Commutative Algebra Chapter 2: Modules

Sichuan University, Fall 2023

Notation

Throughout this chapter A is a *ring* (which is commutative and has an identity element).

Definition (Modules)

An *A*-module is an Abelian group M on which A acts linearly. That is, there is a map $A \times M \ni (a, x) \to ax \in M$ such that

$$a(x + y) = ax + ay,$$

$$(a + b)x = ax + bx,$$

$$(ab)x = a(bx),$$

$$1x = x, a, b \in A, x, y \in M.$$

Remark

Equivalently, M is an Abelian group together with a ring homomorphism $A \to E(M)$, where E(M) is the ring of homomorphisms of M.

Examples

- Any ideal a of A is an A-module. In particular, A itself is an A-module.
- ② If A is a field k, then an A-module is exactly a vector space of over k.
- 3 If $A = \mathbb{Z}$, then a \mathbb{Z} -module is just an Abelian group.
- If A = k[x], k field, then an A-module is a k-vector space together with a linear transformation (which corresponds to the action of x).
- **⑤** If A is the group ring kG of a group G over a field k, then an A-module is exactly a k-representation of G, i.e., a k-vector space together with a group morphism $G \to \operatorname{End}(V)$.

Definition (Module Homorphisms)

Given modules M and M', an map $f: M \to M'$ is an A-module homomorphism (or is A-linear) if

$$f(x+y) = f(x) + f(y),$$

$$f(ax) = af(x), \qquad a \in A, \ x, y \in M.$$

Remark

In other words, f is a homomorphism of Abelian groups that commutes with the action of A.

Example

If A is a field k, then a k-module homomorphism is nothing but a linear transformation between k-vector spaces.

Definition

The set of all A-module homomorphisms $f: M \to M'$ is denoted $Hom_A(M, N)$ (or simply Hom(M, N) when there is no ambiguity on the ground ring).

Fact

 $\operatorname{\mathsf{Hom}}_A(M,N)$ is an A-module. Given $f,g\in\operatorname{\mathsf{Hom}}_A(M,N)$ and $a\in A$ we define f+g and af by

$$(f+g)(x) = f(x) + g(x),$$

$$(af)(x) = af(x), \qquad x \in M.$$

Remarks

- The composition of A-module homomorphisms is again an A-module homomorphism.
- ② Given homomorphisms $u: M \to M'$ and $v: N \to N'$ we get maps,

$$\tilde{u}: \operatorname{\mathsf{Hom}}_A(M,N) \to \operatorname{\mathsf{Hom}}_A(M',N), \quad \tilde{u}(f) = f \circ u,$$

 $\tilde{v}: \operatorname{\mathsf{Hom}}_A(M,N) \to \operatorname{\mathsf{Hom}}_A(M,N'), \quad \tilde{v}(f) = v \circ f.$

These maps are A-module homomorphisms.

 \odot For any module M we have a natural isomorphism,

$$\operatorname{Hom}_A(A, M) \simeq M$$
.

Any $f \in \text{Hom}_A(A, M)$ is uniquely determined by f(1).

Submodules and Quotient Modules

Definition (Submodules)

A submodule M' of a module M is a subgroup that is closed under the action of A.

Fact

If M' is a submodule of M, then the Abelian group M/M' inherits an A-module structure given by

$$a(x + M') = ax + M', \qquad x \in M.$$

Definition (Quotient Modules)

M/M' is called the quotient of M by M'.

Facts

- **1** The canonical map $M \to M/M'$ is an A-module homomorphism.
- ② There is a one-to-one correspondance between submodules of M that contains M' and submodules of M/M'.

Submodules and Quotient Modules

Definition

Let $f: M \to N$ be an A-module homomorphism.

• The kernel of f is

$$\ker(f) = \{x \in M; \ f(x) = 0\}.$$

This is a submodule of M.

 \bigcirc The *image* of f is

$$im(f) = f(M).$$

This is a submodule of N.

 \odot The cokernel of f is

$$\operatorname{coker}(f) = N/\operatorname{im}(f).$$

This is a quotient module of N.

Submodules and Quotient Modules

Facts

Let $f: M \to N$ be an A-module homomorphism and M' a submodule of M such that $M' \subseteq \ker(f)$.

• f gives rise to a homomorphism $\overline{f}: M/M' \to N$ defined by

$$\overline{f}(\overline{x}) = f(x),$$

where $\overline{x} \in M/M'$ is the image of $x \in M$.

• The kernel of \overline{f} is $\ker(f)/M'$.

Definition (Induced Homomorphisms)

The homomorphism \overline{f} is said to be *induced* by f.

Remark

For $M' = \ker(f)$ we get an isomorphism,

$$M/\ker(f) \simeq \operatorname{im}(f)$$
.

Definition

Let M be an A-module, and $(M_i)_{i \in I}$ be a family of sub-modules of M. The $sum \sum M_i$ consists of all \underline{finite} sums $\sum x_i$, where $x_i \in M_i$.

Remark

 $\sum M_i$ is the smallest sub-module that contains all the M_i .

