Differentiable Forms in Topology Review: The Tangent Space

Sichuan University, Fall 2024

- A vector at a point p in \mathbb{R}^3 can be visualized as an arrow emanating from p.
- It can also be represented as a column,

$$v = \begin{bmatrix} v^1 \\ v^2 \\ v^3 \end{bmatrix}.$$

Definition (Tangent Space)

- The tangent space $T_p(\mathbb{R}^n)$ at $p \in \mathbb{R}^n$ is the vector space of all arrows emanating from p.
- Elements of $T_p(\mathbb{R}^n)$ are called tangent vectors (or simply vectors).

- We identify $T_p(\mathbb{R}^n)$ with the space of *n*-columns, and hence tangent vectors are identified with *n*-columns.
- **2** We sometime write $T_p\mathbb{R}^n$ for $T_p(\mathbb{R}^n)$.

Convention

• We shall denote a point in \mathbb{R}^n as $p = (p^1, \dots, p^n)$ and a tangent vector in $T_p(\mathbb{R}^n)$ as

$$v = \begin{bmatrix} v^1 \\ \vdots \\ v^n \end{bmatrix}$$
 or $v = \langle v^1, \dots, v^n \rangle$.

• We usually denote the canonical basis of \mathbb{R}^n or $T_p(\mathbb{R}^n)$ by e_1, \ldots, e_n , so that $v = \sum v^j e_i$.

Definition

Let f be a C^{∞} -function on a neighbrohood of $p = (p^1, \dots, p^n)$, and let $v = \langle v^1, \dots, v^n \rangle$ be a tangent vector. The directional derivative of f in the direction of v at p is defined to be

$$D_{\nu}f = \frac{d}{dt}\Big|_{t=0}f(p+t\nu).$$

- **1** In other words $D_v f = \frac{d}{dt}\Big|_{t=0} f(c(t))$, where c(t) = p + tv.
- 2 In the notation $D_v f$ it is implicitly understood that we evaluate at p, since v is a tangent vector at p. Thus, $D_v f$ is a number, not a function.

Fact

By using the Chain Rule we find that

$$D_{\nu}f=\sum_{i=1}^{n}\nu^{i}\frac{\partial f}{\partial x^{i}}(p).$$

Definition

We write

$$D_{v} = \sum v^{i} \frac{\partial}{\partial x^{i}} \Big|_{p}$$

for the map that assigns to any C^{∞} -function f near p its directional derivative $D_{V}f$.

Remark

As we shall see, the assignment $v \to D_v$ provides us with an alternative description of tangent vectors at p.

Observation

Two C^{∞} functions that agree on a neighborhood of p have the same directional derivatives at p. Therefore, it is natural to declare such functions to be equivalent.

Definition

We define a relation on C^{∞} -functions near p at follows:

- S is a set of pairs (f, U), where U is a neighborhood of p and f is a C^{∞} -function on U.
- The relation on *S* is given by

$$(f, U) \sim (g, V) \iff f = g \text{ near } p.$$

Fact

This defines an equivalence relation.

Definition

- **1** The equivalence class of (f, U) is called the germ of f at p.
- ② The set of all germs at p is denoted by $C_p^{\infty}(\mathbb{R}^n)$, or simply C_p^{∞} .

Example

The functions

$$f(x) = \frac{1}{1-x}, \qquad x \neq 1,$$

 $g(x) = 1 + x + x^2 + \cdots, \qquad |x| < 1,$

have the same germ at any point of the interval (-1,1).

Fact

Let p be a point in \mathbb{R}^n .

- The addition, scalar multiplication and multiplication of functions induces corresponding operations on the set of germs C_p[∞] (see Problem 2.2).
- ② This turns C_p^{∞} into an algebra over \mathbb{R} .

Derivations at a Point

Facts

Let p be a point in \mathbb{R}^n and v a tangent vector at p.

