Differentiable Forms in AlgebraicTopology Review: Smooth Manifolds

Sichuan University, Spring 2024

Reminder

Let M be a topological space.

- We say that M is second countable when it has a countable basis of open sets.
- A(n open) neighborhood of a point $p \in M$ is any open set that contains p.
- An *open cover* of M is a collection $\{U_{\alpha}\}$ of open sets such that $\bigcup_{\alpha} U_{\alpha} = M$.

Remark

In the terminology of Tu's book a neighborhood is always an open neighborhood.

Definition (Locally Euclidean Spaces)

A topological space M is called *locally Euclidean of dimension* n when, for every point p, there is a neighborhood V of p that is homeomorphic to an open subset of \mathbb{R}^n .

Definition (Topological Manifolds)

A topological manifold of dimension n is a locally Euclidean of dimension n that is Hausdorff and second countable.

Remark

A topology is 2nd countable if it has a countable basis, i.e., there is countable family (U_{α}) of open sets such that every open sets is a union of some of the U_{α} .

Definition (Local Charts)

Let M be locally Euclidean of dimension n.

- A (local) chart near a point $p \in M$ is pair (U, ϕ) where U is a neighborhood of p and $\phi: U \to \mathbb{R}^n$ is a homeomorphism (from U onto its image).
- 2 The open *U* is called a *coordinate neighborhood* or *coordinate open set*.
- **3** The map ϕ is called a *coordinate map* or *coordinate system*.
- We say that the chart (U, ϕ) is centered at p when $\phi(p) = 0$.

Remark

If $U \to \mathbb{R}^n$ is homeomorphism onto its image, then $\phi(U)$ must be an open subset of \mathbb{R}^n .

Example

- The Euclidean space \mathbb{R}^n is covered by the single $(\mathbb{R}^n, \mathrm{id}_{\mathbb{R}^n})$, where $\mathrm{id}_{\mathbb{R}^n} : \mathbb{R}^n \to \mathbb{R}^n$ is the identity map. Thus, \mathbb{R}^n is a topological manifold of dimension n.
- Every open subset $U \subset \mathbb{R}^n$ is a topological manifold as well, with the single chart (U, id_U) .

Remark

Second countability and Hausdorff condition are "hereditary conditions", i.e., they are satisfied by subsets.

Example

Any open subset U a topological manifold M is automatically a topological manifold: if (V, ϕ) is a chart for M, then $(V \cap U, \phi_{|V \cap U})$ is a chart for U.

Facts

Let (U, ϕ) and (V, ψ) be two charts of a topological manifold.

- \bullet $\phi(U \cap V)$ and $\psi(U \cap V)$ are open subsets of \mathbb{R}^n .
- \bigcirc ϕ and ψ restricts to homeomorphisms,

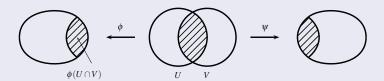
$$\phi_{|U\cap V}:U\cap V\to \phi(U\cap V),\qquad \psi_{|U\cap V}:U\cap V\to \psi(U\cap V).$$

- **③** The compositions $(\psi_{|U\cap V}) \circ (\phi_{|U\cap V})^{-1}$ and $(\phi_{|U\cap V}) \circ (\psi_{|U\cap V})^{-1}$ and are denoted by $\psi \circ \phi^{-1}$ and $\phi \circ \psi^{-1}$.
- **1** The maps $\psi \circ \phi^{-1}$ and $\phi \circ \psi^{-1}$ are inverses of each other.

Definition (Transition Maps)

The maps

$$\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$$
 and $\phi \circ \psi^{-1} : \psi(U \cap V) \to \phi(U \cap V)$ are called the *transition maps* of the charts (U, ϕ) and (V, ψ) .



Definition (C^{∞} -Compatible Charts)

We say that two charts (U, ϕ) and (V, ψ) are C^{∞} -compatible when the transition maps $\psi \circ \phi^{-1}$ and $\phi \circ \psi^{-1}$ are C^{∞} -maps.

Remark

As $\psi \circ \phi^{-1}$ and $\phi \circ \psi^{-1}$ are inverses of each other, the above condition means that $\psi \circ \phi^{-1}$ and $\phi \circ \psi^{-1}$ are C^{∞} -diffeomorphisms.

