Differential Forms in Algebraic Topology Review: Lie Bracket, Lie Derivative, and Interior Multiplication

Sichuan University, Spring 2024

Reminder

Let X be a smooth vector field on a smooth manifold M. Then X defines a derivation on $C^{\infty}(M) = \Omega^{0}(M)$,

$$X: C^{\infty}(M) \longrightarrow C^{\infty}(M), \qquad f \longrightarrow Xf.$$

Reminder

Let X be a smooth vector field on a smooth manifold M. Then X defines a derivation on $C^{\infty}(M) = \Omega^{0}(M)$,

$$X: C^{\infty}(M) \longrightarrow C^{\infty}(M), \qquad f \longrightarrow Xf.$$

Question

Can we extend this derivation to a derivation on all $\Omega^*(M)$?

Reminder

Let X be a smooth vector field on a smooth manifold M. Then X defines a derivation on $C^{\infty}(M) = \Omega^{0}(M)$,

$$X: C^{\infty}(M) \longrightarrow C^{\infty}(M), \qquad f \longrightarrow Xf.$$

Question

Can we extend this derivation to a derivation on all $\Omega^*(M)$?

Solution

The solution is provided by the *Lie derivative* (see Tu2011, §20).

Facts

Suppose that X and Y are smooth vector fields on M.

Facts

Suppose that X and Y are smooth vector fields on M.

• If $f \in C^{\infty}(M)$, then Yf and X(Yf) are C^{∞} functions on M.

Facts

Suppose that X and Y are smooth vector fields on M.

- If $f \in C^{\infty}(M)$, then Yf and X(Yf) are C^{∞} functions on M.
- If f = g near p, then Yf = Yg near p. Thus, the germ of Yf at p depends only on the germ of f at p. We then have

$$X(Yf)(p) = X_p(Yf).$$

Facts

Suppose that X and Y are smooth vector fields on M.

- If $f \in C^{\infty}(M)$, then Yf and X(Yf) are C^{∞} functions on M.
- If f = g near p, then Yf = Yg near p. Thus, the germ of Yf at p depends only on the germ of f at p. We then have

$$X(Yf)(p) = X_p(Yf).$$

• It follows we get a linear map,

$$C_p^{\infty} \ni f \longrightarrow X_p(Yf) \in \mathbb{R}$$

Definition

If X and Y are smooth vector fields on M, then their Lie bracket at a point $p \in M$ is the linear map $[X, Y]_p : C_p^{\infty} \to \mathbb{R}$ defined by

$$[X,Y]_p f = X_p(Yf) - Y_p(Xf), \qquad f \in C_p^{\infty}.$$

Definition

If X and Y are smooth vector fields on M, then their Lie bracket at a point $p \in M$ is the linear map $[X, Y]_p : C_p^{\infty} \to \mathbb{R}$ defined by

$$[X,Y]_p f = X_p(Yf) - Y_p(Xf), \qquad f \in C_p^{\infty}.$$

Lemma

 $[X,Y]_p \in T_pM$, i.e., $[X,Y]_p$ is a derivation at p.

Definition

If X and Y are smooth vector fields on M, then their Lie bracket at a point $p \in M$ is the linear map $[X, Y]_p : C_p^{\infty} \to \mathbb{R}$ defined by

$$[X,Y]_p f = X_p(Yf) - Y_p(Xf), \qquad f \in C_p^{\infty}.$$

Lemma

 $[X,Y]_p \in T_pM$, i.e., $[X,Y]_p$ is a derivation at p.

Definition

If X and Y are smooth vector fields on M, then their $Lie\ bracket$ is the vector field,

$$[X,Y]:M\longrightarrow TM, \qquad p\longrightarrow [X,Y]_p.$$

Proposition (Proposition 14.10)

If X and Y are smooth vector fields on M, then [X, Y] is a smooth vector field on M as well.

Proposition (Proposition 14.10)

If X and Y are smooth vector fields on M, then [X, Y] is a smooth vector field on M as well.

Remark

If $f \in C^{\infty}(M)$ and $p \in M$, then

$$([X, Y]f)(p) = [X, Y]_p(f) = X_p(Yf) - Y_p(Xf) = X(Yf)(p) - Y(Xf)(p).$$

Proposition (Proposition 14.10)

If X and Y are smooth vector fields on M, then [X, Y] is a smooth vector field on M as well.