Facts

- **1** The intersection $\cap M_i$ is again a submodule of M.
- The submodules form a lattice with respect to inclusion.

Proposition (Proposition 2.1)

• If $L \supseteq M \supseteq N$ are A-modules, then

$$(L/M)/(M/N) \simeq L/N$$
.

2 If M_1 and M_2 are submodules of M, then

$$(M_1 + M_2)/M_1 \simeq M_2/(M_1 \cap M_2).$$

Definition

If \mathfrak{a} is an ideal of A and M is an A-module, then $\mathfrak{a}M$ consists of all finite sums $\sum a_i x_i$ with $a_i \in \mathfrak{a}$ and $x_i \in M$.

Remarks

- \bullet aM is a submodule of M.
- 2 In general we cannot define the product of two submodules.

Definition

- If N and P are submodules of M, then (N : P) is the set of all $a \in A$ such that $aP \subseteq N$.
- (0:M) is called the *annihilator* of M and is denoted by Ann(M).

Remarks

- \bullet (N: P) is an ideal of A.
- 2 Ann(M) consists of all $a \in A$ such that aM = 0.

Fact

If $\mathfrak a$ is an ideal contained in $\mathsf{Ann}(M)$, then we may regard M as an $A/\mathfrak a$ -module as follows: if $m \in M$ and $\overline{x} \in A/\mathfrak a$ is the class of $x \in A$, then

$$\overline{x}m=xm.$$

This definition makes sense since $\mathfrak{a}M = 0$.

Definition (Faithful Modules)

We say that an A-module M is faithful if Ann(M) = 0.

Remark

If $\mathfrak{a} = \operatorname{Ann}(M)$, then M is always faithful as an A/\mathfrak{a} -module.

Exercise (Exercise 2.2)

- (i) $Ann(M + N) = Ann(M) \cap Ann(N)$.
- (ii) (N : P) = Ann((N + P)/N).

Fact

If $x \in M$, the set of all multiples ax with $a \in A$ is a submodule of M denoted by Ax or (x).

Definition

- If $M = \sum Ax_i$, then we say that the x_i form a set of generators of M.
- We say that M is finitely generated if it admits a finite set of generators.

Remark

- That the x_i form a set of generators of M means that every $x \in M$ is a finite linear combination $\sum a_i x_i$ with $a_i \in A$.
- This linear combination need not be unique.

Definition (Direct Sum)

- If M and N are A-modules, their direct sum $M \oplus N$ consist of all pairs (x, y) with $x \in M$ and $y \in N$.
- This is an A-module with respect to the following addition and scalar multiplication,

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2),$$

 $a(x, y) = (ax, ay).$

Definition (Direct Sum and Direct Product)

Let $(M_i)_{i \in I}$ be a family of A-modules.

- **1** The direct sum $\bigoplus M_i$ consists of all families $(x_i)_{i \in I}$ where all but finitely many of the x_i are zero.
- 2 The direct product $\prod M_i$ consists of all families $(x_i)_{i \in I}$.

Remarks

- The direct sum $\bigoplus M_i$ and the direct product $\prod M_i$ are both A-modules.
- 2 They agree when the index set / is finite.

Facts

Suppose that the ring A is a direct product $\prod_{i=1}^{n} A_{i}$.

• Let a_i be the set of all elements of a of the form

$$(0,\ldots,0,a_i,0,\ldots,0), \qquad a_i\in A.$$

This is an ideal of A.

② The ring A, considered as an A-module, agrees with the direct sum $\mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_n$.

Facts

Conversely, suppose we have a module decomposition,

$$A = \mathfrak{a}_1 \oplus \cdots \oplus \mathfrak{a}_n$$

where $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ are ideals.

We have

$$A\simeq \prod_{i=1}^n (A/\mathfrak{b}_i), \qquad ext{where } \mathfrak{b}_i=igoplus_{j
eq i}\mathfrak{a}_j.$$

- ② Each ideal \mathfrak{a}_i is a ring isomorphic to A/\mathfrak{b}_i .
- 3 The identity element e_i of a_i is an idempotent in A and $a_i = (e_i)$.

Definition (Free Modules)

A free A-module is an A-module of the form $\bigoplus_{i\in I} M_i$, where $M_i \simeq A$,

Example

- The direct sum $A^n = A \oplus \cdots \oplus A$ (*n* summands) is a free module.
- By convention A^0 is the zero module, denoted by 0.

Fact

Any finitely generated free module is isomorphic to A^n for some n.

Proposition (Proposition 2.3)

An A-module M is finitely generated if and only if it a quotient of A^n for some $n \ge 1$.

Proposition (Cayley-Hamilton Theorem; Proposition 2.4)

Suppose that M is a finitely generated A-module and $\mathfrak a$ is ideal of A. Let $\phi: M \to M$ be an A-module endomorphism such that $\phi(M) \subseteq \mathfrak a M$. Then ϕ satisfies an equation of the form,

$$\phi^n + a_1\phi^{n-1} + \cdots + a_n = 0, \qquad a_i \in \mathfrak{a}.$$

Remarks

- We identify A with its image in $\operatorname{End}_A(M) = \operatorname{Hom}_A(M, M)$.
- The above equality holds in $\operatorname{End}_A(M)$, which is an A-module.

