Commutative Algebra Chapter 1: Rings and Ideals

Sichuan University, Fall 2023

Definition (Rings)

A ring A is a set with an addition and a multiplication so that:

- A is an Abelian group w.r.t. its addition, and so
 - A has a zero element, denoted 0.
 - Every $x \in A$ has an additive inverse -x.
- Multiplication is associative and distributive over addition,

$$(xy)z = x(yz),$$

$$x(y+z) = xy + xz, \qquad (x+y)z = xz + yz.$$

Remarks

- **1** 0 is absorbant, i.e., 0x = x0 = 0 for all $x \in A$.
- 2 x(y-z) = xy xz and (x-y)z = xz yz.

Definition

1 A ring A is commutative when

$$xy = yx$$
 for all $x, y \in A$.

② An identity element $1 \in A$ is such that

$$1x = x1 = x$$
 for all $x \in A$.

Such an element is unique.

Remark

By a ring we shall always mean a commutative ring with an identity element.

Remark

If 1 = 0, then x = 1x = 0x = 0, and so 0 is the unique element.

We called this ring the zero ring and denote it by 0.

Definition (Ring Homomorphisms)

Given rings A and B, a ring homomorphim $f: A \rightarrow B$ is a map such that

- **1** f(x + y) = f(x) + f(y).
- f(xy) = f(x)f(y).
- **3** f(1) = 1.

Remark

The property (i) implies that

$$f(x-y) = f(x) - f(y),$$
 $f(-x) = -f(x),$ $f(0) = 0.$

Remark

If $f: A \to B$ and $g: B \to C$ are ring homomorphisms, then the composition $g \circ f: A \to C$ is a ring homomorphism as well.

Definition (Subrings)

A subring of a ring A is a subset S that is closed under addition and multiplication and contains the unit. That is,

$$x, y \in S \implies x + y \in S \text{ and } xy \in S,$$

 $1 \in S.$

Remarks

- Any subring is a ring.
- 2 If S is a subring of a ring A, then the inclusion map of S into A is a ring homomorphism.

Definition (Ideals)

An ideal $\mathfrak a$ of a ring A is an additive subgroup such that $A\mathfrak a\subseteq\mathfrak a$. That is,

$$x, y \in \mathfrak{a} \implies x + y \in \mathfrak{a},$$

 $x \in A \text{ and } y \in \mathfrak{a} \implies xy \in \mathfrak{a}.$

Observation

The multiplication of A uniquely descends to a multiplication on the quotient A/\mathfrak{a} , with respect to which A/\mathfrak{a} is a ring.

Remarks

- A/\mathfrak{a} is called a quotient ring. Its elements $x + \mathfrak{a}$ are called cosets (of \mathfrak{a} in A).
- **2** The canonical map $\phi: A \to A/\mathfrak{a}$ is a surjective ring homomorphism.

Proposition (Proposition 1.1)

We have an order-preserving one-to-one correspondence,

Remark

This result is used implicitly throughout Atiyah-MacDonald's book.

Proof of Proposition 1.1.

• Let \mathfrak{b} be an ideal of A. Let $\overline{x} = \phi(x)$ with $x \in \mathfrak{b}$ and $\overline{y} = \phi(y) \in A/\mathfrak{a}$. Then

$$\overline{xy} = \phi(x)\phi(y) = \phi(xy) \in \phi(\mathfrak{b}).$$

Thus, $\phi(\mathfrak{b})$ is an ideal of A/\mathfrak{a} .

- Let \overline{b} be an ideal of A/a. Then:
 - $\phi^{-1}(\overline{\mathfrak{b}}) \supseteq \phi^{-1}(0) = \mathfrak{a}$.
 - If $x \in \phi^{-1}(\overline{b})$ and $y \in A$, then $xy \in \phi^{-1}(\overline{b})$, since $\phi(x) \in \overline{b}$, and hence $\phi(xy) = \phi(x)\phi(y) \in \overline{b}$

Thus, $\phi^{-1}(\overline{\mathfrak{b}})$ is an ideal containing \mathfrak{a} .

