Commutative Algebra Chapter 3: Rings and Modules of Fractions

Sichuan University, Fall 2023

The Field of Fractions of an Integral Domain

Reminder

We say that a ring A is an *integral domain* when it has no non-zero divisors, i.e.,

$$xy = 0 \iff x = 0 \text{ or } y = 0.$$

Fact

In the same way we construct the rational field \mathbb{Q} from the ring of integers \mathbb{Z} , with any integral domain A we can associate its field of fractions $\operatorname{Frac}(A)$.

The Field of Fractions of an Integral Domain

Facts

Let A is an integral domain. Set $S = A \setminus \{0\}$. On $A \times S$ define a relation \equiv by $(a,s) \equiv (b,t) \iff at = bs$.

This relation is reflexive and symmetric,

$$(a,s) \equiv (a,s), \qquad (a,s) \equiv (b,t) \Longleftrightarrow (b,t) \equiv (a,s).$$

• To check transitivity, suppose that $(a, s) \equiv (b, t)$ and $(b, t) \equiv (c, u)$, i.e., at = bs and bu = ct. Then

$$t(au - cs) = (at)u - (ct)s = (bs)u - (bu)s = 0.$$

- As $t \neq 0$ and A is an integral domain, this implies that au = cs, i.e., $(a, s) \equiv (c, u)$.
- Therefore, the relation \equiv is an equivalence relation on $A \times S$.

The Field of Fractions of an Integral Domain

Definition

- 1 The class of (a, s) is denoted by a/s.
- ② The set of equivalence classes is denoted by Frac(A).

Proposition

• Frac(A) is a field with respect to the addition and multiplication given by

$$(a/s) + (b/t) = (at + bs)/st,$$
 $(a/s) \cdot (b/t) = ab/st.$

② The map $A \ni a \to a/1 \in \operatorname{Frac}(A)$ is an injective ring homomorphism, and hence embeds A as a subring into $\operatorname{Frac}(A)$.

Definition

The field Frac(A) is called the *field of fractions* of A.

Examples

- If $A = \mathbb{Z}$, then $Frac(A) = \mathbb{Q}$.
- ② If A is a polynomial ring k[x], k field, then Frac(A) is the field of rational functions over k.
- **3** If A is the ring of holomorphic functions on an open $\Omega \subseteq \mathbb{C}$, then $\operatorname{Frac}(A)$ is the field of meromorphic functions on Ω .

Remark

- The construction of the field Frac(A) uses the fact that A is an integral domain.
- It still can be adapted for arbitrary rings.

In what follows we let A be a ring.

Definition

A subset S of A is called multiplicatively closed when

$$1 \in S$$
 and $x, y \in S \Longrightarrow xy \in S$.

Example

The ring A is an integral domain if and only if $A \setminus \{0\}$ is multiplicatively closed.

Facts

Let S be a multiplicatively closed subset of A. On $A \times S$ define a relation \equiv by

$$(a,s) \equiv (b,t) \Longleftrightarrow \exists u \in S \text{ such that } (at-bs)u = 0.$$

- This relation is reflexive and symmetric.
- To check transitivity, suppose that $(a, s) \equiv (b, t)$ and $(b, t) \equiv (c, u)$, i.e., there are $v, w \in S$ such that

$$(at - bs)v = (bu - ct)w = 0.$$

• Then (au - cs)tvw is equal to

$$[(at)v]uw - [(ct)w]sv = [(bs)v]uw - [(bu)w]sv = 0.$$

- As S is multiplicatively closed, $tvw \in S$, and so $(a, s) \equiv (c, u)$.
- Thus, we have an equivalence relation on $A \times S$.

Definition

- 1 The class of (a, s) is denoted by a/s.
- ② The set of equivalence classes is denoted by $S^{-1}A$.

Proposition

• $S^{-1}A$ is a ring with respect to the addition and multiplication given by

$$(a/s) + (b/t) = (at + bs)/st,$$
 $(a/s) \cdot (b/t) = ab/st.$

② The map $f: A \to S^{-1}A$, $a \to a/1$ is a ring homomorphism.

Remarks

- The ring homomorphism $f: A \to S^{-1}A$ is not injective in general.
- ② If A is an integral domain and $S = A \setminus \{0\}$, then $S^{-1}A$ is the field of fractions Frac(A).