Proof of Proposition 2.4.

• Let x_1, \ldots, x_n be generators of M. Then:

(*)
$$\phi x_j = a_{1j}x_1 + \cdots + a_{nj}x_n, \quad a_{ij} \in \mathfrak{a}.$$

- Let B be the sub-ring of $\operatorname{End}_A(M)$ generated by ϕ and A. This is a <u>commutative</u> ring.
- Set $a = [a_{ij}] \in M_n(\mathfrak{a})$ and $b = \phi I_n a \in M_n(B)$. Note that $M_n(B)$ acts on M^n . Then (*) means that

$$bx = 0$$
 with $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$.

Proof of Proposition 2.4 (continued).

 Let c be the cofactor matrix of b. As B is a commutative ring, we have

$$cb = \det(b)I_n$$
.

• As bx = 0, we get

$$0 = cbx = \det(b)x = \begin{bmatrix} \det(b)x_1 \\ \vdots \\ \det(b)x_n \end{bmatrix}.$$

- As x_1, \ldots, x_n generate M, this gives $\det(b) = 0$ in $\operatorname{End}_A(M)$.
- Here $b = \phi I_n a$ with $a \in M_n(\mathfrak{a})$. Expanding the equation $\det(\phi I_n a) = 0$ shows there are a_1, \ldots, a_n in \mathfrak{a} such that

$$\phi^n + a_1\phi^{n-1} + \cdots + a_n = 0.$$

• Equivalently, if $P(\lambda) = \det(\lambda I_n - a)$ is the characteristic polynomial of $a = [a_{ii}]$, then $P(\phi) = 0$.

Corollary (Corollary 2.5)

Let M be a finitely generated A-module and $\mathfrak a$ an ideal of A such that $\mathfrak a M = M$. Then there is $x \equiv 1 \mod \mathfrak a$ such that xM = 0.

Proof.

• Apply Prop. 2.4 to $\phi = \mathrm{id}_M$. There are a_1, \ldots, a_n in $\mathfrak a$ such that $\phi^n + a_1 \phi^{n-1} + \cdots + a_n = 0.$

That is,
$$(1 + a_1 + \cdots + a_n) id_M = 0.$$

• Thus, if we set $x=1+a_1+\cdots+a_n$, then $x\equiv 1 \bmod \mathfrak{a}$, and $xy=0 \qquad \forall y\in M.$

That is, xM = 0.

The proof is complete.

Reminder (Proposition 1.9)

If $\mathfrak R$ the Jacobson radical of A, then $x \in \mathfrak R$ if and only if 1-xy is unit for all $y \in A$.

Proposition (Nakayama's Lemma; Proposition 2.6)

Let M be a finitely generated A module and \mathfrak{a} an ideal of A contained in \mathfrak{R} . Then $\mathfrak{a}M=M$ implies that M=0.

Proof.

- By Corollary 2.5 there is $x \equiv 1 \mod \Re$ such that xM = 0.
- As $1 x \in \Re$, by Proposition 1.9 x = 1 (1 x)1 is a unit.
- Thus,

$$M = x^{-1}(xM) = 0.$$

The proof is complete.

Corollary (Corollary 2.7)

Let M be a finitely generated A module, N a submodule of A, and \mathfrak{a} an ideal of A contained in \mathfrak{R} . Then $M = \mathfrak{a}M + N \Rightarrow M = N$.

Proof.

• If $M = \mathfrak{a}M + N$, then

$$a(M/N) = (aM + N)/N = M/N.$$

• Nakayama's lemma then implies that M/N = 0, i.e., M = N.

The result is proved.

Fact

Let A be a local ring, \mathfrak{m} its maximal ideal, and $k = A/\mathfrak{m}$ its residue field. Let M be a finitely generated A-module M. Then:

- The quotient module $V = M/\mathfrak{m}M$ is annihilated by \mathfrak{m} , and hence this is an A/\mathfrak{m} -module, i.e., a vector space over k.
- This vector space has finite dimension.

Proposition (Proposition 2.8)

Let $x_1, ..., x_n$ be elements in M whose images in $M/\mathfrak{m}M$ form a basis of this vector space. Then $x_1, ..., x_n$ generate M.

Proof.

- Let N be the module generated by x_1, \ldots, x_n , and let $\phi: M \to M/\mathfrak{m}M$ be the canonical homomorphism.
- As $\{\phi(x_1), \dots, \phi(x_n)\}$ is a basis of $M/\mathfrak{m}M$, we see that $\phi(N) = M/\mathfrak{m}M$.
- Thus,

$$M = \phi^{-1}(M/\mathfrak{m}M) = \phi^{-1}(\phi(N)) = N + \mathfrak{m}M.$$

• Corollary 2.7 then implies that M = N, i.e., x_1, \ldots, x_n generate M.

The result is proved.