- $\mathfrak{b} \to \phi(\mathfrak{b})$ and $\overline{\mathfrak{b}} \to \phi^{-1}(\overline{\mathfrak{b}})$ are inverses of each other:
 - If $\overline{\mathfrak{b}}$ is an ideal of A/\mathfrak{a} , then $\phi(\phi^{-1}(\overline{\mathfrak{b}})) = \overline{\mathfrak{b}}$, since ϕ is onto.
 - If b is an ideal containing a, then $\phi^{-1}(\phi(\mathfrak{b})) = \mathfrak{b}$, since

$$x \in \phi^{-1}(\phi(\mathfrak{b})) \Longleftrightarrow \phi(x) \in \phi(\mathfrak{b}) \Longleftrightarrow x \in \mathfrak{b} + \mathfrak{a} \Longleftrightarrow x \in \mathfrak{b}.$$

Therefore, we have a bijection (one-to-one correspondence) between ideals of A containing \mathfrak{a} and ideals of A/\mathfrak{a} .

Facts

Let $f: A \rightarrow B$ is a ring homomorphism. Then

- The kernel $f^{-1}(0)$ is an ideal of \mathfrak{a} .
- 2 The image f(A) is a subring of B.
- **3** f induces a ring isomorphism $A/f^{-1}(0) \simeq f(A)$.

Remark

The notation $x \equiv y \pmod{\mathfrak{a}}$ means that $x - y \in \mathfrak{a}$.

Definition (Zero-Divisors, Integral Domains)

- A zero-divisor of a ring A is any element x that divides 0, i.e., there is $y \neq 0$ such that xy = 0.
- A (non-zero) ring with no non-zero zero-divisors is called an integral domain. That is, we have

$$x \neq 0$$
 and $xy = 0 \implies y = 0$.

Examples

The following rings are integral domains:

- The ring of integers Z.
- Any polynomial rings $k[x_1, \ldots, x_n]$, where k is a field.

Definition (Nilpotent Elements)

An element $x \in A$ is nilpotent when $x^n = 0$ for some $n \ge 1$.

Remark

Any nilpotent element is a zero-divisor (unless A = 0). The converse is not true in general.

Definition (Units)

- A unit of A is any element x that divides 1, i.e., there is $y \in A$ such that xy = 1.
- In this case y is unique and is denoted x^{-1} .

Fact

The set of units of A is a (multiplicative) Abelian group.

Definition (Principal Ideals)

A *principal ideal* is any ideal generated by a single element, i.e., it is of the form Ax for some $x \in A$.

Remarks

- We shall also denote Ax by (x). It consists of all multiples ax, $a \in A$.
- 2 x is a unit if and only if (x) = A = (1).
- 3 The zero ideal (0) is denoted 0.

Definition (Field)

A field is a ring A in which $1 \neq 0$ and every $x \neq 0$ is a unit.

Remark

Every field is an integral domain. The converse is not true (e.g., \mathbb{Z}).

Proposition (Proposition 1.2)

Let A be a non-zero ring. TFAE:

- (i) A is a field.
- (ii) The only ideals in A are 0 and A.
- (iii) Every ring homomorphism of A into a non-zero ring is one-to-one.

Definition (Prime Ideals)

An ideal $\mathfrak{p} \subseteq A$ is prime when $xy \in \mathfrak{p} \implies x \in \mathfrak{p}$ or $y \in \mathfrak{p}$.

Fact

 \mathfrak{p} is prime $\iff A/\mathfrak{p}$ is an integral domain.

Definition (Maximal Ideal)

An ideal $\mathfrak{m} \subsetneq A$ is maximal when there is no ideal \mathfrak{a} such that $\mathfrak{m} \subsetneq \mathfrak{a} \subsetneq A$.

Fact (Proposition 1.1 + Proposition 1.2)

 \mathfrak{m} is maximal $\iff A/\mathfrak{m}$ is a field.

In particular, any maximal ideal is prime.

Remark

The zero ideal is prime if and only if A is an integral domain.

Fact

Let $f: A \to B$ be a ring homomorphism and \mathfrak{q} a prime ideal. Then $f^{-1}(\mathfrak{q})$ is a prime ideal in A.

Proof.

We have

$$xy \in f^{-1}(\mathfrak{q}) \iff f(xy) \in \mathfrak{q} \iff f(x)f(y) \in \mathfrak{q}.$$

As \mathfrak{q} is prime, f(x) or f(y) is in \mathfrak{q} , i.e., x or y is in $f^{-1}(\mathfrak{q})$, and hence \mathfrak{q} is prime.

