Differentiable Forms in Algebraic Topology Review: The Tangent Bundle

Sichuan University, Fall 2024

Objective

Let M be smooth manifold of dimension n. We would like to bundle together all the tangent spaces T_pM so as to get a smooth manifold, called the *tangent bundle*.

Objective

Let M be smooth manifold of dimension n. We would like to bundle together all the tangent spaces T_pM so as to get a smooth manifold, called the *tangent bundle*.

Definition

As a set, the *tangent bundle* of M is the disjoint union,

$$TM := \bigsqcup_{p \in M} T_p M = \{(p, v); p \in M, v \in T_p M\}.$$

Objective

Let M be smooth manifold of dimension n. We would like to bundle together all the tangent spaces T_pM so as to get a smooth manifold, called the *tangent bundle*.

Definition |

As a set, the *tangent bundle* of M is the disjoint union,

$$TM := \bigsqcup_{p \in M} T_p M = \{(p, v); p \in M, v \in T_p M\}.$$

Remarks

• For $p \in M$ we identify the subset $\{p\} \times T_p M$ with the tangent space $T_p M$. This allows us to see $T_p M$ as a subset of TM.

Objective

Let M be smooth manifold of dimension n. We would like to bundle together all the tangent spaces T_pM so as to get a smooth manifold, called the *tangent bundle*.

Definition |

As a set, the *tangent bundle* of M is the disjoint union,

$$TM := \bigsqcup_{p \in M} T_p M = \{(p, v); p \in M, v \in T_p M\}.$$

Remarks

- For $p \in M$ we identify the subset $\{p\} \times T_p M$ with the tangent space $T_p M$. This allows us to see $T_p M$ as a subset of TM.
- 2 In particular, we write an element of TM either as (p, v) with $p \in M$ and $v \in T_pM$, or simply as v.

Remark

Let U be an open set in M. If $p \in U$, then $T_pU = T_pM$. Thus,

$$TU = \bigsqcup_{p \in U} T_p U = \bigsqcup_{p \in U} T_p M.$$

Remark

Let U be an open set in M. If $p \in U$, then $T_pU = T_pM$. Thus,

$$TU = \bigsqcup_{p \in U} T_p U = \bigsqcup_{p \in U} T_p M.$$

Definition

The canonical map $\pi: TM \to M$ is defined by

$$\pi((p,v)) = p, \qquad p \in M, \quad v \in T_pM.$$

Remark

Let U be an open set in M. If $p \in U$, then $T_pU = T_pM$. Thus,

$$TU = \bigsqcup_{p \in U} T_p U = \bigsqcup_{p \in U} T_p M.$$

Definition

The canonical map $\pi: TM \to M$ is defined by

$$\pi((p, v)) = p, \qquad p \in M, \quad v \in T_pM.$$

Remarks

1 The map $\pi: TM \to M$ is onto.

Remark

Let U be an open set in M. If $p \in U$, then $T_pU = T_pM$. Thus,

$$TU = \bigsqcup_{p \in U} T_p U = \bigsqcup_{p \in U} T_p M.$$

Definition

The canonical map $\pi: TM \to M$ is defined by

$$\pi((p, v)) = p, \qquad p \in M, \quad v \in T_pM.$$

Remarks

- **1** The map $\pi: TM \to M$ is onto.
- 2 If $p \in M$, then $\pi^{-1}(p) = T_p M$.

Example

Let U be an open in \mathbb{R}^n . If $p \in U$, then $T_pU = T_p\mathbb{R}^n = \mathbb{R}^n$. Recall that, if (r^1, \ldots, r^n) are the standard coordinates on \mathbb{R}^n , then we identify

$$T_p \mathbb{R}^n \ni v = \sum v^i \frac{\partial}{\partial r^i} \bigg|_p \longleftrightarrow \langle v^1, \dots, v^n \rangle \in \mathbb{R}^n.$$

Example

Let U be an open in \mathbb{R}^n . If $p \in U$, then $T_p U = T_p \mathbb{R}^n = \mathbb{R}^n$. Recall that, if (r^1, \ldots, r^n) are the standard coordinates on \mathbb{R}^n , then we identify

$$T_p \mathbb{R}^n \ni v = \sum v^i \frac{\partial}{\partial r^i} \bigg|_p \iff \langle v^1, \dots, v^n \rangle \in \mathbb{R}^n.$$

Thus, the pair (p, v) is naturally identified with (p, v^1, \dots, v^n) . Therefore, we have

$$TU = \bigsqcup_{p \in U} T_p U = \bigsqcup_{p \in U} \mathbb{R}^n = U \times \mathbb{R}^n.$$

Aim

We wish to equip *TM* with a smooth structure. Therefore, we need to do the following:

Aim

We wish to equip TM with a smooth structure. Therefore, we need to do the following:

• Define a topology on *TM*.