Definition (Exact Sequences)

A sequence of A-modules and A-homomorphisms

$$\cdots \longrightarrow M_{i-1} \stackrel{f_i}{\longrightarrow} M_i \stackrel{f_{i+1}}{\longrightarrow} M_{i+1} \longrightarrow \cdots$$

is said to be exact at M_i if $im(f_i) = ker(f_{i+1})$. It is called an exact sequence if it is exact at each M_i .

Examples

- **1** A sequence $0 \to M' \xrightarrow{f} M$ is exact if and only if f is injective.
- 2 A sequence $M \stackrel{g}{\rightarrow} M'' \rightarrow 0$ is exact if and only if g is surjective.
- **3** A sequence 0 oup M' oup M oup M'' oup 0 is exact if and only if f is injective, g is surjective, and g induces an isomorphism of $\operatorname{coker}(f) = M/f(M')$ onto M''. Such a sequence is called a *short exact sequence*.

Remark

• Any long exact sequence,

$$\cdots \longrightarrow M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \longrightarrow \cdots$$

can be split up into short exact sequences.

• If we set $N_i = \operatorname{im}(f_i) = \ker(f_{i+1})$, then, for each i, we have a short exact sequence,

$$0 \longrightarrow N_i \longrightarrow M_i \stackrel{f_i}{\longrightarrow} N_{i+1} \longrightarrow 0.$$

Proposition (Proposition 2.9; see Carlson)

A sequence of the form

$$M' \xrightarrow{u} M \xrightarrow{v} M'' \longrightarrow 0$$

is exact if and only if, for every A-module N, the sequence

$$0 \longrightarrow \operatorname{\mathsf{Hom}}(M'',N) \stackrel{\tilde{v}}{\longrightarrow} \operatorname{\mathsf{Hom}}(M,N) \stackrel{\tilde{u}}{\longrightarrow} \operatorname{\mathsf{Hom}}(M',N)$$

is exact.

2 A sequence of the form

$$0 \longrightarrow N' \stackrel{u}{\longrightarrow} N \stackrel{v}{\longrightarrow} N''$$

is exact if and only if, for every A-module M, the sequence

$$0 \longrightarrow \operatorname{\mathsf{Hom}}(M,N') \stackrel{\tilde{u}}{\longrightarrow} \operatorname{\mathsf{Hom}}(M,N) \stackrel{\tilde{v}}{\longrightarrow} \operatorname{\mathsf{Hom}}(M,N'')$$

is exact.

Proposition (Snake Lemma, Proposition 2.10; see Carlson)

Suppose that

$$0 \longrightarrow M' \xrightarrow{u} M \xrightarrow{v} M'' \longrightarrow 0$$

$$\downarrow^{f'} \qquad \downarrow^{f} \qquad \downarrow^{f''}$$

$$0 \longrightarrow N' \xrightarrow{u'} N \xrightarrow{v'} N'' \longrightarrow 0$$

is a commutative diagram of A-modules and A-homomorphisms with exact rows. Then there exists an exact sequence,

$$0 \longrightarrow \ker(f') \stackrel{\overline{u}}{\longrightarrow} \ker(f) \stackrel{\overline{v}}{\longrightarrow} \ker(f'') \stackrel{d}{\longrightarrow}$$

$$\operatorname{coker}(f') \stackrel{\overline{u}'}{\longrightarrow} \operatorname{coker}(f) \stackrel{\overline{v}'}{\longrightarrow} \operatorname{coker}(f'') \longrightarrow 0,$$

where $\overline{u}, \overline{v}$ are restrictions of u, v, and $\overline{u}', \overline{v}'$ are induced by u', v'.

Remark

The map $d : \ker(f'') \to \operatorname{coker}(f')$ is called *boundary homomorphism*. It is constructed as follows:

- If $x'' \in \ker(f'')$, we have x'' = v(x) for some $x \in M$ (since v is surjective).
- We have v'(f(x)) = f''(v(x)) = f''(x'') = 0, and so $f(x) \in \ker(v') = \operatorname{ran}(u')$.
- As u' is injective, there is a unique $y' \in N'$ such that f(x) = u'(y').
- We define dx'' to be the class of y' in $\operatorname{coker}(f') = N' / \operatorname{im}(f')$.
- It can be shown that the class of y' does not depend on the choice of x, and dx" is well defined.

Definition

Let $\mathscr C$ be a class of A-modules. A function $\lambda:\mathscr C\to\mathbb Z$ is additive if, for every short exact sequence $0\to M'\to M\to M''\to 0$ in $\mathscr C$, we have

$$\lambda(M') - \lambda(M) + \lambda(M'') = 0.$$

Example

Let A be a field k and $\mathscr C$ be the class of finite-dimension vector spaces over k. Then the function $V \to \dim V$ is additive.

Proposition (Proposition 2.11)

Let $0 \to M_0 \to M_1 \to \cdots \to M_n \to 0$ be an exact sequence in \mathscr{C} . Then, for any additive function λ on \mathscr{C} , we have

$$\sum_{0\leq i\leq n} (-1)^i \lambda(M_i) = 0.$$

Tensor Product of Modules

Definition (A-Bilinear Maps)

Given A-modules M, N, and P, an A-bilinear map is any map $f: M \times N \rightarrow P$ such that

- (i) For every $x \in M$, the map $N \ni y \to f(x, y) \in P$ is A-linear.
- (ii) For every $y \in N$, the map $M \ni x \to f(x,y) \in P$ is A-linear.

