Differential Forms in Algebraic Topology Review: Differential 1-Forms

Sichuan University, Spring 2024

Definition (Cotangent Space)

Let M be a smooth manifold.

• The cotangent space of M at p, denoted T_p^*M or $T_p^*(M)$, is the dual of the tangent space T_pM . That is,

$$T_p^*M = \operatorname{Hom}(T_pM, \mathbb{R}).$$

• An element of T_p^*M is called a *covector* at p.

Remark

In other words, a covector at p is just a linear map $\omega: T_pM \to \mathbb{R}$.

Definition (Differential 1-Forms)

A differential 1-form (or a 1-form or a covector field) is the assignment to each $p \in M$ of a covector $\omega_p \in T_p^*M$.

Remark

If ω is a 1-form and X is a vector field on M, then we denote by $\omega(X)$ the function on M defined by

$$\omega(X)(p) = \omega_p(X_p), \qquad p \in M.$$

Definition (Differential of a Function)

Let $f \in C^{\infty}$. Its differential is the 1-form df on M defined by

$$(df)_p(X_p) = X_p f, \qquad X_p \in T_p M, \quad p \in M.$$

Proposition (Proposition 17.2)

If $f: M \to \mathbb{R}$ is a C^{∞} function and $p \in M$, then

$$f_{*,p}(X_p) = (df)_p(X_p) \frac{d}{dt}\Big|_{f(p)} \qquad \forall X_p \in T_p M.$$

Thus, under the identification $T_{f(p)}\mathbb{R} \simeq \mathbb{R}$, we have

$$(df)_p = f_{*,p}.$$

Example

Let (U, x^1, \dots, x^n) be a local chart near $p \in M$. Then

$$(dx^{i})_{p}\left(\frac{\partial}{\partial x^{j}}\bigg|_{p}\right) = \frac{\partial x^{i}}{\partial x^{j}}(p) = \delta^{i}_{j}.$$

Therefore, we obtain:

Proposition (Proposition 17.3)

Let $(U, x^1, ..., x^n)$ be a local chart near $p \in M$. Then $\{(dx^1)_p, ..., (dx^n)_p\}$ is the basis of T_p^*M which is dual to the basis $\{\partial/\partial x^1|_p, ..., \partial/\partial x^n|_p\}$ of T_pM .

Consequences

• Every covector $\omega_p \in T_p^*M$, can be uniquely written as

$$\omega_p = \sum a_i (dx^i)_p, \qquad ext{with } a^i = \omega_p igg(rac{\partial}{\partial x^j}igg|_pigg).$$

ullet Every 1-form on ${\it U}$ can be uniquely written as

$$\omega = \sum a_i dx^i, \qquad {
m with} \ a^i = \omega \big(\partial/\partial x^i\big).$$

• If $f \in C^{\infty}(M)$, then on U we have

$$df = \sum \frac{\partial f}{\partial x^i} dx^i$$
, since $(df)(\partial/\partial x^i) = \frac{\partial f}{\partial x^i}$.

The Cotangent Bundle

Definition

• The cotangent bundle is

$$T^*M = \bigsqcup_{p \in M} T_p^*M = \{(p,\omega); p \in M, \omega \in T_p^*M\}.$$

• The canonical map $\pi: T^*M \to M$ is given by

$$\pi((p,\omega)) = p, \qquad p \in M, \quad \omega \in T_p^*M.$$

Remark

If U is an open set of M, then $T^*U = \bigsqcup_{p \in U} T_p^*M$.

The Cotangent Bundle

Facts

Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M. Set $V = \phi(U)$.

• Every covector $\omega_p \in T_p^*M$, can be uniquely written as

$$\omega_p = \sum a_i (dx^i)_p, \quad \text{with } a^i = \omega_p \left(\frac{\partial}{\partial x^i} \Big|_p \right).$$

• We thus get a natural bijection $\tilde{\phi}: T^*U \to V \times \mathbb{R}^n$ such that, for all $p \in M$ and $\omega \in T_n^*M$, we have

$$\tilde{\phi}(p,\omega) = \left(x^{1}(p), \dots, x^{n}(p), \omega(\partial/\partial x^{1}|_{p}), \dots, \omega(\partial/\partial x^{n}|_{p})\right).$$

Remark

In the same way as with the construction of the tangent bundle TM, the maps $\tilde{\phi}$ allow us to define a topology and a smooth structure on T^*M .