Remark

If $\mathfrak n$ is a maximal ideal in A, then $f^{-1}(\mathfrak n)$ is prime, but it need not be maximal (e.g., $A = \mathbb Z$, $B = \mathbb Q$, $\mathfrak n = 0$).

Theorem (Theorem 1.3; see Atiyah-MacDonald + Carlson)

Every ring $A \neq 0$ admits a maximal ideal.

Corollary (Corollary 1.4)

For any ideal $\mathfrak{a} \subsetneq A$, there is a maximal ideal that contains \mathfrak{a} .

Proof.

Apply Theorem 1.3 to A/a and use Proposition 1.1.

Corollary (Corollary 1.5)

Every non-unit of A is contained in a maximal ideal.

Remark

There are rings with exactly one maximal ideal, e.g., fields (in which 0 is the unique maximal ideal).

Definition

- **1** A ring with exactly one maximal ideal **m** is called a local ring.
- 2 The field k = A/m is called the residual field of A.

Proposition (Proposition 1.6)

- (i) Let $\mathfrak{m} \subsetneq A$ be an ideal such that any $x \in A \setminus \mathfrak{m}$ is a unit. Then A is local ring and has \mathfrak{m} is its unique maximal ideal.
- (ii) Let $\mathfrak m$ be a maximal ideal such that every element of $1+\mathfrak m$ is a unit. Then A is a local ring.

Example

Let $A = k[x_1, ..., x_n]$, k field. If $f \in A$ is irreducible, then the ideal (f) is prime.

Example

Let $A = \mathbb{Z}$. Then

- Every ideal of \mathbb{Z} is a principal ideal (m) for some $m \geq 0$.
- **2** (m) is a prime ideal if and only if m = 0 or is a prime number.
- **3** All the ideals (p) with p prime are maximal, since $\mathbb{Z}/(p) = \mathbb{Z}/p\mathbb{Z}$ is a field.
- The same holds for $A = k[x_1]$, but not for $A = k[x_1, ..., x_n]$ with n > 2.

Example

Every ideal of \mathbb{Z} is a principal ideal (m) for some $m \geq 0$.

Proof.

Let \mathfrak{a} be a non-zero ideal.

- Let m be the smallest positive element of a. Then $(m) \subseteq a$.
- Let $y \in \mathfrak{a} \setminus 0$. Assume y > 0 and y = qm + r with $0 \le r \le m 1$.
- Assume $r \neq 0$. Then 0 < r < m, and so $r \notin \mathfrak{a}$,
- However, $r = y qm \in \mathfrak{a} + (m) = \mathfrak{a}$ (contradiction).
- Thus, r = 0, and so $y = qm \in (m)$.
- It follows that $\mathfrak{a} = (m)$.

The proof is complete.

Example

(m) is a prime ideal of \mathbb{Z} if and only if m = 0 or is a prime number.

Proof.

• Assume $m \ge 1$. If $x \ne 0$, then

$$x \in (m) \iff x \in m\mathbb{Z} \iff m \text{ divides } x.$$

• If m is a prime number, then (m) is a prime ideal, since

$$xy \in (m) \iff m \text{ divides } xy$$
 $\iff m \text{ divides } x \text{ or } y$
 $\iff x \in (m) \text{ or } y \in (m).$

- Suppose that m is not a prime number.
 - There are integers $x, y \ge 2$ such that $xy = m \in (m)$.
 - m does not divide x or y, and so $x, y \notin (m)$.
 - Thus, (m) is not a prime ideal.

This proves the result.

Example (Principal Ideal Domain)

A principal ideal domain is an integral domain in which every ideal is principal (e.g., \mathbb{Z} , $k[x_1]$). In such an ideal every non-zero prime ideal is maximal.

Reminder

Let $\mathfrak a$ be an ideal and $\phi:A\to A/\mathfrak a$ the canonical homomorphism. By Proposition 1.1 we have an order-preserving one-to-one corrrespondence between ideals of A containg $\mathfrak a$ and ideals of $A/\mathfrak a$,

$$\mathfrak{b} = \phi^{-1}(\overline{\mathfrak{b}}) \longleftrightarrow \overline{\mathfrak{b}} = \phi(\mathfrak{b}).$$

Proposition (Proposition 1.1*)

This correspondence induces one-to-correspondences:

```
\{ \text{Maximal ideals of A containing } \mathfrak{a} \} \longleftrightarrow \{ \text{Maximal ideals of A/a} \},
\{ \text{Prime ideals of A containing } \mathfrak{a} \} \longleftrightarrow \{ \text{Prime ideals of A/a} \},
```

Remark

The above result is not stated explicitly in Atiyah-MacDonald's book. However, it is used throughout the book.