Definition (Atlas)

A C^{∞} -atlas, or simply an atlas, on a locally Euclidean space M is a collection $\mathfrak{U}=\{(U_{\alpha},\phi_{\alpha})\}$ of pairwise C^{∞} -compatible charts that cover M, i.e., $M=\cup_{\alpha}U_{\alpha}$.

- **1** The pairwise C^{∞} -compatibility means that, for all α, β , the transition maps $\phi_{\beta} \circ \phi_{\alpha}^{-1}$ are C^{∞} -maps.
- ② This implies that every transition map $\phi_{\beta} \circ \phi_{\alpha}^{-1}$ is a C^{∞} -diffeomorphism, since its inverse is the transition map $\phi_{\alpha} \circ \phi_{\beta}^{-1}$, and hence is C^{∞} .

Example (Tu2011, Example 5.7; C^{∞} -atlas on the circle)

We realize the circle \mathbb{S}^1 a subset of the complex plane,

$$\mathbb{S}^1 = \{ z \in \mathbb{C}; \ |z| = 1 \} = \{ e^{it}; \ t \in [0, 2\pi] \}.$$

Let U_1 and U_2 be the open subsets,

$$U_1 = \{e^{it}; \ t \in (-\pi, \pi)\} = \mathbb{S}^1 \setminus \{-1\},$$

$$U_2 = \{e^{it}; \ t \in (0, 2\pi)\} = \mathbb{S}^1 \setminus \{1\}.$$

Define $\phi_1:U_1\to (-\pi,\pi)$ and $\phi_2:U_2\to (0,2\pi)$ as the inverses of the maps $\psi_1:(-\pi,\pi)\to U_1$ and $\psi_2:(0,2\pi)\to U_2$ given by

$$\psi_j(t)=e^{it}.$$

Then $\{(U_1, \phi_1), (U_2, \phi_2)\}$ is a C^{∞} atlas for \mathbb{S}^1 .

Definition (Smooth Manifold)

A smooth manifold, or C^{∞} manifold, (of dimension n) is a topological manifold (of dimension n) that is equipped with a C^{∞} atlas.

- A 1-dimensional manifold is called a curve.
- A 2-dimensional manifolds is called a *surface*.

- Two C^{∞} -atlases on a given topological manifold may define the same ring of C^{∞} -functions (see Section 6).
- **2** We would like to say that we have the same C^{∞} -manifold structure when this happens.
- To deal with this issue it is convenient to use the notion of maximal atlas.

Definition (Maximal Atlas)

An atlas \mathcal{M} of a locally Euclidean space is said to be *maximal* when it is not contained in another atlas, i.e., if \mathcal{A} is an atlas containing \mathcal{M} , then it must agree with \mathcal{M} .

Proposition (Tu2011, Proposition 5.8)

Let $\mathscr{A} = \{(U_{\alpha}, \phi_{\alpha})\}$ be a C^{∞} -atlas on a locally Euclidean space.

- (i) There is a unique maximal C^{∞} -atlas \mathscr{M} that contains \mathscr{A} .
- (ii) \mathscr{M} consists of all local charts (V, ψ) that are C^{∞} -compatible with all the charts $(U_{\alpha}, \phi_{\alpha})$.

Definition (Smooth Structure)

- A smooth structure, or C^{∞} -structure, on a topological manifold is given by the datum of a maximal C^{∞} -atlas.
- A C[∞]-manifold is a topological manifold equipped with a C[∞]-structure (i.e., a maximal C[∞]-atlas).

Remark

The two definitions of C^{∞} -manifolds are equivalent.

- A C^{∞} -atlas \mathscr{A} on a topological manifold M is contained in a unique maximal C^{∞} -atlas \mathscr{M} .
- It thus defines a unique C^{∞} -structure on M (given by the maximal atlas \mathcal{M}).

Remark

Two C^{∞} -manifolds agree if and only if they agree as sets and have the same topology and C^{∞} -structure (i.e., maximal C^{∞} -atlas).