Definition

The ring $S^{-1}A$ is called the *ring of fractions* of A with respect to S.

Proposition (Universal Property of $S^{-1}A$; Proposition 3.1)

Let $g:A\to B$ be a ring homomorphism such that g(s) is a unit in B for all $s\in S$. Then there is a unique ring homomorphism $h:S^{-1}A\to B$ such that $g=h\circ f$.

Fact

The ring $S^{-1}A$ and the homomorphism $f:A\to S^{-1}A$ satisfy the following properties:

- (i) f(s) is a unit in $S^{-1}A$ for all $s \in S$.
- (ii) If f(a) = 0, then as = 0 for some $s \in S$.
- (iii) Every element of $S^{-1}A$ is of the form $f(a)f(s)^{-1}$ with $a \in A$ and $s \in S$.

Corollary (Corollary 3.2)

Let B be a ring and $g: A \to B$ a ring homomorphism satisfying the properties (i)–(iii) above. Then there is a unique ring isomorphism $h: S^{-1}A \to B$ such that $g = h \circ f$.

Example

- The set $S = \{1, 0\}$ is multiplicatively closed.
- In this case $S^{-1}A$ is the zero ring, since $(a, s) \equiv (0, 0)$ for all $a \in A$ and $s \in S$.
- In fact, we have

 $S^{-1}A$ is the zero ring $\iff 0 \in S$.

Example

Let \mathfrak{a} be an ideal in A, and set

$$S = 1 + \mathfrak{a} = \{1 + x; \ x \in \mathfrak{a}\} = \{x \in A; x = 1 \mod \mathfrak{a}\}.$$

Then *S* is multiplicatively closed.

Example

Let $f \in A$ and set $S = \{f^n; n \ge 0\}$.

- The subset *S* is multiplicatively closed.
- We write A_f for $S^{-1}A$ in this case.
- If $A = \mathbb{Z}$ and $f = q \in \mathbb{Z}$, then A_f consists of rational numbers of the form mq^{-n} with $m \in \mathbb{Z}$ and $n \ge 0$.

Reminder

• An ideal p of A is called a prime ideal when

$$xy \in \mathfrak{p} \iff x \in \mathfrak{p} \text{ or } y \in \mathfrak{p}.$$

- Any maximal ideal is prime.
- A local ring is a ring that has a unique maximal ideal.

Example

Let $\mathfrak p$ be a prime ideal, and set $S=A\setminus \mathfrak p$. We have $\mathfrak p$ is prime $\iff S$ is multiplicatively closed.

We denote by A_p the ring $S^{-1}A$ in this case.

Facts

Let \mathfrak{m} be the subset of $A_{\mathfrak{p}}$ consisting of elements of the form a/s with $a \in \mathfrak{p}$ and $s \in S$.

- \mathfrak{m} is an ideal of $A_{\mathfrak{p}}$.
- If $b/t \notin \mathfrak{m}$, then $b \notin \mathfrak{p}$, i.e, $b \in S$, and so b/t is a unit in $A_{\mathfrak{p}}$ (with inverse t/b).
- Thus, if $\mathfrak a$ is an ideal such that $\mathfrak a \not\subseteq \mathfrak m$, then $\mathfrak a$ contains a unit, and hence $\mathfrak a = A_\mathfrak p$.
- It follows that m is a maximal ideal of A and is the only such ideal. Thus, A_p is a *local ring*.

Definition

The ring $A_{\mathfrak{p}}$ is called the *localization* of A at \mathfrak{p} .

Example

 $A = \mathbb{Z}$ and $\mathfrak{p} = (p)$, where p is a prime number. Then $\mathbb{Z}_{\mathfrak{p}}$ consists of all rational numbers of the form m/n where n is prime to p.

The construction of $S^{-1}A$ can be further extended to A-modules.

Facts

Let S be a multiplicatively closed subset of A and M an A-module. On $M \times S$ we define a relation \equiv by

$$(m,s) \equiv (m',s') \iff \exists t \in S \text{ such that } t(s'm-sm')=0.$$

As before, this is an equivalence relation.

Definition

- ① The equivalence class of (m, s) is denoted m/s.
- 2 The set of equivalence classes is denoted $S^{-1}M$.