Remark

If $f \in C^{\infty}(M)$ and $p \in M$, then

$$([X, Y]f)(p) = [X, Y]_p(f) = X_p(Yf) - Y_p(Xf) = X(Yf)(p) - Y(Xf)(p).$$

$$[X,Y]f = X(Yf) - Y(Xf) \in C^{\infty}(M).$$

Proposition (Proposition 14.10)

If X and Y are smooth vector fields on M, then [X, Y] is a smooth vector field on M as well.

Remark

If $f \in C^{\infty}(M)$ and $p \in M$, then

$$([X, Y]f)(p) = [X, Y]_p(f) = X_p(Yf) - Y_p(Xf) = X(Yf)(p) - Y(Xf)(p).$$

Thus,

$$[X,Y]f = X(Yf) - Y(Xf) \in C^{\infty}(M).$$

Therefore, if we regard X, Y and [X, Y] are derivations on $C^{\infty}(M)$, then

$$[X, Y] = X \circ Y - Y \circ X.$$

Definition (Lie algebras)

A Lie algebra over a field $\mathbb K$ is a vector space $\mathfrak g$ over $\mathbb K$ together with an alternating bilinear map $[\cdot,\cdot]:\mathfrak g\times\mathfrak g\to\mathbb K$ satisfying Jacobi's identity,

$$\big[X,[Y,Z]\big]+\big[Y,[Z,X]\big]+\big[Z,[X,Y]\big]=0\quad\text{for all }X,Y,Z\in\mathfrak{g}.$$

Definition (Lie algebras)

A Lie algebra over a field $\mathbb K$ is a vector space $\mathfrak g$ over $\mathbb K$ together with an alternating bilinear map $[\cdot,\cdot]:\mathfrak g\times\mathfrak g\to\mathbb K$ satisfying Jacobi's identity,

$$\big[X,[Y,Z]\big]+\big[Y,[Z,X]\big]+\big[Z,[X,Y]\big]=0\quad\text{for all }X,Y,Z\in\mathfrak{g}.$$

Remark

In general, a Lie algebra $(\mathfrak{g}, [\cdot, \cdot])$ need not be an algebra, since the bracket $[\cdot, \cdot]$ may fail to be associative.

Example

Any vector space V over \mathbb{K} is a Lie algebra with respect to the zero bracket [x, y] = 0. Such a Lie algebra is called an *Abelian Lie algebra*.

Example

Any vector space V over \mathbb{K} is a Lie algebra with respect to the zero bracket [x,y]=0. Such a Lie algebra is called an *Abelian Lie algebra*.

Example

Any algebra A over $\mathbb K$ is a Lie algebra with respect to the bracket,

$$[x, y] = xy - yx, \qquad x, y \in A.$$

Proposition (see Exercise 14.11)

The space $\mathscr{X}(M)$ of smooth vector fields on M is a Lie algebra over \mathbb{R} with respect to the Lie bracket of vector fields.

Proposition (see Exercise 14.11)

The space $\mathscr{X}(M)$ of smooth vector fields on M is a Lie algebra over \mathbb{R} with respect to the Lie bracket of vector fields.

Remark

Let A be an algebra over \mathbb{K} . Denote by Der(A) the space of derivations of A.

Proposition (see Exercise 14.11)

The space $\mathscr{X}(M)$ of smooth vector fields on M is a Lie algebra over \mathbb{R} with respect to the Lie bracket of vector fields.

Remark

Let A be an algebra over \mathbb{K} . Denote by Der(A) the space of derivations of A.

• If D_1 and D_2 are derivations of A, then

$$[D_1, D_2] := D_1 \circ D_2 - D_2 \circ D_1$$

is again a derivation of A.

Proposition (see Exercise 14.11)

The space $\mathscr{X}(M)$ of smooth vector fields on M is a Lie algebra over \mathbb{R} with respect to the Lie bracket of vector fields.

Remark

Let A be an algebra over \mathbb{K} . Denote by Der(A) the space of derivations of A.

• If D_1 and D_2 are derivations of A, then

$$[D_1, D_2] := D_1 \circ D_2 - D_2 \circ D_1$$

is again a derivation of A.

• $(Der(A), [\cdot, \cdot])$ is a Lie algebra.

Reminder (Proposition 18.7)

Let ω be a k-form on M. Then TFAE:

Reminder (Proposition 18.7)

Let ω be a k-form on M. Then TFAE:

 \bullet is a smooth k-form.