Fact

Let $\mathscr{A} = \{(U_{\alpha}, \phi_{\alpha})\}$ and $\mathscr{B} = \{(V_{\beta}, \psi_{\beta})\}$ be C^{∞} -atlases on a topological manifold M. TFAE:

- (i) \mathscr{A} and \mathscr{B} define the same \mathbb{C}^{∞} -structure on M.
- (ii) \mathscr{A} and \mathscr{B} are contained in the same maximal C^{∞} -atlas.
- (iii) The charts of $\mathscr A$ and $\mathscr B$ are pairwise $\mathsf C^\infty$ -compatible, i.e., for all α,β the charts $(\mathsf U_\alpha,\phi_\alpha)$ and $(\mathsf V_\beta,\psi_\beta)$ are $\mathsf C^\infty$ -compatible.

Remarks

- In practice we may forget about maximal atlases.
- In order to verify that a topological space M is a C^{∞} -manifold we only need to check that
 - (a) M is Hausdorff and second countable.
 - (b) M has a C^{∞} -atlas.

- In what follows, by a "manifold" it will be always meant a "smooth manifold".
- ② By a chart (U, ϕ) about p in a (smooth) manifold M, we shall mean a chart in the maximal C^{∞} atlas of M such that $p \in U$.

Notation

 (r^1,\ldots,r^n) are the standard coordinates in \mathbb{R}^n ,

Definition (Local Coordinates)

- If (U, ϕ) is a chart of a (smooth) manifold, we let $x^i = r^i \circ \phi$ be the *i*-th coordinate of ϕ .
- The functions x^1, \dots, x^n are called *local coordinates on U*.

- If $p \in U$, then $(x^1(p), \dots, x^n(p))$ is a point in \mathbb{R}^n .
- We often omit p from the notation, so that, depending on context, (x^1, \ldots, x^n) may denote local coordinates (functions) or a point in \mathbb{R}^n .

Example (Tu2011, Example 5.11; Euclidean Spaces)

The Euclidean space \mathbb{R}^n is a smooth manifold with single chart $(\mathbb{R}^n, r^1, \ldots, r^n)$, where r^1, \ldots, r^n are the standard coordinates in \mathbb{R}^n .

Example (Vector Spaces)

Let E be a (real) vector space of dimension n. Any basis (e_1,\ldots,e_n) of E defines a chart (E,ϕ) , where $\phi:E\to\mathbb{R}^n$ is defined by

$$\phi(r^1e_1+\cdots+r^ne_n)=(r^1,\ldots,r^n), \qquad r^i\in\mathbb{R}.$$

This is a linear isomorphism with inverse,

$$\phi^{-1}(r^1,\ldots,r^n) = r^1e_1 + \cdots + r^ne_n.$$

Therefore, E is a smooth manifold with single chart (E, ϕ) .

- **1** The topology of E is such that the open subsets are of the form $\phi^{-1}(U)$, where U ranges over open subsets of \mathbb{R}^n .
- 2 The topology and smooth structure of E do not depend on the choice of the basis e_1, \ldots, e_n .

Example (Tu2011, Example 5.12; Open subset of a manifold)

An open subset V of a smooth manifold M is a smooth manifold. If $\{(U_{\alpha}, \phi_{\alpha})\}$ is a C^{∞} -atlas for M, then $\{(U_{\alpha} \cap V, \phi_{\alpha|V \cap U_{\alpha}})\}$ is a C^{∞} -atlas for V.

Example (Tu2011, Example 5.13; Manifolds of dimension 0)

Let M be a 0-dimensional manifold. Then

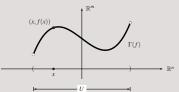
- For every point $p \in M$, the singleton $\{p\}$ is homeomorphic to $\mathbb{R}^0 = \{0\}$, and hence is open. Therefore, M is discrete.
- Second countability then implies that *M* is countable.
- The charts $(\{p\}, p \to 0)$, $p \in M$, form a C^{∞} -atlas.

Example (Tu2011, Example 5.14; Graph of a smooth function)

Let $f:U\to\mathbb{R}^m$ a C^∞ function, where U is an open subset. The graph of f is

$$\Gamma(f) = \{(x, f(x)); x \in U\}$$

= \{(x, y) \in U \times \mathbb{R}^m; y = f(x)\}.



This is a smooth manifold with single chart $(\Gamma(f), \phi)$, where $\phi : \Gamma(f) \to U$ is defined by

$$\phi(x, f(x)) = x, \quad x \in U.$$

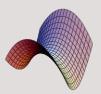
Here $\phi^{-1}: U \to \Gamma(f)$ is just $x \to (x, f(x))$.