The Cotangent Bundle

Definition

Let (U, ϕ) be a chart for M and set $V = \phi(U)$. We endow T^*U with the topology such that

 $W \subset T^*U$ is open $\iff \tilde{\phi}(W)$ is open in $V \times \mathbb{R}^n$.

Proposition

Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be the maximal atlas of M.

Define

$$\mathscr{B} = \bigcup_{\alpha} \{W; \ W \ \text{is an open in} \ T^*U_{\alpha}\}.$$

Then \mathcal{B} is the basis for a unique topology on T^*M .

- The collection $\{(T^*U_\alpha, \tilde{\phi}_\alpha)\}$ is a C^∞ atlas on T^*M , and hence T^*M is a smooth manifold.
- $T^*M \stackrel{\pi}{\to} M$ is a smooth vector bundle over M.

Remark

A 1-form on M is a section of the tangent bundle T^*M .

Definition

- We say that 1-form is C^{∞} when it is C^{∞} as a section of T^*M .
- We denote by $\Omega^1(M)$ the space of smooth 1-forms on M.

Remark

In other words, $\Omega^1(M)$ is the space of smooth sections of T^*M . In particular, this is a module over the ring $C^{\infty}(M)$.

Example

Let $(U, \phi) = (U, x^1, \dots, x^n)$ be a chart for M. Set $V = \phi(U)$.

• Let $\tilde{\phi}: T^*U \to V \times \mathbb{R}$ be the corresponding chart of T^*M . For all $p \in U$, we have

$$\begin{split} \tilde{\phi} \circ dx^{i}(p) &= \tilde{\phi}(p, (dx^{i})_{p}) = (\phi(p), dx^{i}(\partial/\partial x^{1}), \dots, dx^{i}(\partial/\partial x^{n})) \\ &= (\phi(p), \delta_{1}^{i}, \dots, \delta_{n}^{i}) \\ &= (\phi(p), e^{i}), \end{split}$$

where (e^1, \ldots, e^n) be the canonical basis of \mathbb{R}^n .

ullet Thus, $ilde{\phi} \circ d\mathsf{x}^i \circ \phi^{-1}(q) = \left(q, \mathsf{e}^i
ight) \qquad orall q \in V.$

In particular, $\tilde{\phi} \circ dx^i \circ \phi^{-1}$ is a smooth map from V to $V \times \mathbb{R}^n$.

• It follows that dx^i is a smooth map from U to T^*U , and hence this is a smooth 1-form.

Consequence

If $(U, x^1, ..., x^n)$ is a chart for M, then $\{dx^1, ..., dx^n\}$ is a C^{∞} -frame of T^*U over U.

Reminder (Proposition 12.2)

Let $\{s_1, \ldots, s_r\}$ be a C^{∞} frame of a vector bundle E over U. A section $s = \sum c^i s_i$ of E over U is smooth if and only if c^1, \ldots, c^r are smooth functions on U.

We immediately obtain:

Lemma (Lemma 17.5)

Let $(U, x^1, ..., x^n)$ be a chart for M. A 1-form $\omega = \sum a_i dx^i$ on U is smooth if and only if the coefficients $a_1, ..., a_n$ are smooth functions on U.

In the same way as in Section 14, from the previous lemma we obtain:

Proposition (Proposition 17.6)

Let ω be a 1-form on M. Then TFAE:

- \bullet is a smooth 1-form.
- **2** M has an atlas such that, for every chart $(U, x^1, ..., x^n)$ of this atlas, we may write $\omega = \sum a_i dx^i$, where the coefficients a^i are smooth functions on U.
- **3** For every chart $(U, x^1, ..., x^n)$ of M, we may write $\omega = \sum a_i dx^i$, where the coefficients a^i are smooth functions on U.

