Differentiable Forms in Algebraic Topology Review: Projective Spaces

Sichuan University, Spring 2024

Reminder

An equivalence relation on a set S is given by a subset $\mathcal{R} \subset S \times S$ with the following properties:

- Reflexivity: $(x, x) \in \mathcal{R}$ for all $x \in S$.
- Symmetry: $(x, y) \in \mathcal{R} \Leftrightarrow (y, x) \in \mathcal{R}$.
- Transitivity: $(x,y) \in \mathcal{R}$ and $(y,z) \in \mathcal{R} \Rightarrow (x,z) \in \mathcal{R}$.

When $(x, y) \in \mathcal{R}$ we say that x and y are equivalent and write $x \sim y$.

The set \mathcal{R} is called the *graph* of the equivalence relation.

Definition

Let \sim be an equivalence relation on S.

- The class of $x \in S$, denoted [x], is the subset of S consisting of all $y \in S$ that are equivalent to x.
- The set of equivalence classes is denoted S/∼ and is called the quotient of S by ∼.
- The map $\pi: S \to S/\sim$, $x \to [x]$ is called the *natural projection map* (or *canonical projection*)

Remarks

- **1** The equivalence classes form of partition of S.
- **2** The canonical projection $\pi: S \to S/\sim$ is always onto.

Fact

Suppose that S is a topological space. Let T be the collection of subsets $U \subset S/\sim$ such that $\pi^{-1}(U)$ is an open in S.

• \mathcal{T} is closed under unions and finite intersections: if $U_{\alpha} \in \mathcal{T}$ and $V_i \in \mathcal{T}$, then

$$\pi^{-1}(\bigcup U_\alpha) = \bigcup \pi^{-1}(U_\alpha) \quad \text{and} \quad \pi^{-1}(V_1 \cap V_2) = \pi^{-1}(V_1) \cap \pi^{-1}(V_2)$$
 are again contained in \mathcal{T} .

• Therefore \mathcal{T} defines a topology on S/\sim .

Definition

- The topology T is called the quotient topology.
- Equipped with this topology S/\sim is called the *quotient space* of S by \sim .

Remarks

- A subset $U \subset S/\sim$ is open if and only if $\pi^{-1}(U)$ is an open in S.
- **②** This implies that the projection map $\pi: S \to S/\sim$ is always continuous.
- **3** The quotient topology is actually the strongest topology on S/\sim for which the map $\pi:S\to S/\sim$ is continuous.

Continuity of a Map on a Quotient

Fact

Let $f: S \to Y$ be a map that is constant on each equivalence class, i.e., $x \sim y \Rightarrow f(x) = f(y)$.

Then f descends to a map $\overline{f}:S/\!\!\sim \to Y$ such that

$$\overline{f}([x]) = f(x), \qquad x \in S.$$

Remarks

- **1** The definition of \overline{f} means that if c is an equivalence class in S/\sim , then $\overline{f}(c)=f(x)$ for any $x\in c$.
- **2** The equality $\overline{f}([x]) = f(x)$ for all $x \in S$ means that $\overline{f} \circ \pi = f$. That is, we have a commutative diagram,

Continuity of a Map on a Quotient

Proposition (Tu2011, Proposition 7.1)

The induced map $\overline{f}: S/\sim \to Y$ is continuous if and only if the original map $f: S \to Y$ is continuous.

Corollary

A map $g: S/\sim \to Y$ is continuous if and only if the composition $g\circ \pi: S\to Y$ is continuous.

A Necessary Condition for a Hausdorff Quotient

Facts

- If X is a Hausdorff topological space, then every singleton $\{x\}$, $x \in X$, is a closed set in X.
- If the quotient space S/\sim is Hausdorff, then every singleton $\{[x]\}$, $x \in S$, is closed in S/\sim . This means that the preimage $\pi^{-1}(\{[x]\}) = [x]$ is closed in S.

Proposition (Tu2011, Proposition 7.4)

If the quotient space S/\sim is Hausdorff, then all the equivalence classes [x], $x \in S$, are closed sets in S.