• The directional derivative gives rise to a map,

$$D_{v}: C_{p}^{\infty} \longrightarrow \mathbb{R}.$$

2 This map is \mathbb{R} -linear and satisfies Leibniz's Rule:

$$D_{\nu}(fg) = f(p)D_{\nu}(g) + (D_{\nu}f)g(p).$$

Derivations at a Point

Definition

- Any linear map $D: C_p^{\infty} \to \mathbb{R}$ that satisfies Leibniz's Rule is called a derivation at p (or a point-derivation of C_p^{∞}).
- ② The set of all derivations at p is denoted $\mathcal{D}_p(\mathbb{R}^n)$.

Fact

 $\mathcal{D}_{p}(\mathbb{R}^{n})$ is a vector space over \mathbb{R} .

Theorem (Theorem 2.2)

Let $\phi: T_p(\mathbb{R}^n) \to \mathscr{D}_p(\mathbb{R}^n)$ be the map defined by

$$\phi(v) = D_v = \sum_i v^i \frac{\partial}{\partial x^i} \Big|_{p_i}, \qquad v = \langle v^1, \dots, v^n \rangle \in T_p(\mathbb{R}^n).$$

Then ϕ is a linear isomorphism.

Derivations at a Point

Consequence

- This isomorphism allows us to identify tangent vectors at p with derivation at p.
- Under this identification,

Canonical basis
$$e_1, \ldots, e_n \longleftrightarrow \frac{\partial}{\partial x^1}\Big|_p, \ldots, \frac{\partial}{\partial x^n}\Big|_p,$$

$$v = \langle v^1, \ldots, v^n \rangle = \sum_i v^i e_i \longleftrightarrow v = \sum_i v^i \frac{\partial}{\partial x^i}\Big|_p.$$

- From now on we will write a tangent vector as $v = \sum v^i \frac{\partial}{\partial x^i} \Big|_{p}$.
- Although not as geometric as the realization as arrows, the description of the tangent space in terms of derivations is more suitable for the generalization to manifolds.

Facts

- Let $\mathscr{F}_p(M)$ consist of pairs (U, f), where U is an open neighborhood of p and $f: U \to \mathbb{R}$ is a C^{∞} function.
- On $\mathscr{F}_p(M)$ we define an equivalence relation by

$$(U, f) \sim (V, g) \iff f = g \text{ near } p.$$

Thus, $f \sim g$ means there is an open $W \subset U \cap V$ such that $p \in W$ and f = g on W.

Definition

- The equivalence class of (U, f) is called the germ of f at p.
- The quotient $\mathscr{F}_p(M)/\sim$ is denoted $C_p^{\infty}(M)$; this is the set of germs of C^{∞} functions at p.

Facts

• $C_p^{\infty}(M)$ is a vector space with respect to the scalar multiplication and the addition given by

```
\lambda \cdot (\text{germ at } p \text{ of } f) = \text{germ at } p \text{ of } \lambda f, \quad \lambda \in \mathbb{R},
(\text{germ at } p \text{ of } f) + (\text{germ at } p \text{ of } g) = \text{germ at } p \text{ of } f + g.
```

• $C_p^{\infty}(M)$ is also an algebra with respect to the multiplication given by

```
(germ at p of f) · (germ at p of g) = germ at p of fg.
```

Remark

Let U be an open set in M containing p.

• As $\mathscr{F}_p(U) \subset \mathscr{F}_p(M)$ we get an inclusion,

$$C_p^{\infty}(U) \subset C_p^{\infty}(M)$$
.

• As $(V, f) \in \mathscr{F}_p(M)$ and $(V \cap U, f_{|V \cap U})$ are equivalent, we actually have an equality. That is,

$$C_p^{\infty}(U) = C_p^{\infty}(M).$$

Definition

A derivation at p is any linear map $D: C_p^\infty(M) \to \mathbb{R}$ such that D(fg) = (Df)g(p) + f(p)Dg.

Remarks

- By abuse of notation, we use the same letter f or g to denote a function and its germ at p.
- **2** The set of all derivations at p is a subspace of the space of linear maps $C_p^{\infty} \to \mathbb{R}$.

Definition

- The tangent space of M at p, denoted $T_p(M)$ or T_pM , is the vector space of all derivations at p.
- An element of $T_p(M)$ is now called a tangent vector at p.