Corollary (Corollary 17.7)

If $f \in C^{\infty}(M)$, then its differential df is a smooth 1-form.

Proposition (Proposition 17.8)

Let ω be a 1-form on M. If X is a vector field on M and f is a function on M, then $\omega(fX) = f\omega(X).$

Proposition (Proposition 17.9)

Let ω be a 1-form on M. Then TFAE:

- \bullet is a smooth 1-form.
- **②** For every smooth vector field X on M the function $\omega(X)$ is smooth on M.

Reminder (see Section 14)

The space $\mathscr{X}(M)$ of smooth vector fields on M is a module over the ring $C^{\infty}(M)$.

Corollary

Every smooth 1-form ω on M defines a $C^{\infty}(M)$ -module homomorphism,

$$\omega: \mathscr{X}(M) \longrightarrow C^{\infty}(M), \qquad X \longrightarrow \omega(X).$$

Pullbacks of 1-Forms

Reminder (Pullback by a linear map)

Let $f: V \to W$ be a linear maps between vector spaces.

• By duality we have a linear map,

$$f^*: W^* \longrightarrow V^*, \qquad \varphi \longrightarrow \varphi \circ f.$$

• If $\varphi \in W^*$, we call $f^*\varphi = \varphi \circ f$ the pullback of φ by f.

Consequence

Let $F: \mathbb{N} \to M$ be a smooth map and let $p \in \mathbb{N}$.

- The differential $F_{*,p}: T_pN \to T_{F(p)}M$ is a linear map.
- We thus get a pullback map $(F_{*,p})^*: T_{F(p)}^*M \to T_p^*N$.

Pullbacks of 1-Forms

Definition (Pullback of 1-forms)

Let $F: N \to M$ be a smooth map. If ω is a 1-form on M, then its pullback $F^*\omega$ is the 1-form on N defined by

$$(F^*\omega)_p = (F_{*,p})^*\omega_{F(p)} = \omega_{F(p)} \circ F_{*,p}, \qquad p \in N.$$

Remark

In other words, for all $X_p \in T_p N$, we have

$$(F^*\omega)_p(X_p) = \omega_{F(p)} \circ F_{*,p}(X_p) = \omega_{F(p)}(F_{*,p}(X_p)).$$

Remark

Smooth functions can be pullbacked as well: if $h \in C^{\infty}(M)$, then $F^*h = h \circ F$.

Pullbacks of 1-Forms

Proposition (Proposition 17.10)

Let $F: N \to M$ be a smooth map. If $h \in C^{\infty}(M)$, then $F^*(dh) = d(F^*h)$.

Proposition (Proposition 17.11)

Let $F: \mathbb{N} \to M$ be a smooth map. If $\omega, \tau \in \Omega^1(M)$ and $g \in C^{\infty}(M)$, then

$$F^*(\omega + \tau) = F^*\omega + F^*\tau,$$

$$F^*(g\omega) = (F^*g)(F^*\omega).$$

Proposition (Proposition 17.12)

Let $F: N \to M$ be a smooth map. If ω is a smooth 1-form on M, then its pullback $F^*\omega$ is a smooth 1-form as well.

Restriction to an Immersed Submanifold

Facts

Let S be an immersed submanifold in M.

- The inclusion $i: S \to M$ is an immersion, and so its differential $i_{*,p}: T_pS \to T_pM$ is an injection for every $p \in S$.
- This allows us to identify T_pS with a subspace of T_pM .

Definition

If ω is a 1-form on M, its restriction to S, denoted $\omega_{|S}$, is the 1-form on S defined by

$$(\omega_{|S})_p(v) = \omega_p(v)$$
 for all $p \in S$ and $v \in T_pS$.

Proposition

If $i: S \to M$ is the inclusion of S into M and ω is a 1-form on M, then $\omega_{|S} = i^*\omega$.