Proposition

 $S^{-1}M$ is an $S^{-1}A$ -module with respect to the addition and scalar multiplication given by

$$(m/s) + (m'/s') = (s'm + sm')/ss',$$
 $(a/s) \cdot (m/t) = am/st.$

Definition

 $S^{-1}M$ is called the *module of fractions* of M with respect to S.

Fact

• If $u: M \to N$ is an A-module homomorphism, then we get an $S^{-1}A$ -module homomorphism,

$$S^{-1}u: S^{-1}M \longrightarrow S^{-1}N, \qquad m/s \longrightarrow u(m)/s.$$

• Thus, the operation S^{-1} is a functor from the category of A-modules to the category of $S^{-1}A$ -modules.

Proposition (Proposition 3.3)

The functor S^{-1} is exact, i.e., if $M' \xrightarrow{f} M \xrightarrow{g} M''$ is exact at M, then $S^{-1}M' \xrightarrow{S^{-1}f} S^{-1}M \xrightarrow{S^{-1}g} S^{-1}M''$ is exact at $S^{-1}M$.

Remark

Let M' be a sub-module of M.

- Applying the previous result to $0 \to M' \hookrightarrow M$ produces an injective $S^{-1}A$ -module homomorphism $S^{-1}M' \to S^{-1}M$.
- This allows us to identify $S^{-1}M'$ with a sub-module of $S^{-1}M$.

Corollary (Corollary 3.4)

Let N and P be sub-modules of M. Then:

- **2** $S^{-1}(N \cap P) = S^{-1}(N) \cap S^{-1}(P)$.
- **3** The $S^{-1}A$ -modules $S^{-1}(M/N)$ and $S^{-1}M/S^{-1}N$ are isomorphic.

Remark

By exactness the exact sequence $0 \to N \hookrightarrow M \to M/N \to 0$ gives an exact sequence $0 \to S^{-1}N \hookrightarrow S^{-1}M \to S^{-1}(M/N) \to 0$.

Proposition (Proposition 3.5)

We a canonical A-module isomorphism,

$$S^{-1}A \otimes_A M \simeq S^{-1}M, \qquad (a/s) \otimes m \longrightarrow am/s.$$

Remarks

1 As $(a/s) \times m \to am/s$ is A-bilinear, by the universal property of the tensor product there is a unique A-module homomorphism $f: S^{-1}A \otimes_A M \to S^{-1}M$ such that

$$f((a/s) \otimes m) = am/s$$
.

2 The A-module map $g: S^{-1}M \to S^{-1}A \otimes_A M$, $m/s \to (1/s) \otimes m$ is an inverse of f, since

$$f \circ g(m/s) = f((1/s) \otimes m) = 1m/s = m/s,$$

$$g \circ f((a/s) \otimes m) = g(am/s) = (1/s) \otimes am = (a/s) \otimes m.$$

Thus, $f: S^{-1}A \otimes_A M \to S^{-1}M$ is an A-module isomorphism.

Corollary (Corollary 3.6)

 $S^{-1}A$ is a flat A-module, i.e., the functor $S^{-1}A \otimes -$ preserves exactness of A-module sequences.

Proposition (Proposition 3.7)

If M and N are A-modules, then we have a canonical isomorphism,

$$S^{-1}M\otimes_{S^{-1}A}S^{-1}N\simeq S^{-1}(M\otimes_AN),\quad (m/s)\otimes (n/t)\longrightarrow (m\otimes n)/st.$$

In particular, for any prime ideal $\mathfrak p$ of A we get an $A_{\mathfrak p}$ -module isomorphism, $M_{\mathfrak p} \otimes_{A_{\mathfrak p}} N_{\mathfrak p} \simeq (M \otimes_A N)_{\mathfrak p}.$

Remarks

The proof is similar to that of Proposition 3.5.