Consequence

If there is an equivalence class that is not a closed set, then the quotient space S/\sim is not Hausdorff.

Open Equivalence Relations

Reminder

A map $f: X \to Y$ is open when the image of any open set in X is an open set in Y.

Definition

We say that an equivalence relation \sim on a topological space S is open when the projection $\pi: S \to S/\sim$ is an open map.

Remark

- If $A \subset S$, then $\pi(A)$ is open in S/\sim if and only if $\pi^{-1}(\pi(A)) = \bigcup_{x \in A} [x]$ is an open set in S.
- Thus, the equivalence relation \sim is open if and only if, for every open U in S, the set $\bigcup_{x \in U} [x]$ is open in S.

Open Equivalence Relations

Reminder

If \sim is an equivalence relation, then its graph is

$$\mathscr{R} = \{(x, y) \in S \times S; x \sim y\} \subset S \times S.$$

Theorem (Tu2011, Theorem 7.7)

Suppose that \sim is an open equivalence relation on a topological space S. Then the quotient space S/\sim is Hausdorff if and only if the graph $\mathscr R$ of \sim is closed in $S\times S$.

Open Equivalence Relations

Proposition (Tu2011, Proposition 7.9)

Suppose that \sim is an open equivalence relation on S. If $\{U_{\alpha}\}$ is a basis for the topology of S, then $\{\pi(U_{\alpha})\}$ is a basis for the quotient topology on S/\sim .

Corollary (Tu2011, Corollary 7.10)

If \sim is an open equivalence relation on S, and S is second countable, then the quotient space S/\sim is second countable.

Remarks

- Intuitively speaking the real projective space $\mathbb{R}P^n$ is the set of lines in \mathbb{R}^{n+1} through the origin.
- **2** Two non-zero vectors $x, y \in \mathbb{R}^{n+1} \setminus 0$ are the same line through the origin if and only if there is $t \neq 0$ such that y = tx.

Fact

① We define an equivalence relation \sim on $\mathbb{R}^{n+1} \setminus 0$ by

$$x \sim y \iff y = tx \text{ for some } t \neq 0.$$

② The equivalence classes consist precisely of the lines through the origin (with the origin deleted).

Definition

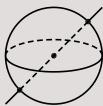
The real projective space $\mathbb{R}P^n$ is the quotient space $(\mathbb{R}^{n+1}\setminus 0)/\sim$.

Remarks

- We denote by $[a^0,\ldots,a^n]$ the class of $(a^0,\ldots,a^n)\in\mathbb{R}^{n+1}/\!\!\sim$.
- **2** We call $[a^0, \ldots, a^n]$ homogeneous coordinates on $\mathbb{R}P^n$.
- **3** We also let $\pi: \mathbb{R}^{n+1} \setminus 0 \to \mathbb{R}P^n$ be the canonical projection.

Remark

- Every line in \mathbb{R}^{n+1} through the origin meets the unit sphere \mathbb{S}^{n+1} at a pair of antipodal points.
- **2** Conversely, there is a unique line through the origin and two antipodal points of \mathbb{S}^{n+1}



Facts

ullet On $\mathbb{S}^n\subset\mathbb{R}^{n+1}\setminus 0$ we define an equivalence relation by

$$x \sim y \iff x = \pm y$$
.

- The restriction of the canonical projection $\pi_{|\mathbb{S}^n}: \mathbb{S}^n \to \mathbb{R}P^n$ induces a continuous map $\overline{\pi}: \mathbb{S}^n/\sim \to \mathbb{R}P^n$.
- The continuous map $f: \mathbb{R}^{n+1} \setminus 0 \to \mathbb{S}^n$, $x \to \frac{x}{\|x\|}$ induces a continuous map $\overline{f}: \mathbb{R}P^n \to \mathbb{S}^n/\sim$.
- The maps $\overline{\pi}: \mathbb{S}^n/\sim \to \mathbb{R}P^n$ and $\overline{f}: \mathbb{R}P^n \to \mathbb{S}^n/\sim$ are inverses of each other.

