Differential Forms in Algebraic Topology: Cochain Complexes and Cohomology

Sichuan University, Spring 2024

References

Main References

- Section 25 of Tu2011.
- Section 1 of Bott-Tu.

Cochain Complexes

Definition

• A cochain complex \mathscr{C} is given by vector spaces C^k , $k \in \mathbb{Z}$, and linear maps $d_k : C^k \to C^{k+1}$,

$$\cdots C^{-1} \xrightarrow{d_{-1}} C^0 \xrightarrow{d_0} C^1 \xrightarrow{d_1} C^2 \xrightarrow{d_2} \cdots,$$

such that

$$d_k \circ d_{k+1} = 0.$$

 The collection of the linear maps (d_k)_{k∈ℤ} is called the differential of the cochain complex 𝒞.

Cochain Complexes

Example

Given any (smooth) manifold M the exterior algebra $\Omega^*(M)$ of (smooth) differential forms along with the exterior derivative d give rise to a cochain complex,

$$0 \longrightarrow \Omega^0(M) \stackrel{d}{\longrightarrow} \Omega^1(M) \stackrel{d}{\longrightarrow} \Omega^2(M) \stackrel{d}{\longrightarrow} \cdots.$$

This cochain complex is called the de Rham complex of M.

Definition

A sequence of linear maps,

$$A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C$$

is said to be exact at B if im $f = \ker g$.

Definition

An exact sequence is a sequence of linear maps,

$$0 \longrightarrow A^0 \stackrel{f_0}{\longrightarrow} A^1 \stackrel{f_1}{\longrightarrow} A^2 \stackrel{f_2}{\longrightarrow} \cdots \stackrel{f_{n-1}}{\longrightarrow} A^n$$

which is exact at A^i for i = 1, ..., n-1. That is,

$$\operatorname{im} f^{i-1} = \ker f^{i}$$
 for $i = 1, ..., n-1$.

Definition

A short exact sequence is a 5-term exact sequence, i.e., an exact sequence of the form,

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \stackrel{g}{\longrightarrow} C \longrightarrow 0.$$

Remark

This means that

$$0 = \ker f$$
, $\operatorname{im} f = \ker g$, $\operatorname{im} g = \ker(0) = C$.

That is, the sequence is exact at B, the map f is injective, and the linear map g is surjective.

Remark

If A = 0, then a sequence $0 \xrightarrow{f} B \xrightarrow{g} C$ is exact if and only if $0 = \operatorname{im} f = \ker g$.

That is, g is injective.

Remark

If C=0, then a sequence $A \xrightarrow{f} B \xrightarrow{g} 0$ is exact if and only if $\operatorname{im} f = \ker g = B.$

That is, f is surjective.

Proposition (Proposition 25.2)

Let $A \xrightarrow{f} B \xrightarrow{g} C$ be an exact sequence. Then:

- (i) The map f is surjective if and only if g = 0.
- (ii) The map g is injective if and only if f = 0.

Remark

If $f: A \to B$ is a linear map, then its cokernel is coker $f:=B/\operatorname{im} f$.

Proposition (4-term exact sequences; Proposition 25.3)

- **1** A sequence $0 \longrightarrow A \xrightarrow{f} B \longrightarrow 0$ is exact if and only if f is an isomorphism.
- ② If the sequence $A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$ is exact, then $C \simeq \operatorname{coker} f$.

Setup

% is a cochain complex,

$$\cdots C^{-1} \xrightarrow{d_{-1}} C^0 \xrightarrow{d_0} C^1 \xrightarrow{d_1} C^2 \xrightarrow{d_2} \cdots$$

In particular, $d_{k-1} \circ d_k = 0$.

Fact

$$d_{k-1} \circ d_k = 0 \iff \operatorname{im} d_{k-1} \subseteq \ker d_k.$$

Definition

The degree k cohomology space of \mathscr{C} is

$$H^{k}\left(\mathscr{C}\right) = \frac{\ker d_{k}}{\operatorname{im} d_{k-1}}.$$

Remark

$$H^k(\mathscr{C}) = 0 \Longleftrightarrow \frac{\ker d_k}{\operatorname{im} d_{k-1}} = 0 \Longleftrightarrow \operatorname{im} d_{k-1} = \ker d_k.$$

Thus, $H^k(\mathscr{C}) = 0$ if and only if the cochain complex is exact at C^k .