Aim

We wish to equip TM with a smooth structure. Therefore, we need to do the following:

- Define a topology on *TM*.
- 2 Construct a C^{∞} -atlas for TM.

Facts

Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M.

Facts

Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M.

• Here $\phi(U)$ is an open in \mathbb{R}^n , and so $T(\phi(U)) = \phi(U) \times \mathbb{R}^n$.

Facts

Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M.

- Here $\phi(U)$ is an open in \mathbb{R}^n , and so $T(\phi(U)) = \phi(U) \times \mathbb{R}^n$.
- For every $p \in U$, the differential $\phi_{*,p}$ is an isomorphism from $T_pM = T_pU$ onto $T_{\phi(p)}(\phi(U)) = \mathbb{R}^n$.

Facts

Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M.

- Here $\phi(U)$ is an open in \mathbb{R}^n , and so $T(\phi(U)) = \phi(U) \times \mathbb{R}^n$.
- For every $p \in U$, the differential $\phi_{*,p}$ is an isomorphism from $T_pM = T_pU$ onto $T_{\phi(p)}(\phi(U)) = \mathbb{R}^n$.
- ullet Therefore, we define a map $ilde{\phi}: TU o \phi(U) imes \mathbb{R}^n$ by

$$\tilde{\phi}(p, v) = (\phi(p), \phi_{*,p}v), \qquad p \in U, \ v \in T_pU.$$

Facts

Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M.

- Here $\phi(U)$ is an open in \mathbb{R}^n , and so $T(\phi(U)) = \phi(U) \times \mathbb{R}^n$.
- For every $p \in U$, the differential $\phi_{*,p}$ is an isomorphism from $T_pM = T_pU$ onto $T_{\phi(p)}(\phi(U)) = \mathbb{R}^n$.
- ullet Therefore, we define a map $ilde{\phi}: TU o \phi(U) imes \mathbb{R}^n$ by

$$\tilde{\phi}(p,v) = (\phi(p), \phi_{*,p}v), \qquad p \in U, \ v \in T_pU.$$

• This is a bijection with inverse $(x, v) \to (\phi^{-1}(x), \phi_{*,\phi^{-1}(x)}^{-1}v)$.

Facts

Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M.

- Here $\phi(U)$ is an open in \mathbb{R}^n , and so $T(\phi(U)) = \phi(U) \times \mathbb{R}^n$.
- For every $p \in U$, the differential $\phi_{*,p}$ is an isomorphism from $T_pM = T_pU$ onto $T_{\phi(p)}(\phi(U)) = \mathbb{R}^n$.
- ullet Therefore, we define a map $ilde{\phi}: TU o \phi(U) imes \mathbb{R}^n$ by

$$\tilde{\phi}(p,v) = (\phi(p), \phi_{*,p}v), \qquad p \in U, \ v \in T_pU.$$

- This is a bijection with inverse $(x, v) \to (\phi^{-1}(x), \phi_{*, \phi^{-1}(x)}^{-1} v)$.
- This allows us to define a topology on TU by pulling back the topology of $\phi(U) \times \mathbb{R}^n$:

 $W \subseteq TU$ is open $\iff \tilde{\phi}(W)$ is open in $\phi(U) \times \mathbb{R}^n$.

Facts

Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M.

- Here $\phi(U)$ is an open in \mathbb{R}^n , and so $T(\phi(U)) = \phi(U) \times \mathbb{R}^n$.
- For every $p \in U$, the differential $\phi_{*,p}$ is an isomorphism from $T_pM = T_pU$ onto $T_{\phi(p)}(\phi(U)) = \mathbb{R}^n$.
- ullet Therefore, we define a map $ilde{\phi}: TU o \phi(U) imes \mathbb{R}^n$ by

$$\tilde{\phi}(p,v) = (\phi(p), \phi_{*,p}v), \qquad p \in U, \ v \in T_pU.$$

- This is a bijection with inverse $(x, v) \to (\phi^{-1}(x), \phi_{*, \phi^{-1}(x)}^{-1} v)$.
- This allows us to define a topology on TU by pulling back the topology of $\phi(U) \times \mathbb{R}^n$:

$$W\subseteq TU$$
 is open $\iff \tilde{\phi}(W)$ is open in $\phi(U)\times\mathbb{R}^n$.

ullet With respect to this topology $ilde{\phi}$ is a homeomorphism.

