbb{R} & \text{if } k = n, \\ 0 & \text{otherwise.} \end{cases}$$

Proof.

- We proceed by induction on *n*.
- We know the result for n = 1.
- Assume the result is true for n-1 with n > 2.
- The previous proposition then gives

$$H_c^n(\mathbb{R}^n) = H_c^{n-1}(\mathbb{R}^{n-1}) = \mathbb{R},$$

 $H_c^k(\mathbb{R}^n) = H_c^{k-1}(\mathbb{R}^{n-1}) = 0, \quad k \neq n.$

This completes the proof.

Notation (Shifted cochain complex)

If $\mathscr{A}=(A^*,d)$ is a cochain complex, then $\mathscr{A}[-1]$ is the cochain complex such that

- The space of k-cochains is A^{k-1} .
- The differential in degree k is $d: A^{k-1} \to A^k$.

Remark

We then have

$$H^k(\mathscr{A}[-1]) = H^{k-1}(\mathscr{A}).$$

Setup

M is a smooth manifold of dimension n.

Reminder

- If $(U, x^1, ..., x^n)$ are local coordinates for M, then $(U \times \mathbb{R}, x^1, ..., x^n, t)$ are local coordinates for $M \times \mathbb{R}$.
- Thus, on $U \times \mathbb{R}$ any form $k \in \Omega^k(M \times \mathbb{R})$ takes the form,

$$\omega = \sum_{I} a_{I}(x,t) dx^{I} + \sum_{J} b_{J}(x,t) dx^{J} \wedge dt,$$

where I ranges over $\mathcal{I}_{n,k}$ and J ranges over $\mathcal{I}_{n,k-1}$.

Lemma

• There is a well-defined lin. map $\pi: \Omega_c^k(M \times \mathbb{R}) \to \Omega_c^{k-1}(M)$ such that, given any $\omega \in \Omega_c^k(M \times \mathbb{R})$, if (U, x^1, \ldots, x^n) are local coordinates for M and $\omega = \sum a_I dx^I + \sum b_J dx^J \wedge dt$ on $U \times \mathbb{R}$, then

$$\pi(\omega) = \sum_{J} \left(\int_{-\infty}^{\infty} b_{J}(x,t) dt \right) dx^{J}$$
 on U .

- 3 We thus get a cochain map,

$$\pi: \Omega_c^*(M \times \mathbb{R}) \longrightarrow \Omega_c^*(M)[-1].$$

Lemma

Let $\rho(t) \in C_c^{\infty}(\mathbb{R})$ be such that $\int_{-\infty}^{\infty} \rho(t) dt = 1$.

• There is a well-defined lin. map $\varepsilon : \Omega^{k-1}(M) \to \Omega^k(M \times \mathbb{R})$ such that, given any $\omega \in \Omega^k(M)$, if (U, x^1, \dots, x^n) are local coordinates for M and $\omega = \sum b_J dx^J$ on U, then

$$\varepsilon(\omega) = \sum_J b_J(x) \rho(t) dx^J \wedge dt$$
 on $U \times \mathbb{R}$.

- **3** It maps $\Omega_c^{k-1}(M)$ to $\Omega_c^k(M \times \mathbb{R})$.
- We thus get a cochain map,

$$\varepsilon: \Omega_c^*(M)[-1] \longrightarrow \Omega_c^*(M \times \mathbb{R}).$$

Fact

 $\pi \circ \varepsilon = \mathrm{id} \text{ on } \Omega_c^{k-1}(M).$

Lemma (see Bott-Tu)

There is a cochain homotopy $K: \Omega_c^k(M \times \mathbb{R}) \to \Omega_c^{k-1}(M \times \mathbb{R})$ such that

$$\operatorname{id} -\varepsilon \circ \pi = dK + Kd$$
 on $\Omega_c^k(M \times \mathbb{R})$.

Remark

Given any $\omega \in \Omega_c^k(M \times \mathbb{R})$, if (U, x^1, \dots, x^n) are local coordinates for M and $\omega = \sum a_I dx^I + \sum b_J dx^J \wedge dt$ on $U \times \mathbb{R}$ on $U \times \mathbb{R}$, then

$$K(\omega) = (-1)^k \sum_J \left(\int_{-\infty}^t \tilde{b}_J(x,s) ds \right) dx^J \quad \text{on } U \times \mathbb{R},$$

where we have set $\tilde{b}_J(x,t) := b_J(x,t) - \rho(t) \int_{-\infty}^{\infty} b_J(x,s) ds$.

This leads to the following result:

Proposition (see Bott-Tu)

- The cochain maps $\pi: \Omega_c^*(M \times \mathbb{R}) \to \Omega_c^*(M)[-1]$ and $\varepsilon: \Omega_c^*(M)[-1] \to \Omega_c^*(M \times \mathbb{R})$ are quasi-inverses of each other.
- 2 Therefore, on cohomology they induce isomorphisms,

$$H_c^k(M \times \mathbb{R}) \simeq H^k(\Omega_c^*(M)[-1]) = H_c^{k-1}(M).$$

Proof.

- As $\pi \circ \varepsilon = \operatorname{id}$, on $H^k(\Omega_c^*(M)[-1]) = H_c^{k-1}(M)$ we have $\pi^* \circ \varepsilon^* = (\pi \circ \varepsilon)^* = \operatorname{id}.$
- By the previous lemma $\varepsilon \circ \pi$ is chain homotopic to the identity map on $\Omega_c^*(M \times \mathbb{R})$.
- Thus, it induces the identity map on cohomology, i.e.,

$$\varepsilon^* \circ \pi^* = (\varepsilon \circ \pi^*) = \mathrm{id}$$
.

• This shows that π^* and ε^* are inverses of each other on cohomology.

This proves the result.