Proof of Proposition 1.1*.

- We have a correspondence between maximal ideals, because the correspondence between ideals is order-preserving.
- Let p be an ideal containing a. Then

$$\phi(x) \in \phi(\mathfrak{p}) \Longleftrightarrow x \in \mathfrak{p} + \mathfrak{a} \Longleftrightarrow x \in \mathfrak{p},$$
$$\phi(x)\phi(y) \in \phi(\mathfrak{p}) \Longleftrightarrow \phi(xy) \in \phi(\mathfrak{p}) \Longleftrightarrow xy \in \mathfrak{p}.$$

• If \mathfrak{p} is prime, then $\phi(\mathfrak{p})$ is prime, since

$$\phi(x)\phi(y) \in \phi(\mathfrak{p}) \Longleftrightarrow xy \in \mathfrak{p} \Longleftrightarrow (x \in \mathfrak{p} \text{ or } y \in \mathfrak{p})$$
$$\iff (\phi(x) \in \phi(\mathfrak{p}) \text{ or } \phi(y) \in \phi(\mathfrak{p})).$$

• Conversely, if $\phi(p)$ is prime, then p is prime, since

$$xy \in \mathfrak{p} \iff \phi(x)\phi(y) \in \phi(\mathfrak{p}) \iff (\phi(x) \in \phi(\mathfrak{p}) \text{ or } \phi(y) \in \phi(\mathfrak{p}))$$

 $\iff (x \in \mathfrak{p} \text{ or } y \in \mathfrak{p}).$

• This gives the correspondence between prime ideals.

The result is proved.

Proposition (Proposition 1.7)

Let $\mathfrak N$ be the set of all nilpotent elements of A. Then:

- n is an ideal
- 2 The quotient ring A/\mathfrak{N} has no non-zero nilpotent elements.

Definition

The ideal \mathfrak{N} is called the nilradical of A.

Proposition (Proposition 1.8; see Atiyah-MacDonald)

The nilradical \mathfrak{N} is the intersection of all the prime ideals of A.

Sketch of Proof.

Let \mathfrak{N}' be the intersections of all prime ideals.

- Let $f \in \mathfrak{N}$ and \mathfrak{p} a prime ideal. Then $f^n = 0 \in \mathfrak{p}$ for some n.
 - Let n_0 be the smallest integer such that $f^{n_0} \in \mathfrak{p}$.
 - If $n_0 \ge 2$. Then $f^{n_0-1} \notin \mathfrak{p}$ and $f \notin \mathfrak{p}$, but $f^{n_0-1}f = f^{n_0} \in \mathfrak{p}$.
 - As \mathfrak{p} is prime, this implies that $f^{n_0-1} \in \mathfrak{p}$ or $f \in \mathfrak{p}$ (contradiction).
 - Thus, $f \in \mathfrak{p}$ for every prime ideal \mathfrak{p} , and hence $f \in \mathfrak{N}'$.

This shows that $\mathfrak{N} \subseteq \mathfrak{N}'$.

- Let $f \notin \mathfrak{N}$. Let Σ be the set of ideals \mathfrak{a} s.t. $f^n \notin \mathfrak{a} \ \forall n \geq 1$.
 - By Zorn's lemma Σ has a maximal element \mathfrak{p} . Then $f \notin \mathfrak{p}$.
 - It can be shown that \mathfrak{p} is a prime ideal, and so $f \notin \mathfrak{N}'$.

This shows that $A \setminus \mathfrak{N} \subseteq A \setminus \mathfrak{N}'$, and hence $\mathfrak{N}' \subseteq \mathfrak{N}$.

This gives the result.

Definition

The Jacobson radical \mathfrak{R} of A is the intersection of all its maximal ideals.

Proposition (Proposition 1.9)

$$\mathfrak{R} = \{x \in A; \ 1 - xy \text{ is a unit for all } y \in A\}.$$

Proof.