Definition

- The elements of C^k are called cochains of degree k (or k-cochains).
- A k-cochain c such that $d_k c = 0$ is a called a k-cocycle.
- A k cochain for which there is $c' \in C^{k-1}$ such that $c = d_{k-1}c'$ is called a k-coboundary.

Definition

- The space of k-cocycles is denoted $Z^k(\mathscr{C})$.
- The space of k-coboundaries is denoted $B^k(\mathscr{C})$.

Remark

We have

$$Z^k(\mathscr{C}) = \ker d_k, \qquad B^k(\mathscr{C}) = \operatorname{im} d_{k-1}.$$

Thus.

$$H^k(\mathscr{C}) = \frac{\ker d_k}{\operatorname{im} d_{k-1}} = Z_k(\mathscr{C})/B^k(\mathscr{C}).$$

Definition

If $c \in Z^k(\mathscr{C})$ is a k-cocycle, then its class in $H^k(\mathscr{C})$ is denoted [c] and is called its cohomology class.

Remark

The subscript in d_k is often omitted, and so we write $d \circ d = 0$ instead of $d_k \circ d_{k+1} = 0$.

Example

Let M be a smooth manifold with de Rham complex,

$$0 \longrightarrow \Omega^0(M) \stackrel{d}{\longrightarrow} \Omega^1(M) \stackrel{d}{\longrightarrow} \Omega^2(M) \stackrel{d}{\longrightarrow} \cdots.$$

• The space of k-cocycles is

$$Z^{k}(M) = \left\{ \omega \in \Omega^{k}(M); \ d\omega = 0 \right\}$$
$$= \left\{ \text{closed } k\text{-forms} \right\}.$$

• The space of *k*-coboundaries is

$$B^{k}(M) = \left\{ \omega \in \Omega^{k}(M); \exists \eta \in \Omega^{k-1}(M) \text{ s.t. } \omega = d\eta \right\}$$
$$= \left\{ \text{exact } k\text{-forms} \right\}.$$

Definition

Let $\mathscr{A}=(A^*,d)$ and $\mathscr{B}=(B^*,d')$ be cochain complexes. A cochain map $\varphi:\mathscr{A}\to\mathscr{B}$ is given by a collection of linear maps $\varphi_k:A^k\to B^k$ such that

$$d_k'\circ\varphi_k=\varphi_{k+1}\circ d.$$

Remarks

1 In other words, we have a commutative diagram,

$$\cdots \longrightarrow A^{k-1} \xrightarrow{d} A^{k} \xrightarrow{d} A^{k+1} \longrightarrow \cdots$$

$$\downarrow^{\varphi_{k-1}} \qquad \downarrow^{\varphi_{k}} \qquad \downarrow^{\varphi_{k+1}}$$

$$\cdots \longrightarrow B^{k-1} \xrightarrow{d'} B^{k} \xrightarrow{d'} B^{k+1} \longrightarrow \cdots$$

2 We will often omit the subscript in φ_k .

Fact

If $\varphi: \mathscr{A} \to \mathscr{B}$ is a cochain map, then

$$\varphi\big(Z^k(\mathscr{A})\big)\subseteq Z^k(\mathscr{B}), \qquad \varphi\big(B^k(\mathscr{A})\big)\subseteq B^k(\mathscr{B})$$

As a consequence, we get:

Proposition

If $\varphi: \mathscr{A} \to \mathscr{B}$ is a cochain map, then, for every k, it descends to a unique linear map,

$$\varphi^*: H^k(\mathscr{A}) \longrightarrow H^k(\mathscr{B}),$$

such that

$$\varphi([c]) = [\varphi(c)] \quad \forall c \in Z^k(\mathscr{A}).$$

Proposition

If $\varphi: \mathscr{A} \to \mathscr{B}$ and $\psi: \mathscr{B} \to \mathscr{C}$ are cochain maps, then $\psi \circ \varphi: \mathscr{A} \to \mathscr{B}$ is cochain map, and we have

$$(\psi \circ \varphi)^* = \psi^* \circ \varphi^*.$$

Consequence

We have a category of cochain complexes, where:

- The objects are cochain complexes.
- The morphisms are cochain maps.