Remark

• If $p \in U$, then $\left\{ \frac{\partial}{\partial x^1} \Big|_{p}, \dots, \frac{\partial}{\partial x^1} \Big|_{p} \right\}$ is a basis of $T_p M$.

Remark

- If $p \in U$, then $\left\{ \frac{\partial}{\partial x^1} \Big|_{p}, \dots, \frac{\partial}{\partial x^1} \Big|_{p} \right\}$ is a basis of $T_p M$.
- The differential $\phi_{*,p}: T_pU \to T_{\phi(p)}V = \mathbb{R}^n$ maps $\frac{\partial}{\partial x^i}\Big|_p$ to $\frac{\partial}{\partial r^i}\Big|_{\phi(p)}$. Thus,

$$\sum v^i \frac{\partial}{\partial x^i} \bigg|_{p} \xrightarrow{\phi_*} \sum v^i \frac{\partial}{\partial r^i} \bigg|_{\phi(p)} \longleftrightarrow \langle v^1, \dots, v^n \rangle \in \mathbb{R}^n.$$

Remark

- If $p \in U$, then $\left\{ \frac{\partial}{\partial x^1} \Big|_{p}, \dots, \frac{\partial}{\partial x^1} \Big|_{p} \right\}$ is a basis of $T_p M$.
- The differential $\phi_{*,p}: T_pU \to T_{\phi(p)}V = \mathbb{R}^n$ maps $\frac{\partial}{\partial x^i}\Big|_p$ to $\frac{\partial}{\partial r^i}\Big|_{\phi(p)}$. Thus,

$$\sum v^i \frac{\partial}{\partial x^i} \bigg|_{p} \xrightarrow{\phi_*} \sum v^i \frac{\partial}{\partial r^i} \bigg|_{\phi(p)} \longleftrightarrow \langle v^1, \dots, v^n \rangle \in \mathbb{R}^n.$$

• If $\phi(p) = (x^1(p), \dots, x^n(p))$ and $v = \sum v^i \frac{\partial}{\partial x^i} \Big|_p \in T_p M$, then $\tilde{\phi}(p, v) = (\phi(p), \phi_{*,p} v) = (x^1(p), \dots, x^n(p), v^1, \dots, v^n)$.

Remark

- If $p \in U$, then $\left\{ \frac{\partial}{\partial x^1} \Big|_{p}, \dots, \frac{\partial}{\partial x^1} \Big|_{p} \right\}$ is a basis of $T_p M$.
- The differential $\phi_{*,p}: T_pU \to T_{\phi(p)}V = \mathbb{R}^n$ maps $\frac{\partial}{\partial x^i}\big|_p$ to $\frac{\partial}{\partial r^i}\big|_{\phi(p)}$. Thus,

$$\sum v^i \frac{\partial}{\partial x^i} \bigg|_{p} \xrightarrow{\phi_*} \sum v^i \frac{\partial}{\partial r^i} \bigg|_{\phi(p)} \longleftrightarrow \langle v^1, \dots, v^n \rangle \in \mathbb{R}^n.$$

• If $\phi(p) = (x^1(p), \dots, x^n(p))$ and $v = \sum v^i \frac{\partial}{\partial x^i} \Big|_p \in T_p M$, then $\tilde{\phi}(p, v) = (\phi(p), \phi_{*,p} v) = (x^1(p), \dots, x^n(p), v^1, \dots, v^n)$.

In particular, this defines coordinates on *TU*.

Facts

• Let $(V, \psi) = (V, y^1, \dots, y^n)$ be another chart of M such that $U \cap V \neq \emptyset$. Define $\tilde{\psi} : TV \to \psi(V) \times \mathbb{R}^n$ by

$$ilde{\psi}(p,v)=(\psi(p),\psi_{*,p}v), \qquad p\in V,\ v\in T_pM.$$

Facts

• Let $(V, \psi) = (V, y^1, \dots, y^n)$ be another chart of M such that $U \cap V \neq \emptyset$. Define $\tilde{\psi} : TV \to \psi(V) \times \mathbb{R}^n$ by

$$\tilde{\psi}(p,v) = (\psi(p), \psi_{*,p}v), \qquad p \in V, \ v \in T_pM.$$

• On $T(U \cap V) = (TU) \cap (TV)$ we have two topologies induced by the topologies of TU and TV (defined by the charts $(U \cap V, \phi_{|U \cap V})$ and $(U \cap V, \psi_{|U \cap V})$).