Example

For $M = \mathbb{R}^n$ we recover the description of the tangent space $T_p(\mathbb{R}^n)$ in terms of derivations.

Example (see Remark 8.2)

• Let U be an open in M containing p. As $C_p^{\infty}(U) = C_p^{\infty}(M)$, we see that

$$T_p(U) = T_p(M).$$

• In particular, if $M = \mathbb{R}^n$, then

$$T_p(U) = T_p(\mathbb{R}^n) \simeq \mathbb{R}^n.$$

Example

Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart about p in M. Denote by (r^1, \dots, r^n) the standard coordinates in \mathbb{R}^n (so that $x^i = r^i \circ \phi$).

• By definition, if f is C^{∞} at p, then

$$\left. \frac{\partial}{\partial x^i} \right|_{p} f = \left. \frac{\partial}{\partial r^i} \right|_{\phi(p)} (f \circ \phi^{-1}) \in \mathbb{R}.$$

- We have $\frac{\partial}{\partial x^i}|_p(fg) = (\frac{\partial}{\partial x^i}|_p f)g(p) + f(p)\frac{\partial}{\partial x^i}|_p g$.
- If f = g near p, then $\frac{\partial}{\partial x^i}\Big|_p f = \frac{\partial}{\partial x^i}\Big|_p g$.
- Thus, $\frac{\partial}{\partial x^i}\Big|_{p}$ induces a map,

$$\left. \frac{\partial}{\partial x^i} \right|_{p} : C_p^{\infty} \longrightarrow \mathbb{R}.$$

We obtain a derivation at p, i.e., a tangent vector at p.

- We sometimes write $\frac{\partial}{\partial x^i}$ instead $\frac{\partial}{\partial x^i}|_p$ when it is understood that derivatives are evaluated at the point p.
- When M has dimension 1 and t is a local coordinate, we write $\frac{d}{dt}$ instead of $\frac{\partial}{\partial t}$.
- We will see later that $\left\{\frac{\partial}{\partial x^1}\Big|_{p}, \dots, \frac{\partial}{\partial x^n}\Big|_{p}\right\}$ is a basis of $T_p(M)$.

The Differential of a Map

Facts

Let $F: M \to N$ be a C^{∞} map, where M and N are manifolds.

- Given $X \in T_p(M)$ define $F_*(X) : C^{\infty}_{F(p)}(N) \to \mathbb{R}$ by $F_*(X)f = X(f \circ F), \qquad f \in C^{\infty}_{F(p)}(N).$
- $F_*(X)$ is a linear map.
- As X is a derivation at p, we have

$$F_*(X)(fg) = X [(f \circ F)(g \circ F)]$$

= $X [(f \circ F)] (g \circ F)(p) + (f \circ F)(p)X [(g \circ F)]$
= $[F_*(X)f] g (F(p)) + f (F(p)) [F_*(X)g].$

That is, $F_*(X)$ is a derivation at F(p), i.e., $F_*(X) \in T_{F(p)}(N)$.

• We thus get a map $F_*: T_p(M) \to T_{F(p)}(N), X \to F_*(X)$.

The Differential of a Map

Fact

The map $F_*: T_p(M) \to T_{F(p)}(N)$ is linear, since we have

$$F_*(\lambda X)f = \lambda X(f \circ F) = \lambda F_*(X)f,$$

$$F_*(X+Y)f = X(f \circ F) + Y(f \circ F) = F_*(X)f + F_*(Y)f.$$

Definition

The linear map $F_*: T_p(M) \to T_{F(p)}(N)$ is called the differential of F at p.

- **1** To emphasize the dependence on the point p we sometimes write $F_{*,p}$ for F_* .
- 2 There are various notations for the differential. For instance, it also denoted d_pF , dF(p), D_pF or even F'(p).

The Differential of a Map

Example

Let $F: \mathbb{R}^n \to \mathbb{R}^m$ be a C^{∞} map. Denote by (x^1, \ldots, x^n) the coordinates on \mathbb{R}^n and by (y^1, \ldots, y^m) the coordinates on \mathbb{R}^m . Set $F = (F^1, \ldots, F^m)$.