Reminder (Proposition 18.7)

Let ω be a k-form on M. Then TFAE:

- \bullet is a smooth k-form.
- ② For any smooth vector fields X_1, \ldots, X_k on M, the function $\omega(X_1, \ldots, X_k)$ is smooth on M.

Definition (see also Theorem 20.12)

Let X be a smooth vector field on M and $\omega \in \Omega^k(M)$. The Lie derivative $\mathscr{L}_{X}\omega$ is the unique smooth k-form on M such that, for any smooth vector fields Y_1, \ldots, Y_k on M, we have

$$(\mathscr{L}_X\omega)(Y_1,\ldots,Y_k) = X(\omega(Y_1,\ldots,Y_k))$$
$$-\sum_{i=1}^k \omega(Y_1,\ldots,[X,Y_i],\ldots,Y_k).$$

Definition (see also Theorem 20.12)

Let X be a smooth vector field on M and $\omega \in \Omega^k(M)$. The Lie derivative $\mathscr{L}_{X}\omega$ is the unique smooth k-form on M such that, for any smooth vector fields Y_1, \ldots, Y_k on M, we have

$$(\mathscr{L}_X\omega)(Y_1,\ldots,Y_k) = X(\omega(Y_1,\ldots,Y_k))$$
$$-\sum_{i=1}^k \omega(Y_1,\ldots,[X,Y_i],\ldots,Y_k).$$

Remark

If $f \in C^{\infty}(M)$, then $\mathcal{L}_X f = Xf$.

Definition (see also Theorem 20.12)

Let X be a smooth vector field on M and $\omega \in \Omega^k(M)$. The Lie derivative $\mathscr{L}_{X}\omega$ is the unique smooth k-form on M such that, for any smooth vector fields Y_1, \ldots, Y_k on M, we have

$$(\mathscr{L}_X\omega)(Y_1,\ldots,Y_k) = X(\omega(Y_1,\ldots,Y_k))$$
$$-\sum_{i=1}^k \omega(Y_1,\ldots,[X,Y_i],\ldots,Y_k).$$

Remark

If $f \in C^{\infty}(M)$, then $\mathcal{L}_X f = Xf$.

Remark

In Tu2011 the Lie derivative is defined in terms of the flow of the vector field X. This leads to the same formula as above.

Theorem (Theorem 20.10)

Let X be a smooth vector field on M.

Theorem (Theorem 20.10)

Let X be a smooth vector field on M.

(i) The Lie derivative $\mathscr{L}_X:\Omega^*(M)\to\Omega^*(M)$ is a derivation, i.e, it's a linear map such that

$$\mathscr{L}_{X}(\omega \wedge \tau) = (\mathscr{L}_{X}\omega) \wedge \tau + \omega \wedge (\mathscr{L}_{X}\tau) \quad \forall \omega, \tau \in \Omega^{*}(M).$$

Theorem (Theorem 20.10)

Let X be a smooth vector field on M.

(i) The Lie derivative $\mathscr{L}_X:\Omega^*(M)\to\Omega^*(M)$ is a derivation, i.e, it's a linear map such that

$$\mathscr{L}_{X}(\omega \wedge \tau) = (\mathscr{L}_{X}\omega) \wedge \tau + \omega \wedge (\mathscr{L}_{X}\tau) \quad \forall \omega, \tau \in \Omega^{*}(M).$$

(ii) It commutes with exterior differentiation, i.e.,

$$d\mathscr{L}_X = \mathscr{L}_X d$$
.

Definition (Interior multiplication)

Let V be a vector space. If β is a k-covector on V and $v \in V$, then the *interior multiplication* or *contraction* of β with v is the (k-1)-covector $\imath_V \beta$ defined as follows:

Definition (Interior multiplication)

Let V be a vector space. If β is a k-covector on V and $v \in V$, then the *interior multiplication* or *contraction* of β with v is the (k-1)-covector $\imath_V \beta$ defined as follows:

• If $k \geq 2$, then

$$i_{\mathbf{v}}\beta(\mathbf{v}_1,\ldots,\mathbf{v}_{k-1})=\beta(\mathbf{v},\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}),\quad \mathbf{v}_i\in V.$$

Definition (Interior multiplication)

Let V be a vector space. If β is a k-covector on V and $v \in V$, then the *interior multiplication* or *contraction* of β with v is the (k-1)-covector $\imath_V \beta$ defined as follows:

• If $k \geq 2$, then

$$i_{\mathbf{v}}\beta(\mathbf{v}_1,\ldots,\mathbf{v}_{k-1})=\beta(\mathbf{v},\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}),\quad \mathbf{v}_i\in V.$$

• If k = 1, then $i_{\nu}\beta = \beta(\nu)$.