Examples

The following surfaces are graphs of smooth functions, and hence are C^{∞} -manifolds:

• Elliptic paraboloid: $z = x^2 + y^2$.

• Hyperbolic paraboloid: $z = y^2 - x^2$.



Example (Spheres; Tu2011, Example 5.16 and Problem 5.3)

The *unit sphere* of \mathbb{R}^{n+1} is

$$\mathbb{S}^n = \left\{ (x^1, \dots, x^{n+1}) \in \mathbb{R}^{n+1}; \ (x^1)^2 + \dots + (x^{n+1})^2 = 1 \right\}.$$

This is a smooth manifold of dimension n. An atlas is $\{(U_i^{\pm}, \phi_i^{\pm})\}_{i=1}^{n+1}$, where

$$U_i^{\pm} = \{(x^1, \dots, x^{n+1}) \in \mathbb{S}^n; \ \pm x^i > 0\},$$

and $\phi_i^{\pm}: U_i^{\pm} \to \mathbb{B}^n$ is defined by

$$\phi_i^{\pm}(x^1,\ldots,x^{n+1}) = (x^1,\ldots,x^{i-1},x^{i+1},\ldots,x^{n+1}).$$

Here \mathbb{B}^n is the unit ball of \mathbb{R}^n . The inverse map of ϕ_i^{\pm} is

$$(\phi_i^{\pm})^{-1}(u^1,\ldots,u^n) =$$

$$(u^1,\ldots,u^{i-1},\pm\sqrt{1-(u^1)^2-\cdots-(u^n)^2},u^i,\ldots,u^n).$$

Remarks

- **1** The above smooth structure on \mathbb{S}^n is called its *standard* smooth structure.
- 2 For n = 1 it agrees with the previous smooth structure.
- 3 It can be shown that \mathbb{S}^7 admits exactly 28 distinct smooth structures.

- It is known that any topological manifold of dimension ≤ 3 admits at most one smooth structure.
- ② It can be also shown that (compact) topological manifold of dimension ≥ 5 admits at most finitely many smooth structures.
- 3 In dimension 4 the situation remains unsettled.

Definition

Let M and N be locally Euclidean spaces of respective dimensions m and n. If (U,ϕ) is a chart for M and (V,ψ) is a chart for V, then the map $\phi \times \psi : U \times V \to \mathbb{R}^{m+n}$ is defined by

$$(\varphi \times \phi)(x,y) = (\phi(x),\psi(y)) \in \mathbb{R}^{m+n}, \qquad x \in U, y \in V.$$

Remark

 $\phi \times \psi$ is a homeomorphism from $U \times V$ onto the open subset $\phi(U) \times \psi(V) \subset \mathbb{R}^{m+n}$.

Fact (Corollary A.21 and Proposition A.22)

If M and N are both Hausdorff second countable topological spaces, then the product $M \times N$ is again Hausdorff and second countable.

Proposition (Tu2011, Proposition 5.18 & Example 5.17)

Suppose that M and N are smooth manifolds of respective dimensions m and n. Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be a C^{∞} -atlas for M and $\{(V_{\beta}, \psi_{\beta})\}$ a C^{∞} -atlas for N. Then

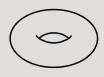
- The collection $\{(U_{\alpha} \times V_{\beta}, \phi_{\alpha} \times \psi_{\beta})\}$ is a C^{∞} atlas for $M \times N$.
- 2 The product $M \times N$ is a smooth manifold of dimension m + n.

Remark

The smooth structure of $M \times N$ does not depend on the choices of the atlases $\{(U_{\alpha}, \phi_{\alpha})\}$ and $\{(V_{\beta}, \psi_{\beta})\}$.

Example

The infinite cylinder $\mathbb{S}^1 \times \mathbb{R}$ and the torus $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$ are both smooth manifolds of dimension 2, since they are product of 1-dimensional smooth manifolds.



Torus.

Remark

More generally, if M_1, \ldots, M_k are smooth manifolds, then their $M_1 \times \cdots \times M_k$ is a smooth manifold of dimension $\dim M_1 + \cdots + \dim M_k$.

Example

The *n*-torus $\mathbb{T}^n = \mathbb{S}^1 \times \cdots \times \mathbb{S}^1$ (*n* times) is a smooth manifold of dimension *n*.