Differentiable Forms in Algebraic Topology Review: Vector Bundles

Sichuan University, Fall 2024

Definition

A vector bundle of rank r over a manifold M is a smooth manifold E together with a surjective smooth map $\pi : E \to M$ such that:

- (i) For every $p \in M$, the fiber $E_p = \pi^{-1}(p)$ is a vector space of dimension r.
- (ii) For each $p \in M$ there is an open neighborhood U of p in M and a diffeomorphism $\phi: \pi^{-1}(U) \to U \times \mathbb{R}^r$ (called *trivialization of E over U*) such that
 - $\pi \circ \phi^{-1}(q, \xi^1, \dots, \xi^r) = q$ for all $q \in U$ and $(\xi^1, \dots, \xi^r) \in \mathbb{R}^r$.
 - For each $q \in U$, the restriction of ϕ to E_q is a vector space isomorphism from E_q onto $\{q\} \times \mathbb{R}^r$.

Remarks

- We sometimes write a vector bundle as $E \stackrel{\pi}{\rightarrow} M$.
- We may also think of a vector bundle as a triple (E, M, π) . In this picture E is called the *total space*, M is called the *base space*, and π is called the *projection*.

Remark

Let $E \xrightarrow{\pi} M$ be a smooth vector bundle and S a regular submanifold in M. Then $\pi^{-1}(S) \xrightarrow{\pi} S$ is a smooth vector bundle over S denoted $E_{|S|}$ and called the *restriction of E to S*.

Example

- A trivial vector bundle is of the form $E = M \times \mathbb{R}^r$.
- In this case the projection $\pi: M \times \mathbb{R}^r \to M$ is just the projection onto the first factor.

Example

- The tangent bundle *TM* is a vector bundle of rank *n*.
- If $(U, x^1, ..., x^n)$ is a chart, then a trivialization of TM over U is the map $\psi : TU \to U \times \mathbb{R}^n$ given by

$$\psi\left(\sum v^i \frac{\partial}{\partial x^i}\Big|_{p}\right) = (p, v^1, \dots, v^n), \qquad p \in U, \ v^i \in \mathbb{R}.$$

In particular, $(\phi \times \mathbb{1}_{\mathbb{R}^n}) \circ \psi = \tilde{\phi}$.

Remark

Let $E \xrightarrow{\pi} M$ be a smooth vector bundle. Suppose that $(U, \psi) = (U, x^1, \dots, x^n)$ is a chart for M and we have a local trivialization,

$$\phi: E_{|U} \longrightarrow U \times \mathbb{R}^r, \qquad \phi(\xi) = (\pi(\xi), c^1(\xi), \dots, c^r(\xi)).$$

Then $(\psi \times 1_{\mathbb{R}^r}) \circ \phi : E_{|U} \to \psi(U) \times \mathbb{R}^r$ is a diffeomorphism, and we have

$$(\psi \times \mathbb{1}_{\mathbb{R}^r}) \circ \phi = (\psi \times \mathbb{1}_{\mathbb{R}^r}) (\pi, c^1, \dots, c^r)$$
$$= (x^1 \circ \pi, \dots, x^n \circ \pi, c^1, \dots, c^r).$$

In particular, $(\pi^{-1}(U), (\psi \times \mathbb{1}_{\mathbb{R}^r}) \circ \phi)$ is a chart for E. We call x^1, \ldots, x^n the base coordinates and c^1, \ldots, c^n the fiber coordinates

Definition (Bundle Maps)

Let $\pi_E: E \to M$ and $\pi_F: F \to N$ be smooth vector bundles. A bundle map from E to F is given by a pair of smooth maps (f, \tilde{f}) , $f: M \to N$, $\tilde{f}: E \to F$ such that:

(i) $\pi_F \circ \tilde{f} = f \circ \pi_E$, i.e., we have a commutative diagram,

$$\begin{array}{ccc}
E & \xrightarrow{\tilde{f}} & F \\
\pi_E \downarrow & & \downarrow \pi_F \\
M & \xrightarrow{f} & N'.
\end{array}$$

(ii) For every $p \in M$, the map \tilde{f} restricts to a linear map $\tilde{f}: E_p \to F_{f(p)}$.

Example

Any smooth map $f: M \to N$ gives rise to a bundle map (f, \tilde{f}) from TM to TN with $\tilde{f} = f_*$. Namely,

$$\tilde{f}(v) = f_{*,p}(v)$$
 $p \in M, v \in T_pM$.