- ① Due to the $S^{-1}A$ -bilinearity of $(m/s) \times (n/t) \to (m \otimes n)/st$ there is a unique $S^{-1}A$ -module homomorphism $f: S^{-1}M \otimes_{S^{-1}A} S^{-1}N \to S^{-1}(M \otimes_A N)$ such that $f((m/s) \otimes (n/t)) = (m \otimes n)/st$.
- We also observe that

$$(m/s)\otimes(n/t)=[(1/s)(m/1)]\otimes[(1/t)(n/1)]=rac{1}{st}\big[(m/1)\otimes(n/1)\big].$$
 In particular, we have

$$(m/st)\otimes (n/1)=\frac{1}{st}[(m/1)\otimes (n/1)]=(m/s)\otimes (n/t).$$

3 Using this it can be checked that $(m \otimes n)/s \to (m/s) \otimes (n/1)$ is an inverse of f, and hence f is an isomorphism.

Definition

- We say that a property P of a ring A is a *local property* if A has $P \iff A_{\mathfrak{p}}$ has P for each prime ideal \mathfrak{p} of A.
- ② Similarly, a property P of an A-module M is a local property if M has $P \iff M_{\mathfrak{p}}$ has P for each prime ideal \mathfrak{p} of A.

The next propositions provide examples of local properties.

Proposition (Proposition 3.8)

Let M be an A-module. Then TFAE:

- **1** M = 0.
- 2 $M_p = 0$ for each prime ideal p of A.
- 3 $M_{\mathfrak{m}} = 0$ for each maximal ideal \mathfrak{m} of A.

Proof.

- It is immediate that (i) implies (ii), and (ii) implies (iii).
- Suppose that $M \neq 0$. Let $x \in M \setminus 0$.
- As $Ann(x) \neq (1)$, there is a maximal ideal $\mathfrak{m} \supseteq Ann(x)$.
- If x/1 = 0 in M_m , then $\exists u \in A \setminus m$ such that ux = 0
- This means that $u \in Ann(x) \subseteq \mathfrak{m}$ (impossible).
- Thus $x/1 \neq 0$ in M_m , and hence $M_m \neq 0$ for some maximal m.
- By contraposition this shows that (iii) implies (i).

The proof is complete.

Proposition (Proposition 3.9; 1st Part)

Let $\phi: M \to N$ be an A-module homomorphism. Then TFAE:

- \bullet is injective.
- 2 $\phi_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is injective for every prime ideal \mathfrak{p} of A.
- **3** $\phi_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is injective for every maximal ideal \mathfrak{m} of A.

Proof.

- It is immediate that (ii) implies (iii).
- If (i) holds, then $0 \to M \xrightarrow{\phi} N$ is exact, and so $0 \to M_p \xrightarrow{\phi_p} N_p$ is exact, i.e., ϕ_p is injective. Thus (i) \Rightarrow (ii).
- Suppose that $\phi_{\mathfrak{m}}$ is injective for all \mathfrak{m} . Set $M' = \ker(\phi)$.
- As $0 \to M' \to M \xrightarrow{\phi} N$ is exact, $0 \to M'_{\mathfrak{m}} \to M_{\mathfrak{m}} \xrightarrow{\phi_{\mathfrak{m}}} N_{\mathfrak{m}}$ is exact.
- As $\phi_{\mathfrak{m}}$ is injective, $M'_{\mathfrak{m}}=0$ for all \mathfrak{m} , and hence M'=0 by Prop. 3.8. This shows that (iii) implies (i).

Proposition (Proposition 3.9; 2nd Part)

Let $\phi: M \to N$ be an A-module homomorphism. Then TFAE:

- \bullet is surjective.
- 2 $\phi_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$ is surjective for every prime ideal \mathfrak{p} of A.
- **3** $\phi_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$ is surjective for every maximal ideal \mathfrak{m} of A.

Proof.

- It is immediate that (ii) implies (iii).
- If (i) holds, then $M \xrightarrow{\phi} N \to 0$ is exact, and so $M_{\mathfrak{p}} \xrightarrow{\phi_{\mathfrak{p}}} N_{\mathfrak{p}} \to 0$ is exact, i.e., $\phi_{\mathfrak{p}}$ is surjective. Thus (i) \Rightarrow (ii).
- Suppose that $\phi_{\mathfrak{m}}$ is surjective for all \mathfrak{m} . Set $N' = N/\operatorname{ran}(\phi)$.
- As $M \stackrel{\phi}{\to} N \to N' \to 0$ is exact, $M_{\mathfrak{m}} \stackrel{\phi_{\mathfrak{m}}}{\to} N_{\mathfrak{m}} \to N'_{\mathfrak{m}} \to 0$ is exact.
- As $\phi_{\mathfrak{m}}$ is surjective, $N'_{\mathfrak{m}}=0$ for all \mathfrak{m} , and hence $\operatorname{ran}(\phi)=N$ by Prop. 3.8, i.e., ϕ is surjective. Thus, (iii) implies (i).