Fact

Given A-modules M and N, their tensor product $M \otimes_A N$ is an A-module such that A-bilinear maps $M \times N \to P$ are in one-to-one correspondance with A-linear maps $M \otimes_A N \to P$.

Proposition (Proposition 2.12)

Let M, N be A-modules.

● There exist an A-module $M \otimes_A N$ and an A-bilinear map $\otimes : M \times N \to M \otimes_A N$ satisfying the following universal property:

For any A-module P and A-bilinear map $f: M \times N \to P$ there is a unique A-linear map $f': M \otimes_A N \to P$ such that

$$f(x,y) = f'(x \otimes y)$$
 for all $x \in M$ and $y \in N$.

② If $(M \otimes' N, \otimes')$ is another pair satisfying the above universal property, then there is a unique isomorphism $j: M \otimes_A N \to M \otimes' N$ such that

$$j(x \otimes y) = x \otimes' y$$
 for all $x \in M$ and $y \in N$.

Remark

The A-module $M \otimes_A N$ is constructed as follows:

- Let C be the free A-module $\bigoplus_{(x,y)\in M\times N}A$ generated by all pairs $(x,y)\in M\times N$. It consists of finite formal linear combinations $\sum a_i(x_i,y_i)$ with $a_i\in A$ and $(x_i,y_i)\in M\times N$.
- Let D be the submodule generated by elements of the form,

$$(x+x',y)-(x,y)-(x',y),$$
 $(x,y+y')-(x,y)-(x,y'),$ $(ax,y)-a(x,y),$ $(x,ay)-a(x,y).$

• The A-module $M \otimes_A N$ is the quotient module C/D. If $(x,y) \in M \times N$, we denote by $x \otimes y$ the class of (x,y) in $M \otimes_A N$. From the definition we have

$$(x + x') \otimes y = x \otimes y - x' \otimes y, \quad x \otimes (y + y') = x \otimes y - x \otimes y',$$

 $(ax) \otimes y = a(x \otimes y), \quad x \otimes (ay) = a(x \otimes y).$

That is, $\otimes: M \times N \to M \otimes_A N$ is an A-bilinear map.

Remarks

- **①** We often denote $M \otimes_A N$ by $M \otimes N$ when the ring A is understood from context.
- In practice, we will not need the construction of the tensor product. What is essential is to keep in mind its universal property.
- **3** If $(x_i)_{i \in I}$ and $(y_j)_{j \in J}$ are generator sets of M and N, respectively, then the elements $x_i \otimes y_j$ generate $M \otimes N$. In particular, if M and N are finitely generated, then $M \otimes N$ is finitely generated as well.

Remark

- Let M' and N' are submodules of M and N, respectively, If $x \in M'$ and $y \in N'$, then it may happen that $x \otimes y$ is zero as an element of $M \otimes N$, but is not zero as an element of $M' \otimes N'$.
- Take $A = M = \mathbb{Z}$, $N = N' = \mathbb{Z}/2\mathbb{Z}$ and $M' = 2\mathbb{Z}$. Let x be the non-zero element of $\mathbb{Z}/2\mathbb{Z}$. Then $2 \otimes x$ is not zero in $M' \otimes N'$ since it generates $M' \otimes N'$. However, it is zero in $M \otimes N$, since we have

$$2 \otimes x = 2(1 \otimes x) = 1 \otimes (2x) = 0.$$

• Nevertheless, we have the following result:

Corollary (Corollary 2.13)

Let $x_i \in M$ and $y_i \in N$ be such that $\sum x_i \otimes y_i = 0$ in $M \otimes N$. Then there are finitely generated submodules M_0 of M and N_0 of N such that $\sum x_i \otimes y_i = 0$ in $M_0 \otimes N_0$.

Remark

- We can also define multi-tensor products $M_1 \otimes \cdots \otimes M_r$ by using multilinear maps instead of
- A map $M_1 \times \cdots \times M_r \to P$ is multilinear if it is linear with respect to each argument.

Proposition (Proposition 2.12*; see Carlson)

• There exist an A-module $M_1 \otimes \cdots \otimes M_r$ and an multilinear map $\otimes \cdots \otimes : M_1 \times \cdots \times M_r \to M_1 \otimes \cdots \otimes M_r$ satisfying the following universal property:

For any A-module P and multilinear map $f: M_1 \times \cdots \times M_r \to P$ there is a unique A-linear map $f': M_1 \otimes \cdots \otimes M_r \to P$ such that

$$f(x_1, \dots, x_r) = f'(x_1 \otimes \dots \otimes x_r)$$
 for all $x_i \in M_i$.