- The smooth vector bundles define a category where the objects are smooth vector bundles and the morphisms are bundle maps.
- From this point of view, the tangent bundle construction defines a functor from the category of smooth manifolds to the category of smooth vector bundles.

- We may also consider the category of vector bundles over a fixed manifold M.
- ullet In this case the morphisms are bundle maps (f, \tilde{f}) with $f = \mathbb{1}_M$.

Smooth Sections

Definition (Section of a Vector Bundle)

Let $E \stackrel{\pi}{\to} M$ be a smooth vector bundle.

- A section of E is any map $s: M \to E$ such that $\pi \circ s = \mathbb{1}_M$, i.e., $s(p) \in E_p$ for all $p \in M$,
- A smooth section is a section which is smooth as a map from M to E.

- The set of smooth sections of E is denoted $\Gamma(E)$ or $\Gamma(M,E)$.
- If U is an open subset of M, we denote by $\Gamma(U, E)$ the set of smooth sections of $E_{|U}$.
- Sections of $E_{|U}$ are called *local sections*, whereas sections defined on the entire manifold M are called *global sections*.

Example: Vector Fields

Definition (Vector Field)

- A vector field is a section of the tangent bundle *TM*.
- A smooth vector field is a smooth section of TM.

Remark

In other words, a vector field $X:M\to TM$ assigns to each $p\in M$ a tangent vector $X_p\in T_pM$.

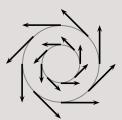
Example: Vector Fields

Example

On ℝ²

$$X_{(x,y)} = -y \frac{\partial}{\partial x} + x \frac{\partial}{\partial y} = \langle -y, x \rangle$$

is a smooth vector field on \mathbb{R}^2 .



Smooth Sections – Module Structure

Proposition (Proposition 12.9)

Let E be a vector bundle over M. Then its set of smooth sections $\Gamma(E)$ is a module over the ring $C^{\infty}(M)$ with respect to the addition and scalar multiplication given by

$$(s_1 + s_2)(p) = s_1(p) + s_2(p), \quad s_i \in \Gamma(E), \quad p \in M,$$

 $(fs)(p) = f(p)s(p), \quad f \in C^{\infty}(M), \ s \in \Gamma(E), \ p \in M.$

- Here $s_1(p) + s_2(p)$ and f(p)s(p) make sense as elements of the fiber E_p , since E_p is a vector space.
- If U is an open set, then $\Gamma(U, E)$ is a module over $C^{\infty}(U)$.

Definition (Frames of Vector Bundles)

Let E be a smooth vector bundle of rank r over M.

- A frame of E over an open $U \subseteq M$ is given by sections s_1, \ldots, s_r such that $\{s_1(p), \ldots, s_r(p)\}$ is a basis of the fiber E_p for every $p \in U$.
- We say that the frame $\{s_1, \ldots, s_r\}$ is *smooth* when the sections s_1, \ldots, s_r are smooth.

- A frame of the tangent bundle is called a tangent frame, or simply a frame.
- For instance, $\{\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\}$ is a smooth tangent frame over \mathbb{R}^2 .

Example

Let e_1,\ldots,e_r be the canonical basis of \mathbb{R}^r . For $i=1,\ldots,r$, define $\tilde{e}_i:M\to M\times\mathbb{R}^r$ by

$$\tilde{e}_i(p)=(p,e_i), \qquad p\in M.$$

- Each map \tilde{e}_i is a smooth section of the trivial bundle $M \times \mathbb{R}^r$.
- If $p \in M$, then $\{\tilde{e}_1(p), \dots, \tilde{e}_r(p)\}$ is a basis of $\{p\} \times \mathbb{R}^r$.

Therefore, $\{\tilde{e}_1, \dots, \tilde{e}_r\}$ is a smooth frame of $M \times \mathbb{R}^r$ over M.

Example (Frame of a trivialization)

Suppose E is a smooth vector bundle of rank r over M. Let $\phi: E_{|U} \to U \times \mathbb{R}^r$ be a trivialization over an open $U \subseteq M$.