As the following result shows, flatness is a local property.

Proposition (Proposition 3.10)

Let M be an A-module. TFAE:

- M is a flat A-module.
- ② M_p is a flat A_p -module for every prime ideal p of A.
- 3 $M_{\rm m}$ is a flat $A_{\rm m}$ -module for every maximal ideal ${\rm m}$ of A.

Reminder

Let $f: A \to B$ be a ring homomorphism.

• If \mathfrak{a} is an ideal in A, then its extension \mathfrak{a}^e is the ideal in B generated by $f(\mathfrak{a})$. Thus, it consists of all finite sums,

$$\sum f(a_i)b_i, \qquad a_i \in \mathfrak{a}, \quad b_i \in B.$$

- If \mathfrak{b} is an ideal in B, then its contraction \mathfrak{b}^c is the ideal $f^{-1}(\mathfrak{b})$ in A.
- If \mathfrak{a} and \mathfrak{b} are ideals in A, their ideal quotient is the ideal

$$(\mathfrak{a}:\mathfrak{b})=\big\{x\in A;x\mathfrak{b}\subseteq\mathfrak{a}\big\}.$$

When $\mathfrak{b} = (b)$ we write $(\mathfrak{a} : b)$ for (a : (b)).

Facts

Let $f: A \to S^{-1}A$ be the natural homomorphism $a \to a/1$.

• If \mathfrak{a} is an ideal in A, then any $y \in \mathfrak{a}^e$ is of the form

$$y = \sum f(a_i)(b_i/s_i) = \sum (a_i/1)(b_i/s_i) = \sum a_ib_i/s_i,$$

where $a_i \in \mathfrak{a}$, $b_i \in B$ and $s_i \in S$.

• Set $s = \prod s_i$ and $t_i = \prod_{j \neq i} s_j$, so that $1/s_i = t_i/s$. Then

$$y = \sum (a_i b_i t_i / s) = \left(\sum a_i b_i t_i\right) / s.$$

- Set $a' = \sum a_i b_i t_i$. Then $a' \in \mathfrak{a}$, and so $y = a'/s \in S^{-1}\mathfrak{a}$.
- We then deduce that

$$\mathfrak{a}^e = S^{-1}\mathfrak{a}.$$

Proposition (Proposition 3.11)

- If \mathfrak{b} is an ideal in $S^{-1}A$, then $\mathfrak{b} = S^{-1}(\mathfrak{b}^c)$. Thus, any ideal in $S^{-1}A$ is an extended ideal.
- ② If \mathfrak{a} is an ideal in A, then $\mathfrak{a}^{ec} = \bigcup_{s \in S} (\mathfrak{a} : s)$. In particular, $\mathfrak{a}^e = (1)$ if and only if $S \cap \mathfrak{a} \neq \emptyset$.
- 3 An ideal \mathfrak{a} in A is a contracted ideal if and only if no element of S is a zero-divisor in A/\mathfrak{a} .
- We have a one-to-one correspondance $\mathfrak{p} \leftrightarrow S^{-1}\mathfrak{p}$ between prime ideal in $S^{-1}A$ and prime ideals in A that don't meet S.
- **5** The operation S^{-1} on ideals commutes with taking finite sums, products, intersections, and radicals.

Proof of Proposition 3.11 (Part 1).

- Let \mathfrak{b} be an ideal in $S^{-1}A$, and let $x/s \in \mathfrak{b}$.
- $x/1 = (x/s)(s/1) \in \mathfrak{b}$, and so $x \in \mathfrak{b}^c$.
- Then $x/s = (x/1)(1/s) \in (\mathfrak{b}^c)^e$, and hence $\mathfrak{b} \subseteq \mathfrak{b}^{ce}$.
- As $\mathfrak{b}^{ce} \subseteq \mathfrak{b}$, we deduce that $\mathfrak{b} = \mathfrak{b}^{ce} = S^{-1}(\mathfrak{b}^c)$.

This proves Part 1.