Facts

• Let $(V, \psi) = (V, y^1, \dots, y^n)$ be another chart of M such that $U \cap V \neq \emptyset$. Define $\tilde{\psi} : TV \to \psi(V) \times \mathbb{R}^n$ by

$$\tilde{\psi}(p,v) = (\psi(p), \psi_{*,p}v), \qquad p \in V, \ v \in T_pM.$$

- On $T(U \cap V) = (TU) \cap (TV)$ we have two topologies induced by the topologies of TU and TV (defined by the charts $(U \cap V, \phi_{|U \cap V})$ and $(U \cap V, \psi_{|U \cap V})$).
- On $\tilde{\phi}(TU \cap TV) = \phi(U \cap V) \times \mathbb{R}^n$ we have

$$\tilde{\psi} \circ \tilde{\phi}^{-1}(r, v) = \left(\psi \circ \phi^{-1}(r), \psi_* \circ \phi_*^{-1} v\right) = \left(\psi \circ \phi^{-1}(r), (\psi \circ \phi^{-1})_{*,r} v\right).$$

Facts

• Let $(V, \psi) = (V, y^1, \dots, y^n)$ be another chart of M such that $U \cap V \neq \emptyset$. Define $\tilde{\psi} : TV \to \psi(V) \times \mathbb{R}^n$ by

$$\tilde{\psi}(p,v) = (\psi(p), \psi_{*,p}v), \qquad p \in V, \ v \in T_pM.$$

- On $T(U \cap V) = (TU) \cap (TV)$ we have two topologies induced by the topologies of TU and TV (defined by the charts $(U \cap V, \phi_{|U \cap V})$ and $(U \cap V, \psi_{|U \cap V})$).
- On $\tilde{\phi}(TU \cap TV) = \phi(U \cap V) \times \mathbb{R}^n$ we have

$$\tilde{\psi} \circ \tilde{\phi}^{-1}(r, v) = \left(\psi \circ \phi^{-1}(r), \psi_* \circ \phi_*^{-1} v\right) = \left(\psi \circ \phi^{-1}(r), (\psi \circ \phi^{-1})_{*,r} v\right).$$

• Here $(\psi \circ \phi^{-1})_{*,r}$ is the multiplication by the Jacobian matrix $J_{\psi \circ \phi^{-1}}(r) = \left[\partial (y^j \circ \phi^{-1}) / \partial r^i(r) \right]$ whose entries depends smoothly on r.

Facts

• Let $(V, \psi) = (V, y^1, \dots, y^n)$ be another chart of M such that $U \cap V \neq \emptyset$. Define $\tilde{\psi} : TV \to \psi(V) \times \mathbb{R}^n$ by

$$\widetilde{\psi}(p,v) = (\psi(p), \psi_{*,p}v), \qquad p \in V, \ v \in T_pM.$$

- On $T(U \cap V) = (TU) \cap (TV)$ we have two topologies induced by the topologies of TU and TV (defined by the charts $(U \cap V, \phi_{|U \cap V})$ and $(U \cap V, \psi_{|U \cap V})$).
- On $\tilde{\phi}(TU \cap TV) = \phi(U \cap V) \times \mathbb{R}^n$ we have

$$\tilde{\psi} \circ \tilde{\phi}^{-1}(r, \mathbf{v}) = (\psi \circ \phi^{-1}(r), \psi_* \circ \phi_*^{-1} \mathbf{v}) = (\psi \circ \phi^{-1}(r), (\psi \circ \phi^{-1})_{*,r} \mathbf{v}).$$

- Here $(\psi \circ \phi^{-1})_{*,r}$ is the multiplication by the Jacobian matrix $J_{\psi \circ \phi^{-1}}(r) = \left[\partial (y^j \circ \phi^{-1}) / \partial r^i(r) \right]$ whose entries depends smoothly on r.
- Therefore, $\tilde{\psi} \circ \tilde{\phi}^{-1} : \phi(U \cap V) \times \mathbb{R}^n \to \psi(U \cap V) \times \mathbb{R}^n$ is smooth map. Its inverse map $\tilde{\phi} \circ \tilde{\psi}^{-1}$ is smooth as well, and so $\tilde{\psi} \circ \tilde{\phi}^{-1}$ is a diffeomorphism.

Facts (Continued)

• $T(U \cap V)$ is open in TU and in TV.

Facts (Continued)

- $T(U \cap V)$ is open in TU and in TV.
- As $\tilde{\psi} \circ \tilde{\phi}^{-1} : \phi(U \cap V) \times \mathbb{R}^n \to \psi(U \cap V) \times \mathbb{R}^n$ is a diffeomorphism, this is a homeomorphism.