2 The pair $(M_1 \otimes \cdots \otimes M_r, \otimes \cdots \otimes)$ is unique up to isomorphism.

Proposition (Proposition 2.14; see Atiyah-MacDonald and Carlson)

Let M, N, P be A-modules. Then we have canonical isomorphisms:

- (i) $M \otimes N \simeq N \otimes M$, where $x \otimes y \to y \otimes x$.
- (ii) $(M \otimes N) \otimes P \simeq M \otimes (N \otimes P) \simeq M \otimes N \otimes P$, where $(x \otimes y) \otimes z \longrightarrow x \otimes (y \otimes z) \longrightarrow x \otimes y \otimes z$.
- (iii) $(M \oplus N) \otimes P \simeq (M \oplus P) \otimes (N \oplus P)$, where $(x + y) \otimes z \longrightarrow (x \otimes z) + (y \otimes z)$.
- (iv) $A \otimes M \simeq M$, where $a \otimes x \to ax$.

Definition (Bimodules)

Given rings A and B, an (A, B)-bimodule is an Abelian group N which is both an A-module and a B-module and the two structures are compatible in the sense that

$$a(xb) = (ax)b,$$
 $a \in A, x \in M, b \in B.$

Exercise (Exercise 2.15; see Carlson)

Suppose that M is A-module, P is an B-module, and N is an (A, B)-bimodule. Then:

- $M \otimes_A N$ is naturally a B-module.
- $N \otimes_B P$ is naturally an A-module.
- We have a natural isomorphism of (A, B)-bimodules,

$$(M \otimes_A N) \otimes_B P \simeq M \otimes_A (N \otimes_B P).$$

Facts

- If $f: M \to M'$ and $g: N \to N'$ are A-linear maps, then $M \times N \ni (x,y) \to f(x) \otimes g(y) \in M' \otimes N'$ is an A-bilinear map.
- Therefore, there is a unique A-linear map $f \otimes g : M \otimes N \to M' \otimes N'$ such that

$$(f \otimes g)(x \otimes y) = f(x) \otimes g(y)$$
 for all $x \in M$ and $y \in N$.

• If $f': M' \to M''$ and $g': N' \to N''$ are A-linear maps, then

$$(f' \circ f) \otimes (g' \circ g) = (f' \otimes g') \circ (f \otimes g)$$

Restrictions and Extensions of Scalars

Fact

Let $f: A \to B$ be a ring homomorphism.

- Any *B*-module *N* can be turned into an *A*-module as follows: if $a \in A$ and $x \in N$, then ax is defined to be f(a)x.
- This A-module is said to be obtained from N by restriction of scalars.
- In particular, B is a module over A this way,

Restrictions and Extensions of Scalars

Proposition (Proposition 2.16)

If N is finitely generated as a B-module and B is finitely generated as an A-module, then N is finitely generated as an A-module.

Proof.

- Let y_1, \ldots, y_n generate N over B, and let x_1, \ldots, x_m generate B over A.
- If $y \in N$, then $y = \sum b_i y_i$ with $b_i \in B$.
- Write $b_j = \sum a_{ij}x_i$ with $a_{ij} \in A$. Then

$$y = \sum_{i=1}^{n} b_j y_j = \sum_{i=1}^{n} \sum_{j=1}^{m} a_{ij} x_i y_j.$$

• Therefore N is generated by the $x_i y_j$ over A, and hence is finitely generated over A.

The proof is complete

Restrictions and Extensions of Scalars

Fact

Let M be an A-module.

- As B is an A-module, we can form the tensor product $M_B = B \otimes_A M$.
- In fact, M_B is a B-module such that

$$b(b' \otimes x) = (bb') \otimes x,$$
 $b, b' \in B, x \in M.$

• We say that M_B is obtained from M by extensions of the scalars.

Proposition (Proposition 2.17)

If M is finitely generated as an A-module, then M_B is finitely generated as a B-module.

Proof.

If x_1, \ldots, x_n generate M over A, then $1 \otimes x_1, \ldots, 1 \otimes x_n$ generate M_B over B.

Fact

Let S be the set of all A-bilinear maps $f: M \times N \rightarrow P$.

- 5 is an A-module.
- If $f: M \times N \to P$ is bilinear, then, for every $x \in M$, we have an A-linear map $y \to f(x,y)$. It depends linearly on x and f, and so we get an A-linear map $S \to \operatorname{Hom}_A(M,\operatorname{Hom}_A(N,P))$.
- Conversely, any $\phi \in \operatorname{Hom}_A(M, \operatorname{Hom}_A(N, P))$ gives rise an A-bilinear map $(x, y) \to (\phi(x))(y)$.
- Therefore, we have a canonical isomorphism,

$$S \simeq \operatorname{Hom}_A(M, \operatorname{Hom}_A(N, P))$$
.

Fact

Thanks to the defining property of the tensor product we also have a canonical isomorphism,

$$S \simeq \operatorname{\mathsf{Hom}}_{\mathcal{A}}(M \otimes N, P).$$

Consequence

We have a canonical isomorphism,

$$\operatorname{\mathsf{Hom}}_{A}(M\otimes N,P)\simeq \operatorname{\mathsf{Hom}}_{A}(M,\operatorname{\mathsf{Hom}}_{A}(N,P))$$
.