Proposition (Tu2011, Exercise 7.11)

The real projective space $\mathbb{R}P^n$ is homeomorphic to the quotient space \mathbb{S}^n/\sim .

Example (Real projective line $\mathbb{R}P^1$; see also Example 7.12)

- If we regard the unit circle \mathbb{S}^1 as a subset of \mathbb{C} , then the map $\mathbb{S}^1 \to \mathbb{S}^1$, $z \to z^2$ induces a continuous map $\mathbb{S}^1/\sim \to \mathbb{S}^1$.
- This is a continuous bijection between compact spaces, and hence this is a homeomorphism (by Corollary A.36).
- Here \mathbb{S}^1/\sim is compact, since this is the image of \mathbb{S}^1 by the canonical projection map $\mathbb{S}^1 \to \mathbb{S}^1/\sim$, which is continuous.
- We thus have a sequence of homeomorphisms,

$$\mathbb{R}P^1 \simeq \mathbb{S}^1/\sim \simeq \mathbb{S}^1.$$

Proposition (Tu2011, Proposition 7.14)

The equivalence relation \sim on $\mathbb{R}^{n+1}\setminus 0$ is an open equivalence relation.

Corollary (Tu2011, Corollary 7.15)

The real projective space $\mathbb{R}P^n$ is second countable.

Corollary (Tu2011, Corollary 7.16)

The real projective space $\mathbb{R}P^n$ is Hausdorff.

Facts

• For $i = 0, \ldots, n$, define

$$U_i = \{[a^0, \ldots, a^n] \in \mathbb{R}P^n; \ a^i \neq 0\}.$$

- As the property $a^i \neq 0$ remains unchanged when we replace (a^0, \ldots, a^n) by (ta^0, \ldots, ta^n) with $t \neq 0$, we see that U_i is well defined.
- We have $\pi^{-1}(U_i) = \tilde{U}_i$, where

$$\tilde{U}_i = \left\{ (a^0, \dots, a^n) \in \mathbb{R}^{n+1} \setminus 0; \ a^i \neq 0 \right\}.$$

• As \tilde{U}_i is an open set in $\mathbb{R}^{n+1} \setminus 0$, this shows that U_i is an open set in $\mathbb{R}P^n$.

Facts

• Define $\tilde{\phi}_i: \tilde{U}_i \to \mathbb{R}^n$ by

$$\widetilde{\phi}_i(a^0,\ldots,a^n)=\left(\frac{a^0}{a^i},\ldots,\frac{a^{i-1}}{a^i},\frac{a^{i+1}}{a^i},\ldots,\frac{a^n}{a^i}\right).$$

• As $\tilde{\phi}_i(ta^0,\ldots,ta^n) = \tilde{\phi}_i(a^0,\ldots,a^n)$ for all $t \neq 0$, the map $\tilde{\phi}_i$ induces a map $\phi_i: U_i \to \mathbb{R}^n$ such that

$$\phi_i\left([a^0,\ldots,a^n]\right) = \tilde{\phi}_i(a^0,\ldots,a^n),$$

$$= \left(\frac{a^0}{a^i},\ldots,\frac{a^{i-1}}{a^i},\frac{a^{i+1}}{a^i},\ldots,\frac{a^n}{a^i}\right).$$

• As $\tilde{\phi}_i : \tilde{U}_i \to \mathbb{R}^n$ is a continuous map, the induced map $\phi_i : U_i \to \mathbb{R}^n$ is continuous as well.

Facts

• The map $\phi_i: U_i \to \mathbb{R}^n$ is a bijection with inverse $\psi_i: \mathbb{R}^n \to U_j$, where

$$\psi_i(x^1,\ldots,x^n) = [x^1,\ldots,x^i,1,x^{i+1},\ldots,x^n].$$

• The inverse map $\psi_i = \phi_i^{-1}$ is continuous, since $\psi_i = \pi \circ \tilde{\psi}_i$, where $\tilde{\psi}_i : \mathbb{R}^n \to \tilde{U}_i$ is the continuous map given by

$$\tilde{\psi}_i(x^1,\ldots,x^n) = (x^0,\ldots,x^i,1,x^{i+1},\ldots,x^n).$$

• Thus, the map $\phi_i: U_i \to \mathbb{R}^n$ is a homeomorphism.