- Let $x \in \Re$. If $y \in A$ is s.t. 1 xy is not a unit, then:
 - By Corollary 1.5 there is a maximal ideal $\mathfrak{m} \ni 1 xy$
 - As $x \in \mathfrak{R} \subseteq \mathfrak{m}$, and hence $xy \in \mathfrak{m}$, we see that $1 = (1 xy) + xy \in \mathfrak{m}$, which is impossible (\mathfrak{m} is maximal).

Therefore 1 - xy is a unit for all $y \in A$.

- Let $x \notin \mathfrak{R}$, i.e., $x \notin \mathfrak{m}$ for some maximal ideal \mathfrak{m} . Then:
 - As \mathfrak{m} is maximal, the ideal generated by x and \mathfrak{m} is A.
 - Thus, there are $u \in \mathfrak{m}$ and $y \in A$ such that u + xy = 1.
 - Therefore $1 xy = u \in \mathfrak{m}$ is not a unit.

By contraposition, if 1 - xy is a unit for all y, then $x \in \Re$.

This proves the result.

Definition (Sum of Ideals)

If \mathfrak{a} and \mathfrak{b} are ideals in a ring A, their sum $\mathfrak{a} + \mathfrak{b}$ is the set all sums x + y with $x \in \mathfrak{a}$ and $y \in \mathfrak{b}$.

Fact

a + b is the smallest ideal that contains a and b.

Definition (Sum of Ideals)

Given a (possibly infinite) family $\{a_i\}_{i\in I}$ of ideals of A, the sum $\sum_{i\in I} a_i$ consists of all <u>finite</u> sums $\sum x_i$ with $x_i \in a_i$.

Fact

 $\sum_{i \in I} a_i$ is the smallest ideal that contains the a_i 's.

Fact

The intersection of any family of ideals $(a_i)_{i \in I}$ is an ideal.

Consequence

The ideals of A form a complete lattice with respect to inclusion, i.e., every subset has a supremum and an infimum.

Definition (Product of Ideals)

The product of two ideals \mathfrak{a} and \mathfrak{b} in A consists of all finite sums $\sum x_i y_i$ with $x_i \in \mathfrak{a}$ and $y_i \in \mathfrak{b}$.

Remark

- We similarly define the product of any <u>finite</u> family of ideals.
- ② In particular, the power \mathfrak{a}^n , $n \ge 1$, of an ideal \mathfrak{a} is generated by products $x_1 \cdots x_n$ with $x_i \in \mathfrak{a}$.
- **3** By convention $\mathfrak{a}^0 = (1) = A$.

Example

Suppose that $A = \mathbb{Z}$, $\mathfrak{a} = (m)$ and $\mathfrak{b} = (n)$. Then:

- $\mathfrak{a} + \mathfrak{b}$ is the ideal generated by $\gcd(m, n)$ (greatest common divisor, a.k.a. highest common factor).
- ② $\mathfrak{a} \cap \mathfrak{b}$ is the ideal generated by lcm(m, n) (lowest common multiple).
- $\mathfrak{ab} = (mn).$

Example

 $A = k[x_1, \ldots, x_n]$, $a = (x_1, \ldots, x_n)$ ideal generated by x_1, \ldots, x_n . Then \mathfrak{a}^m , $m \ge 1$, consists of all polynomials with no terms of degree < m.

Remarks

- The three operations (sum, intersection, product) are all associative and commutative.
- 2 We also have the distributive law,

$$\mathfrak{a}(\mathfrak{b}+\mathfrak{c})=\mathfrak{a}\mathfrak{b}+\mathfrak{a}\mathfrak{c}.$$

3 In \mathbb{Z} the laws \cap and + are distributive over each other. This is not true for a general ring. At best we have the modular law,

$$\mathfrak{a} \cap (\mathfrak{b} + \mathfrak{c}) = \mathfrak{a} \cap \mathfrak{b} + \mathfrak{a} \cap \mathfrak{c}$$
 if $\mathfrak{a} \supseteq \mathfrak{b}$ or $\mathfrak{a} \supseteq \mathfrak{c}$.