Remark

In the language of functors on the category of A-modules, the above result means that the functor $-\otimes_A N: M \to M \otimes N$ is the left adjoint of the functor $\operatorname{Hom}_A(N,-): P \to \operatorname{Hom}_A(N,P)$ (and hence $\operatorname{Hom}_A(N,-)$ is the right adjoint of $-\otimes_A N$).

Proposition (Proposition 2.18)

Suppose we are given an exact sequence of A-modules and homomorphisms of the form,

$$M' \stackrel{f}{\longrightarrow} M \stackrel{g}{\longrightarrow} M'' \longrightarrow 0.$$

Then, for every A-module N, we have an exact sequence,

$$M' \otimes N \xrightarrow{f \otimes 1} M \otimes N \xrightarrow{g \otimes 1} M'' \otimes N \longrightarrow 0,$$

where we have denoted by 1 the identity map of N.

Proof of Proposition 2.18 (Sketch).

Let P be any A-module.

- As $M' \to M \to M'' \to 0$ is an exact sequence, by Proposition 2.9 we get an exact sequence,
- $0 \to \mathsf{Hom}(M'', \mathsf{Hom}(N, P)) \to \mathsf{Hom}(M, \mathsf{Hom}(N, P)) \to \mathsf{Hom}(M', \mathsf{Hom}(N, P)).$
 - As $\operatorname{Hom}(Q,\operatorname{Hom}(N,P)) \simeq \operatorname{Hom}(Q \otimes N,P)$, we get an exact sequence,
 - $0 \longrightarrow \operatorname{\mathsf{Hom}}(M'' \otimes N, P) \longrightarrow \operatorname{\mathsf{Hom}}(M \otimes N, P) \longrightarrow \operatorname{\mathsf{Hom}}(M' \otimes N, P).$
 - As this is true for any A-module P, by Proposition 2.9 again we get an exact sequence,

$$M' \otimes N \longrightarrow M \otimes N \longrightarrow M'' \otimes N \longrightarrow 0.$$

This gives the result.

Remarks

- Proposition 2.18 means that, for every *A*-module *N*, the functor $\otimes_A N$ is *left exact*.
- More generally, it can be shown that any functor that has a left adjoint is left exact.
- 1 Likewise, any functor that has a right adjoint is right exact.

 $M' \otimes N \to M \otimes N \to M'' \otimes N$ may fail to be exact.

Remark

The functor $-\otimes_A N$ need not be *exact*, i.e., if $M' \to M \to M''$ is an exact sequence, then the sequence

Example

Take $A = \mathbb{Z}$ and consider the exact sequence,

$$0 \longrightarrow \mathbb{Z} \stackrel{f}{\longrightarrow} \mathbb{Z}, \qquad f(x) = 2x.$$

- If we take tensor products with $N = \mathbb{Z}/2\mathbb{Z}$, then the sequence $0 \to \mathbb{Z} \otimes N \xrightarrow{f \otimes 1} \mathbb{Z} \otimes N$ is not exact.
- Indeed, given any $x \in \mathbb{Z}$ and $y \in \mathbb{Z}/2\mathbb{Z}$, we have

$$(f \otimes 1)(x \otimes y) = f(x) \otimes y = 2x \otimes y = x \otimes (2y) = 0.$$

• This implies that $(f \otimes 1) = 0$, i.e., $\ker(f \otimes 1) = \mathbb{Z} \otimes N \neq 0$. Therefore, the sequence is not exact.

Definition (Flat Module)

We say that an A-module is flat if the functor $-\otimes_A N$ is exact, i.e., for every exact sequence $M' \to M \to M''$, the sequence $M' \otimes N \to M \otimes N \to M'' \otimes N$ is again exact.

Proposition (Proposition 2.19; see also Gaillard)

Let N be an A-module. Then TFAE:

- (i) N is flat.
- (ii) If $0 \to M' \to M \to M'' \to 0$ is an exact sequence, then so is the tensored sequence $0 \to M' \otimes N \to M \otimes N \to M'' \otimes N \to 0$.
- (iii) If $f: M' \to M$ is injective, then so is $f \otimes 1: M' \otimes N \to M \otimes N$.
- (iv) If $f: M' \to M$ is injective and M and M' are finitely generated, then $f \otimes 1: M' \otimes N \to M \otimes N$ is again injective.

Exercise (Exercise 2.20; see Carlson)

If $A \to B$ is a ring homomorphism, and M is a flat A-module, then $M_B = B \otimes_A M$ is a flat B-module.

Hint: Use the isomorphisms from Proposition 2.14 and Exercise 2.15.

Definition

An A-algebra is an A-module B together with a multiplication $(b,b') \to bb'$ which is A-bilinear and with respect to which B is a ring.

Remark

The A-bilinearity of the multiplication means that

$$a(bb') = (ab)b' = b(ab')$$
 $a \in A, b, b' \in B.$

This accounts for the compatibility of the module and ring structures of B.

Example

Let B be a ring and let $f: A \rightarrow B$ be a ring homomorphism.