- Let $p \in \mathbb{R}^n$. Then $\left\{ \frac{\partial}{\partial x^1} \Big|_p, \dots, \frac{\partial}{\partial x^n} \Big|_p \right\}$ is a basis of $T_p(\mathbb{R}^n)$.
- Likewise, $\left\{\frac{\partial}{\partial y^1}\big|_{F(p)}, \dots, \frac{\partial}{\partial y^m}\big|_{F(p)}\right\}$ is a basis of $T_{F(p)}(\mathbb{R}^m)$.
- Given any $f \in C^{\infty}_{F(p)}(\mathbb{R}^m)$, we have

$$F_*\left(\frac{\partial}{\partial x^j}\bigg|_{p}\right)f = \frac{\partial}{\partial x^j}\bigg|_{p}(f\circ F) = \sum_{i=1}^m \frac{\partial F^i}{\partial x^j}(p)\frac{\partial}{\partial y^i}\bigg|_{F(p)}f.$$

- This means that $F_*(\frac{\partial}{\partial x^j}|_p) = \sum_{i=1}^m \frac{\partial F^i}{\partial x^i}(p) \frac{\partial}{\partial y^i}|_{F(p)}$.
- In other words, the matrix of F_* relative to the bases $\{\frac{\partial}{\partial x^j}\big|_p\}$ and $\{\frac{\partial}{\partial y^i}\big|_{F(p)}\}$ is precisely the Jacobian matrix $\left[\frac{\partial F^i}{\partial x^j}(p)\right]$.

The Chain Rule

Fact

Let $F: N \to M$ and $G: M \to P$ be C^{∞} maps. Given any $p \in N$ the differentials $F_{*,p}$ and $G_{*,F(p)}$ are linear maps,

$$T_p(N) \xrightarrow{F_{*,p}} T_{F(p)}(M) \xrightarrow{G_{*,F(p)}} T_{G(F(p))}(P).$$

Theorem (Theorem 8.5; Chain Rule)

If $F: N \to M$ and $G: M \to P$ are C^{∞} maps, then, for every $p \in N$, we have

$$(G \circ F)_{*,p} = G_{*,F(p)} \circ F_{*,p}.$$

The Chain Rule

Remark

Let $\mathbb{1}_M: M \to M$ be the identity, and let $p \in M$. Given $X \in \mathcal{T}_p(M)$ and $f \in C_p^{\infty}$, we have

$$(\mathbb{1}_M)_*(X)f = X(f \circ \mathbb{1}_M) = Xf.$$

Thus, $(\mathbb{1}_M)_*(X) = X$, and so the differential $(\mathbb{1}_M)_*$ is the identity map $\mathbb{1}_{T_p(M)} : T_p(M) \longrightarrow T_p(M)$.

Corollary (Corollary 8.6)

If $F: N \to M$ is a diffeomorphism, then, for every $p \in N$, the differential $F_{*,p}: T_pN \to T_{F(p)}M$ is an isomorphism of vector spaces.

Corollary (Corollary 8.7; Invariance of Dimension)

If an open $U \subset \mathbb{R}^n$ is diffeomorphic to an open $V \subset \mathbb{R}^m$, then we must have n = m.

Facts

Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart about p in M. Denote by (r^1, \dots, r^n) the coordinates in \mathbb{R}^n . Then:

- The map $\phi: U \to \phi(U) \subset \mathbb{R}^n$ is a diffeomorphism.
- The differential $F_{*,p}$ is an isomorphism from $T_p(U) = T_p(M)$ to $T_{\phi(p)}(\phi(U)) = T_{\phi(p)}\mathbb{R}^n$.
- $\{\frac{\partial}{\partial r^1}|_{\phi(p)}, \dots, \frac{\partial}{\partial r^n}|_{\phi(p)}\}$ is a basis of $T_{\phi(p)}(\mathbb{R}^n)$.
- By definition of ϕ_* and $\frac{\partial}{\partial x^i}\Big|_{p}$, if $f \in C^{\infty}_{\phi(p)}(\mathbb{R}^n)$, then

$$\phi_*\left(\frac{\partial}{\partial x^i}\bigg|_p\right)f = \frac{\partial}{\partial x^i}\bigg|_p(f\circ\phi) = \frac{\partial}{\partial r^i}\bigg|_{\phi(p)}[(f\circ\phi)\circ\phi^{-1}] = \frac{\partial}{\partial r^i}\bigg|_{\phi(p)}f.$$