• In \mathbb{Z} we have $(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} \cap \mathfrak{b}) = \mathfrak{a}\mathfrak{b}$. In general, we only have

$$(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} \cap \mathfrak{b}) \subseteq \mathfrak{ab}.$$

Definition

Two ideals $\mathfrak a$ and $\mathfrak b$ are said to be coprime when $\mathfrak a+\mathfrak b=(1)$. That is, there are $x\in\mathfrak a$ and $y\in\mathfrak b$ such that x+y=1.

Fact

We always have the inclusions,

$$(\mathfrak{a} + \mathfrak{b})(\mathfrak{a} \cap \mathfrak{b}) \subseteq \mathfrak{a}\mathfrak{b}$$
 and $\mathfrak{a}\mathfrak{b} \subseteq \mathfrak{a} \cap \mathfrak{b}$.

Thus, if \mathfrak{a} and \mathfrak{b} are coprime, then we have

$$\mathfrak{a} \cap \mathfrak{b} = \mathfrak{ab}$$
.

Definition (Direct Product of Rings)

Let A_1, \ldots, A_n be rings $(n \ge 2)$.

- **1** The direct product $A := \prod_{i=1}^{n} A_i$ consists of sequences (x_1, \ldots, x_n) with $x_i \in A_i$.
- We equip it with the component-wise addition and multiplication.

Facts

- ② The projections $p_i: A \to A_i$ defined by $p_i(x) = x_i$ are ring homomorphisms.

Let A be a ring $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ ideals of A. Define $\phi : A \to \prod_{i=1}^n (A/\mathfrak{a}_i)$ by

$$\phi(x) = (x + \mathfrak{a}_1, \dots, x + \mathfrak{a}_n), \qquad x \in A.$$

Fact

 ϕ is a ring homomorphism.

Proposition (Proposition 1.10)

The following holds.

- **1** If \mathfrak{a}_i and \mathfrak{a}_i are coprime whenever $i \neq j$, then $\prod \mathfrak{a}_i = \cap \mathfrak{a}_i$.
- ② ϕ is onto if and only if \mathfrak{a}_i and \mathfrak{a}_i are coprime for $i \neq j$.
- **3** ϕ is one-to-one if and only if $\cap a_i = 0$.

Remark

The union $\mathfrak{a} \cup \mathfrak{b}$ need not be an ideal in general.

Proposition (Proposition 1.11)

- **1** Assume that $\mathfrak{p}_1, \ldots \mathfrak{p}_n$ are prime ideals and \mathfrak{a} is an ideal contained in $\cup \mathfrak{p}_i$. Then $\mathfrak{a} \subseteq \mathfrak{p}_i$ for some i.
- ② Assume that $\mathfrak{a}_1, \ldots, \mathfrak{a}_n$ are ideals and \mathfrak{p} is a prime ideal containing $\cap \mathfrak{a}_i$. Then $\mathfrak{p} \supseteq \mathfrak{a}_i$ for some i. If $\mathfrak{p} = \cap \mathfrak{a}_i$, then $\mathfrak{p} = \mathfrak{a}_i$ for some i.

Remark

Let \mathfrak{p} be a prime ideal. By induction it can be shown that

$$x_1 \cdots x_n \in \mathfrak{p} \Longrightarrow x_i \in \mathfrak{p}$$
 for some i .

By contraposition we get

$$x_i \notin \mathfrak{p}$$
 for all $i \Longrightarrow x_1 \cdots x_n \notin \mathfrak{p}$.

Proof of Proposition 1.11(i).

We show by induction that

$$(*) \qquad \mathfrak{a} \not\subseteq \mathfrak{p}_i \ (1 \leq i \leq n) \Longrightarrow \mathfrak{a} \not\subseteq \bigcup \mathfrak{p}_i.$$

By contraposition this will give the result.

- For n = 1 the result is immediate.
- Assume (*) is true for n-1. Let $\mathfrak{a} \not\subseteq \mathfrak{p}_i$ for $i=1,\ldots,n$.
- As (*) is true for n-1, for each i, we have $\mathfrak{a} \not\subseteq \bigcup_{j\neq i} \mathfrak{p}_j$, i.e., there is $x_i \in \mathfrak{a}$ s.t. $x_i \notin \mathfrak{p}_j$ for $j \neq i$.
- If $x_i \notin p_i$ for some i, then we are done.
- Suppose that $x_i \in \mathfrak{p}_i$ for all i. Set

$$y = \sum_{1 \le j \le n} y_j$$
, where $y_j = x_1 \cdots x_{j-1} x_{j+1} \cdots x_n$.