Facts (Continued)

- $T(U \cap V)$ is open in TU and in TV.
- As $\tilde{\psi} \circ \tilde{\phi}^{-1} : \phi(U \cap V) \times \mathbb{R}^n \to \psi(U \cap V) \times \mathbb{R}^n$ is a diffeomorphism, this is a homeomorphism.
- If $W \subseteq T(U \cap V)$, then W open in $TU \iff \tilde{\phi}(W)$ open in $\phi(U) \times \mathbb{R}^n$, $\iff \tilde{\psi} \circ \tilde{\phi}^{-1} \big[\tilde{\phi}(W) \big]$ open in $\psi(U \cap V) \times \mathbb{R}^n$, $\iff \tilde{\psi}(W)$ open in $\psi(V) \times \mathbb{R}^n$, $\iff W$ open in TV.

Thus, TU and TV induce the same topology on $T(U \cap V)$.

Facts (Continued)

- $T(U \cap V)$ is open in TU and in TV.
- As $\tilde{\psi} \circ \tilde{\phi}^{-1} : \phi(U \cap V) \times \mathbb{R}^n \to \psi(U \cap V) \times \mathbb{R}^n$ is a diffeomorphism, this is a homeomorphism.
- If $W \subseteq T(U \cap V)$, then W open in $TU \iff \tilde{\phi}(W)$ open in $\phi(U) \times \mathbb{R}^n$, $\iff \tilde{\psi} \circ \tilde{\phi}^{-1} \big[\tilde{\phi}(W) \big]$ open in $\psi(U \cap V) \times \mathbb{R}^n$, $\iff \tilde{\psi}(W)$ open in $\psi(V) \times \mathbb{R}^n$, $\iff W$ open in TV.

Thus, TU and TV induce the same topology on $T(U \cap V)$.

• It follows that, if W is open in TU and X is open in TV, then $W \cap X = (W \cap T(U \cap V)) \cap (X \cap T(U \cap V))$ is open in $T(U \cap V)$ (by definition of the subspace topology).

Summary

(a) If (U, ϕ) is a chart for M, then $\tilde{\phi}: TU \to \phi(U) \times \mathbb{R}^n$ allows us to define a topology on TU by pulling back the topology of $\phi(U) \times \mathbb{R}^n$. This map then becomes a homeomorphism.

Summary

- (a) If (U, ϕ) is a chart for M, then $\tilde{\phi}: TU \to \phi(U) \times \mathbb{R}^n$ allows us to define a topology on TU by pulling back the topology of $\phi(U) \times \mathbb{R}^n$. This map then becomes a homeomorphism.
- (b) If (V, ψ) is another chart for M, then the transition map $\tilde{\psi} \circ \tilde{\phi}^{-1} : \phi(U \cap V) \times \mathbb{R}^n \to \psi(U \cap V) \times \mathbb{R}^n$ is a diffeomorphism.

Summary

- (a) If (U, ϕ) is a chart for M, then $\tilde{\phi}: TU \to \phi(U) \times \mathbb{R}^n$ allows us to define a topology on TU by pulling back the topology of $\phi(U) \times \mathbb{R}^n$. This map then becomes a homeomorphism.
- (b) If (V, ψ) is another chart for M, then the transition map $\tilde{\psi} \circ \tilde{\phi}^{-1} : \phi(U \cap V) \times \mathbb{R}^n \to \psi(U \cap V) \times \mathbb{R}^n$ is a diffeomorphism.
- (c) TU and TV induce the same topology on $T(U \cap V)$. In particular, if W is open in TU and X is open in TV, then $W \cap X = (W \cap T(U \cap V)) \cap (X \cap T(U \cap V))$ is open in $T(U \cap V)$.

In particular, (b) would allow us to get a C^{∞} atlas for TM provided we can define a topology on TM by patching together the TU-topologies.

Reminder (Topological Bases; see Appendix A)

Let X be a topological space. A basis for the topology of X is a collection \mathcal{B} of open sets such that, for every open $U \subseteq X$ and every $p \in U$, there is an open set $V \in \mathcal{B}$ such that $p \in V \subseteq U$.

Reminder (Topological Bases; see Appendix A)

Let X be a topological space. A basis for the topology of X is a collection \mathcal{B} of open sets such that, for every open $U \subseteq X$ and every $p \in U$, there is an open set $V \in \mathcal{B}$ such that $p \in V \subseteq U$.

Remark

If \mathscr{B} is a basis for the topology of X, then every open set is the union of open sets in \mathscr{B} . We then say that \mathscr{B} generates the topology of X.