Example

Let M and N be smooth manifolds with de Rham complexes,

$$0 \longrightarrow \Omega^{0}(M) \stackrel{d}{\longrightarrow} \Omega^{1}(M) \stackrel{d}{\longrightarrow} \Omega^{2}(M) \stackrel{d}{\longrightarrow} \cdots,$$

$$0 \longrightarrow \Omega^{0}(N) \stackrel{d}{\longrightarrow} \Omega^{1}(N) \stackrel{d}{\longrightarrow} \Omega^{2}(N) \stackrel{d}{\longrightarrow} \cdots,$$

If $F: N \to M$ be a smooth map, then:

- By pullback we get a linear maps $F^*: \Omega^k(M) \to \Omega^k(N)$.
- The pullback maps commute with the exterior derivative, i.e., $F^* \circ d = d \circ F^*$.
- We thus get a cochain map $F^*: \Omega^*(M) \to \Omega^*(N)$.
- In particular, this descends to linear maps,

$$F^*: H^k(M) \longrightarrow H^k(N).$$

Remark

The previous example shows that the assignment $M \to (\Omega^*(M), d)$ is a functor from the category of smooth manifolds to the category of cochain complexes.

Example

Let M be a smooth manifold with de Rham complex,

$$0 \longrightarrow \Omega^0(M) \stackrel{d}{\longrightarrow} \Omega^1(M) \stackrel{d}{\longrightarrow} \Omega^2(M) \stackrel{d}{\longrightarrow} \cdots.$$

Let X be a smooth vector field on M.

- The Lie derivative yields linear maps $\mathscr{L}_X : \Omega^k(M) \to \Omega^k(M)$.
- The Lie derivative commute with the exterior derivative, i.e., $\mathcal{L}_X \circ d = d \circ \mathcal{L}_X$.
- We thus get a cochain map $\mathscr{L}_X : \Omega^*(M) \to \Omega^*(M)$.
- In particular, this descends to linear maps,

$$\mathscr{L}_X: H^k(M) \longrightarrow H^k(M).$$

Definition

Let $\varphi: \mathscr{A} \to \mathscr{B}$ be a cochain map

- We say that φ is a quasi-isomorphism if the induced maps $\varphi^*: H^k(\mathscr{A}) \to H^k(\mathscr{B})$ are isomorphisms.
- **2** A quasi-inverse for φ is a cochain map $\psi: \mathscr{B} \to \mathscr{A}$ such that

$$\psi^* \circ \varphi^* = \mathrm{id}_{H^k(\mathscr{Q})}, \qquad \varphi^* \circ \psi^* = \mathrm{id}_{H^k(\mathscr{B})}.$$

Example

If $F: N \to M$ is a diffeomorphism between C^{∞} -manifolds, then:

- **1** The pullback map $F^*: \Omega^*(M) \to \Omega^*(N)$ is a quasi-isomorphism.
- **2** A quasi-inverse is $(F^{-1})^*: \Omega^*(N) \to \Omega^*(M)$.
- 3 We thus get isomorphisms,

$$H^k(M) \simeq H^k(N)$$
.

Definition

A sequence of cochain complexes $0 \to \mathscr{A} \xrightarrow{i} \mathscr{B} \xrightarrow{j} \mathscr{C} \to 0$ is called short-exact if:

- *i* and *j* are cochain maps.
- Each sequence $0 \to A^k \xrightarrow{i_k} B^k \xrightarrow{j_k} C^k \to 0$ is a short exact sequence of vector spaces.

Remark

We shall omit the subscripts in i_k and j_k .

Lemma

If $0 \to \mathscr{A} \stackrel{i}{\to} \mathscr{B} \stackrel{j}{\to} \mathscr{C} \to 0$ is a short-exact sequence of cochain complexes, then there is a well-defined linear map,

$$\delta: H^k(\mathscr{C}) \longrightarrow H^{k+1}(\mathscr{A}),$$

which is defined as follows: if $c \in Z^k(\mathscr{A})$ and $b \in B^k$ are such that c = j(b), then

$$\delta[c] = [a],$$

where $a \in \mathbb{Z}^{k+1}(\mathscr{A})$ is such that i(a) = db.