• As $x_i \in \mathfrak{p}_i$, we see that $y_j = \prod_{k \neq i} x_k \in \mathfrak{p}_i$ for $j \neq i$.

Proof of Proposition 1.11(i), Continued.

• As $y_i \in \mathfrak{p}_i$ for $j \neq i$, we get

$$y = y_1 + \dots + y_n$$

$$\equiv y_i \mod \mathfrak{p}_i$$

$$\equiv x_1 \dots x_{i-1} x_{i+1} \dots x_n \mod \mathfrak{p}_i.$$

- As $x_j \notin \mathfrak{p}_i$ for $j \neq i$ and \mathfrak{p}_i is a prime ideal, we see that $x_1 \cdots x_{i-1} x_{i+1} \cdots x_n \notin \mathfrak{p}_i$ (see previous remark).
- It follows that $y \notin \mathfrak{p}_i$ for all i, and hence $\mathfrak{a} \not\subseteq \bigcup_{i=1}^n \mathfrak{p}_i$.

This shows that (*) is true for n. The proof is complete.

Proof of Proposition 1.11(ii).

- Suppose that $\mathfrak{p} \not\supseteq \mathfrak{a}_i$ for $i = 1, \ldots, n$. Thus, for each i there is $x_i \in \mathfrak{a}$ s.t. $x_i \not\in \mathfrak{p}$.
- As \mathfrak{p} is prime $x_1 \cdots x_n \notin \mathfrak{p}$ (see previous remark).
- As $x_1 \cdots x_n \in \mathfrak{a}_1 \cdots \mathfrak{a}_n \subseteq \cap \mathfrak{a}_i$, we see that $\mathfrak{p} \not\supseteq \cap \mathfrak{a}_i$.
- By contraposition, we get

$$\mathfrak{p}\supseteq\bigcap\mathfrak{a}_i\Longrightarrow\mathfrak{p}\supseteq\mathfrak{a}_i$$
 for some i .

• If $\mathfrak{p} = \cap \mathfrak{a}_i$, then $\mathfrak{a}_i \subseteq \mathfrak{p} \subseteq \cap \mathfrak{a}_i \subseteq \mathfrak{a}_i$, and hence $\mathfrak{p} = \mathfrak{a}_i$.

The result is proved.

Definition (Ideal Quotient)

If \mathfrak{a} and \mathfrak{b} are ideals in a ring A, their ideal quotient is

$$(\mathfrak{a} : \mathfrak{b}) := \{x; \ x\mathfrak{b} \subseteq \mathfrak{a}\}.$$

Fact

(a:b) is an ideal.

Definition

 $(0:\mathfrak{b})$ is called the annihilator of \mathfrak{b} and is also denoted by $\mathsf{Ann}(\mathfrak{b})$. It consists of all $x \in A$ such that $x\mathfrak{b} = 0$.

Remarks

- When \mathfrak{b} is a principal ideal (x) we shall denote $(\mathfrak{a} : (x))$ and $\mathsf{Ann}((x))$ by $(\mathfrak{a} : x)$ and $\mathsf{Ann}(x)$, respectively.
- **2** Ann $(x) = \{y \in A; xy = 0\}.$
- **3** The set of all zero-divisors in A is $D = \bigcup_{x \neq 0} Ann(x)$.

Example

$$A = \mathbb{Z}$$
, $\mathfrak{a} = (m)$, $\mathfrak{b} = (n)$. Then
$$(m:n) = \{x \in \mathbb{Z}; \ xn\mathbb{Z} \subseteq m\mathbb{Z}\},$$

$$= \{x \in \mathbb{Z}; \ m \ \text{divides} \ nx\},$$

$$= (q), \qquad \text{where} \ q = \frac{m}{\gcd(m,n)}.$$

Here q is the greatest positive integer such that m divides qn (see Atiyah-MacDonald).