Proposition (Proposition A.8)

Let X be a set and \mathscr{B} a collection of subsets such that:

(i)
$$X = \bigcup_{V \in \mathscr{B}} V$$
.

Proposition (Proposition A.8)

Let X be a set and \mathcal{B} a collection of subsets such that:

- (i) $X = \bigcup_{V \in \mathscr{B}} V$.
- (ii) If $V_1, V_2 \in \mathcal{B}$ and $p \in V_1 \cap V_2$, then there is $W \in \mathcal{B}$ such that $p \in W \subseteq V_1 \cap V_2$.

Then:

Proposition (Proposition A.8)

Let X be a set and \mathcal{B} a collection of subsets such that:

- (i) $X = \bigcup_{V \in \mathscr{B}} V$.
- (ii) If $V_1, V_2 \in \mathcal{B}$ and $p \in V_1 \cap V_2$, then there is $W \in \mathcal{B}$ such that $p \in W \subseteq V_1 \cap V_2$.

Then:

1 \mathscr{B} is a basis for a unique topology on X.

Proposition (Proposition A.8)

Let X be a set and \mathcal{B} a collection of subsets such that:

- (i) $X = \bigcup_{V \in \mathscr{B}} V$.
- (ii) If $V_1, V_2 \in \mathcal{B}$ and $p \in V_1 \cap V_2$, then there is $W \in \mathcal{B}$ such that $p \in W \subseteq V_1 \cap V_2$.

Then:

- **1** \mathscr{B} is a basis for a unique topology on X.
- ② The open sets for this topology consists of unions of sets in \mathcal{B} .

Proposition (Proposition A.8)

Let X be a set and \mathscr{B} a collection of subsets such that:

- (i) $X = \bigcup_{V \in \mathscr{B}} V$.
- (ii) If $V_1, V_2 \in \mathcal{B}$ and $p \in V_1 \cap V_2$, then there is $W \in \mathcal{B}$ such that $p \in W \subseteq V_1 \cap V_2$.

Then:

- **1** \mathscr{B} is a basis for a unique topology on X.
- ② The open sets for this topology consists of unions of sets in \mathcal{B} .

Remark

The condition (ii) holds automatically if \mathcal{B} is closed under finite intersection.

Facts

Let $\mathscr{A} = \{(U_{\alpha}, \phi_{\alpha})\}$ be the maximal atlas of M (which defines its smooth structure). Define

$$\mathscr{B} = \bigcup_{\alpha} \{W; \ W \text{ is an open in } TU_{\alpha}\}.$$

Note that $TU_{\alpha} \in \mathscr{B}$.

Facts

Let $\mathscr{A} = \{(U_{\alpha}, \phi_{\alpha})\}$ be the maximal atlas of M (which defines its smooth structure). Define

$$\mathscr{B} = \bigcup_{\alpha} \{W; \ W \text{ is an open in } TU_{\alpha}\}.$$

Note that $TU_{\alpha} \in \mathscr{B}$.

• As $\cup U_{\alpha} = M$, we have

$$\bigcup_{\alpha} TU_{\alpha} = \bigcup_{\alpha} \bigsqcup_{p \in U_{\alpha}} T_{p}M = \bigsqcup_{p \in \cup U_{\alpha}} T_{p}M = \bigsqcup_{p \in M} T_{p}M = TM.$$

Facts

Let $\mathscr{A} = \{(U_{\alpha}, \phi_{\alpha})\}$ be the maximal atlas of M (which defines its smooth structure). Define

$$\mathscr{B} = \bigcup_{\alpha} \{W; \ W \text{ is an open in } TU_{\alpha}\}.$$

Note that $TU_{\alpha} \in \mathscr{B}$.

• As $\cup U_{\alpha} = M$, we have

$$\bigcup_{\alpha} TU_{\alpha} = \bigcup_{\alpha} \bigsqcup_{p \in U_{\alpha}} T_{p}M = \bigsqcup_{p \in \cup U_{\alpha}} T_{p}M = \bigsqcup_{p \in M} T_{p}M = TM.$$

• If W_{α} is an open in TU_{α} and W_{β} is an open in TU_{β} , then $W_1 \cap W_2$ is open in $T(U_{\alpha} \cap U_{\beta})$, and hence is contained in \mathscr{B} .

Facts

Let $\mathscr{A} = \{(U_{\alpha}, \phi_{\alpha})\}$ be the maximal atlas of M (which defines its smooth structure). Define

$$\mathscr{B} = \bigcup_{\alpha} \{W; \ W \text{ is an open in } TU_{\alpha}\}.$$

Note that $TU_{\alpha} \in \mathcal{B}$.