Definition (Interior multiplication)

Let V be a vector space. If β is a k-covector on V and $v \in V$, then the *interior multiplication* or *contraction* of β with v is the (k-1)-covector $\imath_V \beta$ defined as follows:

• If $k \geq 2$, then

$$i_{\nu}\beta(v_1,\ldots,v_{k-1})=\beta(v,v_1,\ldots,v_{k-1}), \quad v_i\in V.$$

- If k = 1, then $i_{\nu}\beta = \beta(\nu)$.
- If k = 0, then $i_V \beta = 0$.

Proposition (Proposition 20.7)

Let $\alpha^1, \ldots, \alpha^k$ be 1-covectors (i.e., elements of V^*). Then

$$\iota_{\mathbf{v}}(\alpha^{1}\wedge\cdots\wedge\alpha^{k})=\sum_{i=1}^{k}(-1)^{i-1}\alpha^{i}(\mathbf{v})\alpha^{1}\wedge\cdots\wedge\widehat{\alpha^{i}}\wedge\cdots\wedge\alpha^{k},$$

where • means omission.

Proposition (Proposition 20.8)

Let $v \in V$. The interior multiplication $i_v : A_*(V) \to A_{*-1}(V)$ satisfies the following properties:

Proposition (Proposition 20.8)

Let $v \in V$. The interior multiplication $i_v : A_*(V) \to A_{*-1}(V)$ satisfies the following properties:

Proposition (Proposition 20.8)

Let $v \in V$. The interior multiplication $i_v : A_*(V) \to A_{*-1}(V)$ satisfies the following properties:

- ② If $\beta \in A_k(V)$ and $\gamma \in A_\ell(V)$, then

$$i_{\nu}(\beta \wedge \gamma) = (i_{\nu}\beta) \wedge \gamma + (-1)^{k}\beta \wedge (i_{\nu}\gamma).$$

Proposition (Proposition 20.8)

Let $v \in V$. The interior multiplication $i_V : A_*(V) \to A_{*-1}(V)$ satisfies the following properties:

- **2** If $\beta \in A_k(V)$ and $\gamma \in A_\ell(V)$, then

$$i_{\nu}(\beta \wedge \gamma) = (i_{\nu}\beta) \wedge \gamma + (-1)^{k}\beta \wedge (i_{\nu}\gamma).$$

In other words, $\imath_{\rm v}$ is an antiderivation of degree -1 whose square is zero.

Definition

Let M be a smooth manifold. If X is a vector field and ω is a k-form on M, then the interior product $\imath_X\omega$ is defined by

$$(\imath_X\omega)_p=\imath_{X_p}\omega_p, \qquad p\in M.$$

Definition

Let M be a smooth manifold. If X is a vector field and ω is a k-form on M, then the interior product $\imath_X\omega$ is defined by

$$(\imath_X\omega)_p=\imath_{X_p}\omega_p, \qquad p\in M.$$

Remark

• If $k \geq 2$, then, for any vector fields X_1, \ldots, X_{k-1} on M, we have $i_X \omega(X_1, \ldots, X_{k-1}) = \omega(X, X_1, \ldots, X_{k-1})$.

Definition

Let M be a smooth manifold. If X is a vector field and ω is a k-form on M, then the interior product $\imath_X\omega$ is defined by

$$(\imath_X\omega)_p=\imath_{X_p}\omega_p, \qquad p\in M.$$

Remark

- If $k \geq 2$, then, for any vector fields X_1, \ldots, X_{k-1} on M, we have $\iota_X \omega(X_1, \ldots, X_{k-1}) = \omega(X, X_1, \ldots, X_{k-1})$.
- If k = 1, then $i_X \omega = \omega(X)$.

Definition

Let M be a smooth manifold. If X is a vector field and ω is a k-form on M, then the interior product $\imath_X\omega$ is defined by

$$(\imath_X\omega)_p=\imath_{X_p}\omega_p, \qquad p\in M.$$

Remark

- If $k \geq 2$, then, for any vector fields X_1, \ldots, X_{k-1} on M, we have $\imath_X \omega(X_1, \ldots, X_{k-1}) = \omega(X, X_1, \ldots, X_{k-1}).$
- If k = 1, then $i_X \omega = \omega(X)$.
- If k=0, then $i_X\omega=0$.