- By restriction B is an A-module with ab = f(a)b.
- If B is commutative or the image of f is contained in the center of B, then B is an A-algebra, since

$$f(a)(bb') = (f(a)b)b' = b(f(a)b'), a \in A, b, b' \in B.$$

Fact

Let B an A-algebra with an identity element 1_B , and define $f:A\to B$ by

$$f(a) = a1_B, \quad a \in A.$$

Then f is a ring homomorphism whose image is contained in the center of A, since

$$(a1_B)(a'1_B) = a[1_B(a'1_B)] = a[a'(1_B1_B)] = (aa')1_B,$$

 $(a1_B)b = a(1_Bb) = a(b1_B) = b(a1_B), \quad a, a' \in A, \ b \in B.$

Consequences

- An A-algebra with identity is exactly a ring B with identity together with a ring homomorphism $f: A \rightarrow B$ whose image is contained in the center of B.
- A commutative A-algebra with identity is exactly a commutative ring B with identity together with a ring homomorphism $f: A \to B$.

Remark

- In Atiyah-MacDonald's book rings are assumed to be commutative and have an identity.
- Therefore, A-algebras are assumed to be commutative and to have an identity element.
- Atiyah-MacDonald then defines an A-algebra as a ring B together a ring homomorphism $f: A \rightarrow B$.

Remark

Suppose that A is a field k and B is a k-algebra with identity element.

- As k is a field, the ring homomorphism $k \ni \lambda \to \lambda 1_B$ must be injective (see Proposition 1.2).
- Thus, k can be identified as a subring of B.

Therefore, a k algebra (with identity) is a ring that contains k as a subring.

Examples

- **1** A = k and $B = k[x_1, ..., x_n]$ (polynomials with n variables).
- 2 A = k and B = kG (group ring of a group G). This is not a commutative algebra unless G is Abelian.

Remark

If B is a ring with identity, then $\mathbb{Z}\ni m\to m1\in B$ is a ring homomorphism. Therefore, any such ring is automatically a \mathbb{Z} -algebra.

Definition (Algebra Homomorphisms)

Given A-algebras B and C, a map $h: B \to C$ is called an A-algebra homomorphism if it is both a ring homomorphism and an A-module homomorphism.

Remark

Suppose that B and C have identities with ring homomorphisms $f:A\to B$ and $g:A\to B$. Then, for every A-algebra homomorphism $h:B\to C$, we have $g=h\circ f$.

Definition (Finite Algebras)

A *finite A-algebra* is an *A*-algebra which it is finitely generated as an *A*-module.

Definition (Finitely Generated Algebras)

Let B be a commutative A-algebra with identity. We say that B is a *finitely generated A-algebra* if there is a finite set of elements x_1, \ldots, x_n such that every element of B is a linear combination of monomials $x_1^{m_1} \cdots x_n^{m_n}$.

Remark

The above condition means that we have surjective A-algebra homomorphism $A[X_1, \ldots, X_n] \to B$ that maps X_i to x_i . Every $b \in B$ is a polynomial in the generators x_1, \ldots, x_n .

Definition (Finitely Generated Rings)

A ring A is said to be *finitely generated* if it is finitely generated as a \mathbb{Z} -algebra.

Proposition

Let B and C be A-algebras. Then their tensor product $B \otimes_A C$ is an A-algebra whose product is such that

$$(b \otimes c)(b' \otimes c') = (bb') \otimes (cc'), \qquad b, b' \in B, \quad c, c' \in C.$$

Remark

In general, we have

$$\bigg(\sum_i b_i \otimes c_i\bigg)\bigg(\sum_j b_j' \otimes c_j'\bigg) = \sum_{i,j} (b_i b_j') \otimes (c_i c_j').$$

Remark

The product of $B \otimes_A C$ is well defined:

• Consider the multilinear map,

$$B \times C \times B \times C \ni (b, c, b', c') \rightarrow (bb') \otimes (cc') \in B \otimes C.$$

• It gives rise to an A-module homomorphism,

$$B \otimes C \otimes B \otimes C \longrightarrow B \otimes C$$
.

• As $B \otimes C \otimes B \otimes C \simeq (B \otimes C) \otimes (B \otimes C)$, we get an A-module homomorphism,

$$(B \otimes C) \otimes (B \otimes C) \longrightarrow B \otimes C.$$

• This then gives rise to an A-bilinear map,

$$(B \otimes C) \times (B \otimes C) \longrightarrow B \otimes C$$
,

which is our product.

Remark

Suppose that B and C are commutative algebras with identity elements 1_B and 1_C .

- The algebra $B \otimes C$ is a commutative and has $1_B \otimes 1_C$ as identity element.
- We have natural algebra homomorphisms,

$$\begin{aligned} \operatorname{id}_B \otimes 1_C : B &\longrightarrow B \otimes C, & b \to b \otimes 1_C, \\ 1_B \otimes \operatorname{id}_C : C &\longrightarrow B \otimes C, & c \to 1_B \otimes c. \end{aligned}$$

Remark (Continued)

We actually have a commutative diagram,