• As $\cup U_{\alpha} = M$, we have

$$\bigcup_{\alpha} TU_{\alpha} = \bigcup_{\alpha} \bigsqcup_{p \in U_{\alpha}} T_{p}M = \bigsqcup_{p \in \cup U_{\alpha}} T_{p}M = \bigsqcup_{p \in M} T_{p}M = TM.$$

• If W_{α} is an open in TU_{α} and W_{β} is an open in TU_{β} , then $W_1 \cap W_2$ is open in $T(U_{\alpha} \cap U_{\beta})$, and hence is contained in \mathscr{B} .

It follows that \mathcal{B} satisfies the conditions (i) and (ii) of Proposition A.8, and so it's a basis for a unique topology on TM.

Definition

The topology of TM is the topology generated by \mathcal{B} . The open sets are unions of sets in \mathcal{B} .

Definition

The topology of TM is the topology generated by \mathcal{B} . The open sets are unions of sets in \mathcal{B} .

Remark

Each TU_{α} is open in TM, since it is contained in \mathscr{B} .

Definition

The topology of TM is the topology generated by \mathcal{B} . The open sets are unions of sets in \mathcal{B} .

Remark

Each TU_{α} is open in TM, since it is contained in \mathscr{B} .

Proposition (Proposition 12.4)

As a topological space TM is Hausdorff.

Definition

The topology of TM is the topology generated by \mathcal{B} . The open sets are unions of sets in \mathcal{B} .

Remark

Each TU_{α} is open in TM, since it is contained in \mathscr{B} .

Proposition (Proposition 12.4)

As a topological space TM is Hausdorff.

Remark

Each open TU_{α} is Hausdorff since it is homeomorphic to the open set $\phi_{\alpha}(U) \times \mathbb{R}^n \subseteq \mathbb{R}^n \times \mathbb{R}^n$. This can be used to show that TM is Hausdorff.

Proposition (Proposition 12.3)

The topology of TM is second countable.

Proposition (Proposition 12.3)

The topology of TM is second countable.

Remarks

• It can be shown that the topology of M admits a countable basis $\{U_i\}_{i\in I}$ consisting of domains of charts (cf. Lemma 12.2 of Tu's book).

Proposition (Proposition 12.3)

The topology of TM is second countable.

Remarks

- It can be shown that the topology of M admits a countable basis $\{U_i\}_{i\in I}$ consisting of domains of charts (cf. Lemma 12.2 of Tu's book).
- Each TU_i is second countable since it is homeomorphic to an open in $\mathbb{R}^n \times \mathbb{R}^n$.

Proposition (Proposition 12.3)

The topology of TM is second countable.

Remarks

- It can be shown that the topology of M admits a countable basis $\{U_i\}_{i\in I}$ consisting of domains of charts (cf. Lemma 12.2 of Tu's book).
- Each TU_i is second countable since it is homeomorphic to an open in $\mathbb{R}^n \times \mathbb{R}^n$.
- If for each $i \in I$, we let $\{W_{i,j}\}_{j \in \mathbb{N}}$ be a countable basis for the topology of TU_i , then $\{W_{i,j}; i \in I, j \in \mathbb{N}\}$ is a countable basis for the topology of TM (see Tu's book).

Facts

• Each TU_{α} is an open in TM.

- Each TU_{α} is an open in TM.
- We knows that $TM = \bigcup_{\alpha} TU_{\alpha}$.

- Each TU_{α} is an open in TM.
- We knows that $TM = \bigcup_{\alpha} TU_{\alpha}$.
- The local trivializations $\tilde{\phi}_{\alpha}: TU_{\alpha} \to \phi_{\alpha}(U_{\alpha}) \times \mathbb{R}^{n}$ are homeomorphisms onto open sets in $\mathbb{R}^{n} \times \mathbb{R}^{n}$.

- Each TU_{α} is an open in TM.
- We knows that $TM = \bigcup_{\alpha} TU_{\alpha}$.
- The local trivializations $\tilde{\phi}_{\alpha}: TU_{\alpha} \to \phi_{\alpha}(U_{\alpha}) \times \mathbb{R}^{n}$ are homeomorphisms onto open sets in $\mathbb{R}^{n} \times \mathbb{R}^{n}$.
- ullet All the transition maps $\tilde{\phi}_{eta} \circ \tilde{\phi}_{lpha}^{-1}$ are smooth.