Facts

We have

$$\phi_0(U_0 \cap U_1) = \left\{ \left(\frac{a^1}{a^0}, \dots, \frac{a^n}{a^0} \right); a^j \in \mathbb{R}, \ a^0 \neq 0, \ a^1 \neq 0 \right\}$$
$$= \left\{ (x^1, \dots, x^n) \in \mathbb{R}^n; \ x^1 \neq 0 \right\}.$$

• The transition map $\phi_1 \circ \phi_0^{-1} : \phi_0(U_0 \cap U_1) \to \mathbb{R}^n$ is given by

$$\phi_1 \circ \phi_0^{-1}(x^1, \dots, x^n) = \phi_1 \left([1, x^1, \dots, x^n] \right),$$
$$= \left(\frac{1}{x^1}, \frac{x^2}{x^1}, \dots, \frac{x^n}{x^1} \right).$$

In particular, this is a C^{∞} map.

• It can be similarly shown that all the other transition maps $\phi_i \circ \phi_i^{-1} : \phi_i(U_i \cap U_i) \to \mathbb{R}^n$ are C^{∞} maps.

Conclusion

The collection $\{(U_i, \phi_i)\}_{i=0}^n$ is a C^{∞} atlas for $\mathbb{R}P^n$, and so $\mathbb{R}P^n$ is a smooth manifold.

Definition

The differentiable structure defined by the atlas $\{(U_i, \phi_i)\}_{i=0}^n$ is called the *standard differentiable structure* of $\mathbb{R}P^n$.

Complex Projective Space

Facts

We also define complex projective spaces.

• On $\mathbb{C}^{n+1} \setminus 0$ consider the equivalence relation

$$x \sim y \iff \exists \lambda \in \mathbb{C} \setminus 0 \text{ such that } x = \lambda y.$$

In other words $x \sim y$ if and only if x and y lie on the same complex line through the origin.

- The equivalence classes are the complex lines through the origin (minus the origin).
- The complex projective space $\mathbb{C}P^n$ is the quotient space $(\mathbb{C}^{n+1}\setminus 0)/\sim$.
- The class of $a=(a^0,\ldots,a^n)$ is denoted $[a^0,\ldots,a^n]$. We call $[a^0,\ldots,a^n]$ homogeneous coordinates.
- The space $\mathbb{C}P^n$ is Hausdorff and 2nd countable.

Differentiable Structure on $\mathbb{C}P^n$

Facts

• For $i = 1, \ldots, n$, define

$$U_i = \{[a^0, \dots, a^n]; (a^0, \dots, a^n) \in \mathbb{C}^{n+1} \setminus 0, a^i \neq 0\}.$$

This is an open set in $\mathbb{C}P^n$.

• Define $\phi_i: U_i \to \mathbb{C}^n$ by

$$\phi_i\left([a^0,\ldots,a^n]\right)=\left(\frac{a^0}{a^i},\ldots,\frac{a^{i-1}}{a^i},\frac{a^{i+1}}{a^i},\ldots,\frac{a^n}{a^i}\right).$$

This is a homeomorphism from U_i on \mathbb{C}^n . It has inverse

$$\psi_i(z^1,\ldots,z^n)=\left[z^1,\ldots,z^i,1,z^{i+1},\ldots,z^n\right].$$

- The transition maps $\phi_i \circ \phi_j^{-1}$ are C^{∞} maps (they even are holomorphic maps).
- Thus, $\{(U_i, \phi_i)\}_{i=1}^n$ is a C^{∞} atlas for $\mathbb{C}P^n$, and so the complex projective space $\mathbb{C}P^n$ is a manifold.