Proof of Proposition 3.11 (Part 2).

• Let α be an ideal in A. We have

$$x \in \mathfrak{a}^{\operatorname{ec}} \Leftrightarrow x/1 \in \mathfrak{a}^{\operatorname{e}} = S^{-1}(\mathfrak{a}) \Leftrightarrow x/1 = a/s \text{ with } (a,s) \in \mathfrak{a} \times S.$$

- If x/1 = a/s with $(a, s) \in \mathfrak{a} \times S$, then $\exists t \in S$ such that $t(xs a \cdot 1) = 0$, i.e., $x(st) = a \in \mathfrak{a}$, and hence $x \in (\mathfrak{a} : st)$.
- If $x \in (\mathfrak{a} : s)$, then $xs \in \mathfrak{a}$, and so $x/1 = xs/s \in S^{-1}(\mathfrak{a})$.
- This shows that $\mathfrak{a}^{ec} = \bigcup_{s \in S} (\mathfrak{a} : s)$.
- Next, if $\mathfrak{a}^e = (1)$, then $\mathfrak{a}^{ec} = (1) = A$, and so $1 \in (\mathfrak{a} : s)$ for some $s \in S$, i.e., $s = 1 \cdot s \in \mathfrak{a}$.
- Conversely, if $s \in S \cap \mathfrak{a} \neq \emptyset$, then $1 = s/s \in S^{-1}(\mathfrak{a}) = \mathfrak{a}^e$, and hence $\mathfrak{a}^e = (1)$.

This proves Part 2.

Proof of Proposition 3.11 (Part 3).

- An ideal \mathfrak{a} in A is a contracted ideal if and only if $\mathfrak{a}^{ec} \subseteq \mathfrak{a}$ (since we always have $\mathfrak{a}^{ec} \supseteq \mathfrak{a}$).
- As $\mathfrak{a}^{ec} = \bigcup_{s \in S} (\mathfrak{a} : s)$, we get

$$\mathfrak{a}^{ec} \subseteq \mathfrak{a} \Leftrightarrow (\mathfrak{a} : s) \subseteq \mathfrak{a} \ \forall s \in S$$
$$\Leftrightarrow (xs \in \mathfrak{a} \Rightarrow x \in \mathfrak{a}) \ \forall s \in S$$
$$\Leftrightarrow [(xs = 0 \text{ in } A/\mathfrak{a}) \Rightarrow (x = 0 \text{ in } A/\mathfrak{a})] \ \forall s \in S$$

• Thus, \mathfrak{a} in A is a contracted ideal if and only if no $s \in S$ is a zero-divisor in A/\mathfrak{a} .

This proves Part 3.

Proof of Proposition 3.11 (Part 4).

- Let \mathfrak{q} be a prime ideal in $S^{-1}A$. Then $\mathfrak{q} = S^{-1}(\mathfrak{q}^c)$.
- Here $(\mathfrak{q}^c)^e = \mathfrak{q} \neq (1)$, so by Part 2 $\mathfrak{q}^c \cap S = \emptyset$.
- q^c is a prime ideal, since

$$xy \in \mathfrak{q}^c \iff (xy)/1 \in \mathfrak{q}$$

$$\iff (x/1)(y/1) \in \mathfrak{q}$$

$$\iff (x/1 \in \mathfrak{q} \text{ or } y/1 \in \mathfrak{q})$$

$$\iff (x \in \mathfrak{q}^c \text{ or } y \in \mathfrak{q}^c).$$

• Thus $\mathfrak{q} = S^{-1}(\mathfrak{p})$, where $\mathfrak{p} = \mathfrak{q}^c$ is a prime ideal that does not meet S.

Remark

The fact that the contraction of a prime ideal is prime is true for any homomorphism.

Proof of Proposition 3.11 (Part 4, continued).