Proposition

If X is a smooth vector field and ω is a smooth k-form on M, then $\imath_X \omega$ is a smooth form on M as well.

Proposition

If X is a smooth vector field and ω is a smooth k-form on M, then $\iota_X \omega$ is a smooth form on M as well.

Sketch of Proof.

• The case k=0 is immediate, since in this case $i\chi\omega=0$.

Proposition

If X is a smooth vector field and ω is a smooth k-form on M, then $\iota_X \omega$ is a smooth form on M as well.

Sketch of Proof.

- The case k=0 is immediate, since in this case $i_X\omega=0$.
- If k = 1, then $i_X \omega = \omega(X) \in C^{\infty}(M)$.

Proposition

If X is a smooth vector field and ω is a smooth k-form on M, then $\iota_X \omega$ is a smooth form on M as well.

Sketch of Proof.

- The case k=0 is immediate, since in this case $i_X\omega=0$.
- If k = 1, then $i_X \omega = \omega(X) \in C^{\infty}(M)$.
- If $k \ge 2$, then for any smooth vector fields X_1, \ldots, X_{k-1} on M we have

$$i_X\omega(X_1,\ldots,X_{k-1})=\omega(X,X_1,\ldots,X_{k-1})\in C^\infty(M).$$

Proposition

If X is a smooth vector field and ω is a smooth k-form on M, then $\iota_X \omega$ is a smooth form on M as well.

Sketch of Proof.

- The case k=0 is immediate, since in this case $i_X\omega=0$.
- If k = 1, then $i_X \omega = \omega(X) \in C^{\infty}(M)$.
- If $k \ge 2$, then for any smooth vector fields X_1, \ldots, X_{k-1} on M we have

$$i_X\omega(X_1,\ldots,X_{k-1})=\omega(X,X_1,\ldots,X_{k-1})\in C^\infty(M).$$

The proof follows by induction.

Corollary

If X is a smooth vector field on M, the interior product with X defines a degree -1 anti-derivation $\imath_X: \Omega^*(M) \to \Omega^{*-1}(M)$ such that $\imath_X \circ \imath_X = 0$.

Corollary

If X is a smooth vector field on M, the interior product with X defines a degree -1 anti-derivation $\imath_X:\Omega^*(M)\to\Omega^{*-1}(M)$ such that $\imath_X\circ\imath_X=0$.

Theorem (Theorem 20.10; Cartan Homotopy Formula)

If X a smooth vector field on M, then

$$\mathscr{L}_X = d\imath_X + \imath_X d.$$

Reminder

Let X be a smooth vector field on M and $\omega \in \Omega^k(M)$. For any smooth vector fields Y_1, \ldots, Y_k on M, we have

$$(\mathscr{L}_X\omega)(Y_1,\ldots,Y_k) = X(\omega(Y_1,\ldots,Y_k))$$
$$-\sum_{i=1}^k \omega(Y_1,\ldots,[X,Y_i],\ldots,Y_k).$$

Reminder

Let X be a smooth vector field on M and $\omega \in \Omega^k(M)$. For any smooth vector fields Y_1, \ldots, Y_k on M, we have

$$(\mathscr{L}_X\omega)(Y_1,\ldots,Y_k) = X(\omega(Y_1,\ldots,Y_k))$$
$$-\sum_{i=1}^k \omega(Y_1,\ldots,[X,Y_i],\ldots,Y_k).$$

Proposition (Proposition 20.13)

Let $\omega \in \Omega^1(M)$. Then, for any smooth vector fields X and Y on M, we have

$$d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]).$$

By using Cartan homotopy formula and the previous formulas we get:

By using Cartan homotopy formula and the previous formulas we get:

Theorem (Theorem 20.14; Global formula for the exterior derivative)

Let $\omega \in \Omega^k(M)$, $k \ge 1$. Then, for any smooth vector fields Y_0, \ldots, Y_k on M, we have

$$d\omega(Y_0,\ldots,Y_k) = \sum_{i=1}^k (-1)^i Y_i (\omega(Y_0,\ldots,\widehat{Y}_i,\ldots,Y_k))$$

+
$$\sum_{1 \leq i < j \leq k} (-1)^{i+j} \omega([Y_i,Y_j],Y_0,\ldots,\widehat{Y}_i,\ldots,\widehat{Y}_j,\ldots,Y_k).$$