Thus,

$$\phi_* \left(\frac{\partial}{\partial x^i} \bigg|_{p} \right) = \frac{\partial}{\partial r^i} \bigg|_{\phi(p)}.$$

Facts

To sum up:

- The differential $\phi_{*,p}: T_pM \to T_{\phi(p)}\mathbb{R}^n$ is an isomorphism.
- It maps the family $\left\{\frac{\partial}{\partial x^1}\Big|_p,\ldots,\frac{\partial}{\partial x^n}\Big|_p\right\}$ in T_pM to the basis $\left\{\frac{\partial}{\partial r^1}\Big|_{\phi(p)},\ldots,\frac{\partial}{\partial r^n}\Big|_{\phi(p)}\right\}$ of $T_{\phi(p)}\mathbb{R}^n$.

We deduce from this the following result:

Proposition (Proposition 8.9)

If $(U, x^1, ..., x^n)$ is a chart about p in M, then $\left\{\frac{\partial}{\partial x^1}\Big|_p, ..., \frac{\partial}{\partial x^n}\Big|_p\right\}$ is a basis of T_pM . In particular, T_pM has dimension n.

Corollary (Invariance of Dimension)

If M and N are diffeomorphic manifolds, then $\dim M = \dim N$.

Proposition (Proposition 8.10)

Let $(U, x^1, ..., x^n)$ and $(V, y^1, ..., y^n)$ be charts around p in M. Then, on $U \cap V$ we have

$$\frac{\partial}{\partial x^j} = \sum_{i=1}^n \frac{\partial y^i}{\partial x^j} \frac{\partial}{\partial y^i}.$$

- **1** There are alternative definitions of the tangent space T_pM .
- 2 What is important to keep in mind is the following:
 - The tangent space T_pM is a vector space that has basis $\left\{\frac{\partial}{\partial x^1}\Big|_p,\ldots,\frac{\partial}{\partial x^n}\Big|_p\right\}$, where (x^1,\ldots,x^n) are local coordinates.
 - We keep the same vector space upon changing local coordinates.

Local Expression for the Differential

Proposition (Proposition 8.11)

Let $F: N \to M$ be a C^{∞} map and $p \in N$. Let (U, x^1, \ldots, x^n) be a chart around p in N and (V, y^1, \ldots, y^m) a chart around F(p) in M. Then, relative to the bases $\left\{\frac{\partial}{\partial x^j}\Big|_p\right\}$ and $\left\{\frac{\partial}{\partial y^i}\Big|_{F(p)}\right\}$ of T_pN and $T_{F(p)}M$, the differential $F_{*,p}: T_pN \to T_{F(p)}M$ has matrix

$$\left[\frac{\partial F^{i}}{\partial x^{j}}(p)\right]_{\substack{1 \leq i \leq m \\ 1 \leq i \leq p}} \quad \text{where } F^{i} = y^{i} \circ F.$$

Local Expression for the Differential

Remark (Remark 8.12)

- The inverse function theorem for manifolds (Theorem 6.26) asserts that F is locally invertible at p if and only if $\det \left[\frac{\partial F^i}{\partial \mathcal{N}}(p)\right] \neq 0$.
- Therefore, we obtain the following coordinate-free description of this result:

Theorem (Inverse Function Theorem)

Let $F: \mathbb{N} \to M$ be a C^{∞} map and $p \in \mathbb{N}$. TFAE:

- F is locally invertible at p.
- 2 The differential $F_*: T_p N \to T_{F(p)} M$ is an isomorphism.