Definition

The linear map $\delta: H^*(\mathscr{C}) \to H^{*+1}(\mathscr{A})$ is called the connecting map (or connecting homomorphism).

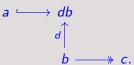
Sketch of Proof.

- Let $c \in Z^k(\mathscr{C})$. Then there is $b \in B^k$ and $a \in Z^{k+1}(\mathscr{A})$ such that c = j(b) and db = i(a) and the cohomology class [a] depends only on c.
- We thus get a linear map $\delta: Z^k(\mathscr{C}) \to H^{k+1}(\mathscr{A}), \ c \to [a].$
- If $c \in B^k(\mathscr{C})$, then $\delta c = 0$.
- It then follows that $\delta: Z^k(\mathscr{C}) \to H^{k+1}(\mathscr{A})$ descends to a linear map,

$$\delta: H^k(\mathscr{C}) \longrightarrow H^{k+1}(\mathscr{A}),$$

Remark

The construction of the connecting map can be summarized as the diagram,



where the arrows \hookrightarrow and \twoheadrightarrow are used to emphasize that i and j are injective and surjective, respectively.

Theorem (Zig-Zag Lemma; Theorem 25.6)

Any short-exact sequence $0 \to \mathscr{A} \xrightarrow{i} \mathscr{B} \xrightarrow{j} \mathscr{C} \to 0$ of cochain complexes given rise to a long exact sequence,

$$\cdots \stackrel{\delta}{\longrightarrow} H^k(\mathscr{A}) \stackrel{i^*}{\longrightarrow} H^k(\mathscr{B}) \stackrel{j^*}{\longrightarrow} H^k(\mathscr{C}) \stackrel{\delta}{\longrightarrow} H^{k+1}(\mathscr{A}) \stackrel{i^*}{\longrightarrow} \cdots,$$

where:

- i* and j* are the maps induced on cohomology by the cochain maps i and j.
- \bullet δ is the connecting map.

Remark

The proof requires showing the following:

- Exactness at $H^{k+1}(\mathscr{A})$, i.e., im $\delta = \ker i^*$.
- Exactness at $H^k(\mathcal{B})$, i.e., im $i^* = \ker j^*$.
- Exactness at $H^k(\mathscr{C})$, i.e., im $j^* = \ker \delta$.

Corollary

Let $0 \to \mathscr{A} \xrightarrow{i} \mathscr{B} \xrightarrow{j} \mathscr{C} \to 0$ be a short-exact sequence of cochain complexes.

- If $H^k(\mathscr{C}) = 0$, then $i : A^* \to B^*$ is a quasi-isomorrphism, and hence $H^k(\mathscr{A}) \simeq H^k(\mathscr{B})$.
- ② If $H^k(\mathscr{A}) = 0$, then $j: B^* \to C^*$ is a quasi-isomorrphism, and hence $H^k(\mathscr{B}) \simeq H^k(\mathscr{C})$.
- **3** If $H^k(\mathscr{B}) = 0$, then $\delta : H^k(\mathscr{C}) \to H^{k+1}(\mathscr{A})$ is an isomorphism.

Remark (Degree shifting)

- - The space of k-cochains is $A^{k}[1] := A^{k+1}$.
 - The differential in degree k is $d_{k+1}: A^{k+1} \to A^{k+2}$.
- We then have $H^k(\mathscr{A}[1]) = H^{k+1}(\mathscr{A})$.
- Therefore, the 3rd part of the corollary yields a cohomology space isomorphism,

$$H^k(\mathscr{C}) \simeq H^k(\mathscr{A}[1]).$$

Corollary (The Snake Lemma; see Tu2011, Exercise 25.4)

Suppose that

is a commutative diagram with exact rows. Then we have an exact sequence,

$$0 \longrightarrow \ker(\alpha) \longrightarrow \ker(\beta) \longrightarrow \ker(\gamma) \stackrel{\delta}{\longrightarrow} \\ \operatorname{coker}(\alpha) \longrightarrow \operatorname{coker}(\beta) \longrightarrow \operatorname{coker}(\gamma) \longrightarrow 0.$$

where δ is the connecting map.