- Let \mathfrak{p} be a prime ideal s.t. $\mathfrak{p} \cap S = \emptyset$.
- As \mathfrak{p} is prime, A/\mathfrak{p} is an integral domain.
- Let \overline{S} be the image of S in A/\mathfrak{p} , then $\overline{S}^{-1}(A/\mathfrak{p})$ is contained in the fraction field $Frac(A/\mathfrak{p})$, and hence is either zero or an integral domain.
- As $S^{-1}A/S^{-1}\mathfrak{p} \simeq \overline{S}^{-1}(A/\mathfrak{p})$, we see that $S^{-1}A/S^{-1}\mathfrak{p}$ is either zero or an integral domain.
- That is, either $S^{-1}\mathfrak{p} = (1)$ or $S^{-1}\mathfrak{p}$ is prime.
- By Part 2 $S^{-1}\mathfrak{p} = \mathfrak{p}^e \neq (1)$ since $\mathfrak{p} \cap S = \emptyset$, so $S^{-1}\mathfrak{p}$ is prime.

This completes the proof of Part 4.

Proof of Proposition 3.1 (Part 5, intersections).

- If \mathfrak{a} and \mathfrak{b} are ideals in A, then $S^{-1}(\mathfrak{a} \cap \mathfrak{b}) \subseteq S^{-1}(\mathfrak{a}) \cap S^{-1}(\mathfrak{b})$.
- Let $a/s \in S^{-1}(\mathfrak{a})$ with $a \in \mathfrak{a}$ and $s \in S$. If $a/s \in S^{-1}\mathfrak{b}$, then $\exists b \in \mathfrak{b}$ and $t \in S$ such that a/s = b/t.
- This means there is $u \in S$ such that (at bs)u = 0.
- Thus, $atu = bsu \in \mathfrak{a} \cap \mathfrak{b}$, and we have

$$a/s = (a/s)(tu/tu) = (atu)/(stu) \in S^{-1}(\mathfrak{a} \cap \mathfrak{b}).$$

• It follows that $S^{-1}(\mathfrak{a} \cap \mathfrak{b}) = S^{-1}(\mathfrak{a}) \cap S^{-1}(\mathfrak{b})$.

This shows that S^{-1} commutes with intersection.

Reminder

• The *nilradical* of *A* is the ideal

$$\mathfrak{N}(A) = \{ x \in A; \ x^n = 0 \text{ for some } n \ge 1 \}.$$

• Equivalently, $\mathfrak{N}(A)$ is the intersection of all the prime ideals of A (see Proposition 1.8).

Corollary (Corollary 3.12)

The nilradical of $S^{-1}A$ is precisely $S^{-1}(\mathfrak{N}(A))$.

Proof.

• By Part 4 of Proposition 3.11,

$$\mathfrak{N}\left(S^{-1}A\right) = \bigcap \left\{ \mathfrak{q}; \ \mathfrak{q} \ \text{prime in } S^{-1}A \right\}$$
$$= \bigcap \left\{ S^{-1}\mathfrak{p}; \ \mathfrak{p} \ \text{prime in } A \ \& \ \mathfrak{p} \cap S = \emptyset \right\}.$$

- By Part 2 if $\mathfrak{p} \cap S \neq \emptyset$, then $S^{-1}\mathfrak{p} = (1) = S^{-1}A$. Thus,
 - $\mathfrak{N}\left(S^{-1}A\right) = \bigcap \left\{S^{-1}\mathfrak{p}; \ \mathfrak{p} \ \text{prime in } A\right\}.$

• As S^{-1} commutes with intersection, we get

$$\mathfrak{N}\left(S^{-1}A\right) = S^{-1}\left(\bigcap\left\{\mathfrak{p};\;\mathfrak{p}\;\mathsf{prime}\;\mathsf{in}\;A\right\}\right) = S^{-1}\left(\mathfrak{N}(A)\right).$$

The result is proved.

Corollary (Corollary 3.13)

Let $\mathfrak p$ be a prime ideal of A. Then the prime ideals of the local ring $A_{\mathfrak p}$ are in one-to-one correspondence with the prime ideals of A that are contained in $\mathfrak p$.

Remarks

- By this corollary, passing from A to A_p cuts out all prime ideals except those contained in p.
- By Proposition 1.1, passing from A to A/\mathfrak{p} cuts out all prime ideals except those containing \mathfrak{p} .
- Thus, if \mathfrak{q} is a prime ideal contained in \mathfrak{p} , then passing to $(A_{\mathfrak{p}})/\mathfrak{q} \simeq (A/\mathfrak{q})_{\mathfrak{p}}$ restricts ourselves to those prime ideals between \mathfrak{q} and \mathfrak{p} .
- For q = p we obtain the *residual field* of p. It can be realized either as the fraction field of the integral domain A/p, or as the residue field of the local ring A_p .