Facts

- Each TU_{α} is an open in TM.
- We knows that $TM = \bigcup_{\alpha} TU_{\alpha}$.
- The local trivializations $\tilde{\phi}_{\alpha}: TU_{\alpha} \to \phi_{\alpha}(U_{\alpha}) \times \mathbb{R}^{n}$ are homeomorphisms onto open sets in $\mathbb{R}^{n} \times \mathbb{R}^{n}$.
- All the transition maps $\tilde{\phi}_{\beta} \circ \tilde{\phi}_{\alpha}^{-1}$ are smooth.

Proposition

The collection $\{(TU_{\alpha}, \tilde{\phi}_{\alpha})\}$ is a C^{∞} atlas for TM, and hence TM is a smooth manifold of dimension 2n.

Facts

- Each TU_{α} is an open in TM.
- We knows that $TM = \bigcup_{\alpha} TU_{\alpha}$.
- The local trivializations $\tilde{\phi}_{\alpha}: TU_{\alpha} \to \phi_{\alpha}(U_{\alpha}) \times \mathbb{R}^{n}$ are homeomorphisms onto open sets in $\mathbb{R}^{n} \times \mathbb{R}^{n}$.
- All the transition maps $\tilde{\phi}_{\beta} \circ \tilde{\phi}_{\alpha}^{-1}$ are smooth.

Proposition

The collection $\{(TU_{\alpha}, \tilde{\phi}_{\alpha})\}$ is a C^{∞} atlas for TM, and hence TM is a smooth manifold of dimension 2n.

Remark

If $\{(V_{\beta}, \psi_{\beta})\}$ is any C^{∞} -atlas for M, then we also get a C^{∞} atlas $\{(TV_{\beta}, \tilde{\psi}_{\beta})\}$ for TM. It is compatible with the atlas $\{(TU_{\alpha}, \tilde{\phi}_{\alpha})\}$, and so it defines the same smooth structure.

Facts

• The canonical map $\pi: TM \to M$ is such that $\pi(v) = p$ if $v \in T_pM$. It is onto.

- The canonical map $\pi: TM \to M$ is such that $\pi(v) = p$ if $v \in T_pM$. It is onto.
- Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M. Then

$$\phi \circ \pi \circ \tilde{\phi}^{-1}(r^1, \dots, r^n, v^1, \dots, v^n)$$

$$= \phi \circ \pi \left[\phi^{-1}(r^1, \dots, r^n), \sum_i v^i \partial / \partial x^i \right]$$

$$= \phi \circ \phi^{-1}(r^1, \dots, r^n) = (r^1, \dots, r^n).$$

Facts

- The canonical map $\pi: TM \to M$ is such that $\pi(v) = p$ if $v \in T_pM$. It is onto.
- Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M. Then

$$\phi \circ \pi \circ \tilde{\phi}^{-1}(r^1, \dots, r^n, v^1, \dots, v^n)$$

$$= \phi \circ \pi \left[\phi^{-1}(r^1, \dots, r^n), \sum_i v^i \partial / \partial x^i \right]$$

$$= \phi \circ \phi^{-1}(r^1, \dots, r^n) = (r^1, \dots, r^n).$$

• As (U, ϕ) and $(TU, \tilde{\phi})$ are charts this shows that π is C^{∞} .

- The canonical map $\pi: TM \to M$ is such that $\pi(v) = p$ if $v \in T_pM$. It is onto.
- Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M. Then

$$\phi \circ \pi \circ \tilde{\phi}^{-1}(r^1, \dots, r^n, v^1, \dots, v^n)$$

$$= \phi \circ \pi \left[\phi^{-1}(r^1, \dots, r^n), \sum_i v^i \partial / \partial x^i \right]$$

$$= \phi \circ \phi^{-1}(r^1, \dots, r^n) = (r^1, \dots, r^n).$$

- As (U, ϕ) and $(TU, \tilde{\phi})$ are charts this shows that π is C^{∞} .
- By the converse of the submersion theorem (exercise!) this also shows that π is a submersion.

Facts

- The canonical map $\pi: TM \to M$ is such that $\pi(v) = p$ if $v \in T_pM$. It is onto.
- Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M. Then

$$\phi \circ \pi \circ \tilde{\phi}^{-1}(r^1, \dots, r^n, v^1, \dots, v^n)$$

$$= \phi \circ \pi \left[\phi^{-1}(r^1, \dots, r^n), \sum v^i \partial / \partial x^i \right]$$

$$= \phi \circ \phi^{-1}(r^1, \dots, r^n) = (r^1, \dots, r^n).$$

- As (U, ϕ) and $(TU, \tilde{\phi})$ are charts this shows that π is C^{∞} .
- By the converse of the submersion theorem (exercise!) this also shows that π is a submersion.

Proposition

The canonical projection $\pi: TM \to M$ is a surjective submersion.