- From the previous example $\{\tilde{e}_1, \dots, \tilde{e}_r\}$ is a smooth frame of $U \times \mathbb{R}^r$ over U.
- As ϕ is smooth, $t_i = \phi^{-1} \circ \tilde{e}_i$ is a smooth map from U to $E_{|U}$.
- If $p \in U$, then $t_i(p) = \phi(\tilde{e}_i(p)) = \phi(p, e_i) \in E_p$, so t_i is a smooth section of E.
- The trivialization ϕ induces a linear isomorphism from E_p to $\{p\} \times \mathbb{R}^r$. It pullbacks the basis $\{\tilde{e}_i(p), \dots, \tilde{e}_r(p)\}$ of $\{p\} \times \mathbb{R}^r$ to $\{t_1(p), \dots, t_r(p)\}$, so the latter is a basis of E_p .
- Therefore, $\{t_1, \ldots, t_r\}$ is a smooth frame of E over U. It is called the *frame of the trivialization* (U, ϕ) .

Facts

Let s be a section of E over U. If $p \in U$, then $s(p) \in E_p$ and $\{t_1(p), \ldots, t_r(p)\}$ is a basis of E_p . Thus, we may write

$$s(p) = \sum b^i(p)t_i(p), \qquad b^i(p) \in \mathbb{R}.$$

- If the coefficients $b_i(p)$ depends smoothly on p, then s is smooth.
- Conversely, suppose that *s* is a smooth section.
 - This implies that $\phi \circ s : U \to U \times \mathbb{R}^r$ is a smooth map.
 - If $p \in U$, then $\phi \circ s(p) = \phi \left[\sum b^i(p) t_i(p) \right] = \sum b^i(p) \phi[t_i(p)]$.
 - As $\phi[t_i(p)] = \phi[\phi^{-1}(\tilde{e}_i(p))] = \tilde{e}_i(p) = (p, e_i)$, we get

$$\phi \circ s(p) = \sum b^i(p)(p,e_i) = (p,b^1(p),\ldots,b^r(p)).$$

• As $\phi \circ s$ is a smooth map, the components $b^1(p), \ldots, b^r(p)$ must be smooth functions.

From the previous slide we obtain:

Lemma (Lemma 12.11)

Let $\phi: E_{|U} \to U \times \mathbb{R}^r$ be a trivialization of E over an open $U \subseteq M$ with frame $\{t_1, \ldots, t_n\}$. A section $s = \sum b^i t_i$ of E over U is smooth if and only if b^1, \ldots, b^r are smooth functions.

More generally, we have:

Proposition (Proposition 12.12; see Tu's book)

Let $\{s_1, \ldots, s_r\}$ be a smooth frame of E over an open $U \subseteq M$. A section $s = \sum c^i s_i$ of E over U is smooth if and only if c^1, \ldots, c^r are smooth functions.

Corollary

If $\{s_1, \ldots, s_r\}$ is a smooth frame of E over an open $U \subseteq M$, then this is a $C^{\infty}(U)$ -basis of the $C^{\infty}(U)$ -module $\Gamma(U, E)$.

Remark

Let $\{s_1, \ldots, s_r\}$ be a smooth frame of E over an open $U \subseteq M$. Define $\sigma: U \times \mathbb{R}^n \to E_{|U|}$ by

$$\sigma(p,\xi^1,\ldots,\xi^r) = \sum \xi^i s_i(p), \qquad p \in U, \ \xi^i \in \mathbb{R}.$$

- The map σ is a smooth bijection that induces a linear isomorphism from $\{p\} \times \mathbb{R}^r$ onto E_p .
- It can be shown that the inverse map $\phi = \sigma^{-1} : E_{|U} \to U \times \mathbb{R}^r$ is smooth, and so this is a trivialization of E over U.
- The frame of (ϕ, U) is $\{s_1, \ldots, s_r\}$, since

$$\phi^{-1}(\tilde{e}_i(p)) = \sigma(p, e_i) = s_i(p).$$

It follows that we have a one-to-one correspondance between trivializations and smooth frames.

Example

Let $(U, x^1, ..., x^n)$ be a local chart for M.

• We know that (U, x^1, \dots, x^n) gives rise to the trivialization $\psi: TU \to U \times \mathbb{R}^n$ given by

$$\psi(v) = (p, v^1, \dots, v^n)$$
 if $v = \sum v^i \frac{\partial}{\partial x^i} \Big|_p \in T_p M, \ p \in U.$

• In particular, as $\psi(\frac{\partial}{\partial x^i}|_p) = (p, e_i) = \tilde{e}_i(p)$, we have

$$t_i(p) = \psi^{-1}(\tilde{e}_i(p)) = \frac{\partial}{\partial x^i}\bigg|_p.$$

Thus, $\left\{\frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^n}\right\}$ is the frame of the trivialization (U, ψ) . In particular, this is a smooth tangent frame over U.