Reminder

• If N and P are sub-modules of an A-module M, then

$$(N:P) = \{x \in A; xP \subseteq N\}.$$

This is an ideal of A.

• The annihilator of M, denoted Ann(M), is the ideal (0:M). That is,

$$Ann(M) = \{x \in A; xM = 0\}.$$

By Exercise 2.2 we have

$$Ann(N + P) = Ann(N) \cap Ann(P),$$

$$(N : P) = Ann((N + P)/N).$$

Proposition (Proposition 3.14)

Let M be a finitely generated A-module. Then

$$S^{-1}(Ann(M)) = Ann(S^{-1}M).$$

Remark

• If M is single generated, i.e., M = Ax. Then we have an exact sequence of A-modules,

$$0 \longrightarrow \operatorname{Ann}(M) \longrightarrow A \stackrel{a \to ax}{\longrightarrow} M \longrightarrow 0.$$

• By exactness of the functor S this gives an exact sequence of $S^{-1}A$ -modules,

$$0 \longrightarrow S^{-1}\left(\operatorname{Ann}(M)\right) \longrightarrow S^{-1}A \stackrel{a/s \to ax/s}{\longrightarrow} S^{-1}M \longrightarrow 0,$$
 which shows that $\operatorname{Ann}(S^{-1}M) = S^{-1}(\operatorname{Ann}(M)).$

Corollary (Corollary 3.15)

If N and P are sub-modules of M with P finitely generated, then

$$S^{-1}(N:P) = (S^{-1}N:S^{-1}P)$$
.

Remarks

- The fact that P is finitely generated implies that (N + P)/N is finitely generated as well.
- As (N : P) = Ann((N + P)/N) by applying the previous proposition we get

$$S^{-1}(N:P) = \operatorname{Ann} \left[S^{-1} \left((N+P)/N \right) \right].$$

We have

$$S^{-1}((N+P)/P) = S^{-1}(N+P)/S^{-1}N = (S^{-1}N+S^{-1}P)/S^{-1}N.$$

Thus,

$$S^{-1}(N:P) = \operatorname{Ann}\left[\left(S^{-1}N + S^{-1}P\right)/S^{-1}N\right] = \left(S^{-1}N:S^{-1}P\right).$$

Proposition (Proposition 3.16)

Let $g: A \to B$ be a ring homomorphism, and $\mathfrak p$ a prime ideal in A. Then TFAE:

- (i) \mathfrak{p} is the contraction of a prime ideal in B.
- (ii) $\mathfrak{p}^{ec} = \mathfrak{p}$.

Proof of Proposition 3.16.

- If $\mathfrak{p} = \mathfrak{q}^c$, then $\mathfrak{p}^{ec} = \mathfrak{q}^{cec} = \mathfrak{q}^c = \mathfrak{p}$ by Proposition 1.17.
- Suppose that $\mathfrak{p}^{ec} = \mathfrak{p}$. Let S be the image of $A \setminus \mathfrak{p}$ in B.
- As $\mathfrak{p}^e \cap S = \emptyset$, we see that $S^{-1}(\mathfrak{p}^e) \subsetneq S^{-1}B$.
- Thus, there is a maximal ideal \mathfrak{m} in $S^{-1}B$ containing $S^{-1}(\mathfrak{p}^e)$.
- Let \mathfrak{q} be the contraction of \mathfrak{m} in B. This is a prime ideal such that $\mathfrak{q} \cap S = \emptyset$. Thus,

$$\mathfrak{q}^c \cap (A \setminus \mathfrak{p}) \subseteq g^{-1}(\mathfrak{q}) \cap g^{-1}(S) = g^{-1}(\mathfrak{q} \cap S) = \emptyset.$$

That is, $\mathfrak{q}^c \subseteq \mathfrak{p}$.

- As \mathfrak{q} contains the contraction of $S^{-1}(p^e)$ in B, it contains \mathfrak{p}^e , and hence $\mathfrak{q}^c \supseteq \mathfrak{p}^{ec} = \mathfrak{p}$.
- Thus, $\mathfrak{p} = \mathfrak{q}^c$.

The proof is complete.