Exercise (Exercise 1.12; see Carlson)

- (i) $\mathfrak{a} \subseteq (\mathfrak{a} : \mathfrak{b})$.
- (ii) $(a : b)b \subseteq a$.
- (iii) $((\mathfrak{a} : \mathfrak{b}) : \mathfrak{c}) = (\mathfrak{a} : \mathfrak{bc}) = ((\mathfrak{a} : \mathfrak{c}) : \mathfrak{b}).$
- (iv) $(\cap \mathfrak{a}_i : \mathfrak{b}) = \cap (\mathfrak{a}_i : \mathfrak{b}).$
- (v) $(\mathfrak{a}: \sum \mathfrak{b}_i) = \cap (\mathfrak{a}: \mathfrak{b}_i).$

Definition (Radical of an Ideal)

Let \mathfrak{a} be an ideal of A. Its radical is

$$r(\mathfrak{a}) := \{x \in A; \ x^n \in \mathfrak{a} \text{ for some } n \ge 1\}.$$

Fact

If $\phi:A\to A/\mathfrak{a}$ is the canonical homomorphism, then $r(\mathfrak{a})=\phi^{-1}(\mathfrak{N}_{A/\mathfrak{a}})$, where $\mathfrak{N}_{A/\mathfrak{a}}$ is the nilradical of A/\mathfrak{a} . In particular, $r(\mathfrak{a})$ is an ideal.

Proof.

We have

$$x \in r(\mathfrak{a}) \iff x^n \in \mathfrak{a} \text{ for some } n,$$

 $\iff \phi(x)^n = 0 \text{ for some } n,$
 $\iff \phi(x) \in \mathfrak{N}_{A/\mathfrak{a}} \iff x \in \phi^{-1}(\mathfrak{N}_{A/\mathfrak{a}}).$

This gives the result.

Exercise (Exercise 1.13; see Carlson)

- (i) $r(\mathfrak{a}) \supseteq \mathfrak{a}$.
- (ii) $r(r(\mathfrak{a})) = r(\mathfrak{a})$.
- (iii) $r(\mathfrak{ab}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b}).$
- (iv) $r(\mathfrak{a}) = (1) \Leftrightarrow \mathfrak{a} = (1)$.
- (v) $r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})).$
- (vi) If \mathfrak{p} is prime, then $r(\mathfrak{p}^n) = \mathfrak{p}$ for all $n \ge 1$.

Proposition (Proposition 1.14)

The radical $r(\mathfrak{a})$ is the intersection of the prime ideals that contains \mathfrak{a} .

Proof.

Let $\phi: A \to A/\mathfrak{a}$ be the canonical homomorphism.

• We know that

$$r(\mathfrak{a}) = \phi^{-1}(\mathfrak{N}_{A/\mathfrak{a}}).$$

• By using Proposition 1.8 and Proposition 1.1* we get

$$\begin{split} r(\mathfrak{a}) &= \phi^{-1} \left(\bigcap \{ \overline{\mathfrak{p}}; \ \overline{\mathfrak{p}} \ \text{prime ideal of } A/\mathfrak{a} \} \right) \\ &= \bigcap \{ \phi^{-1}(\overline{\mathfrak{p}}); \ \overline{\mathfrak{p}} \ \text{prime ideal of } A/\mathfrak{a} \} \\ &= \bigcap \{ \mathfrak{p}; \ \mathfrak{p} \ \text{prime ideal of } A \ \text{containing } \mathfrak{a} \}. \end{split}$$

The proof is complete.

Remark

Given any subset $E \subseteq A$ we may define its radical r(E) as above. This is not an ideal in general (unless E is an ideal).

Fact

Given any family E_{α} of subsets of A, we have $r(\cup E_{\alpha}) = \cup r(E_{\alpha})$.

Remark

Let D be the set of zero-divisors of A. We have

$$x \in D \iff xy = 0$$
 for some $y \neq 0$.

Thus.

$$(x \notin D \text{ and } xy = 0) \Longrightarrow y = 0.$$

Proposition (Proposition 1.15)

The set D of zero-divisors of A is equal to $\bigcup_{x\neq 0} r(Ann(x))$.

Proof.

- We claim that r(D) = D. We know that $D \subseteq r(D)$.
- Let $x \in r(D)$, i.e., $x^n \in D$ for some $n \ge 1$. Let n be the smallest such number.
 - Assume $n \ge 2$. Then $x \notin D$ and $x^{n-1} \notin D$.
 - As $x^n \in D$, there is $y \neq 0$ such that $0 = x^n y = x(x^{n-1}y)$.
 - As $x \notin D$, this implies that $x^{n-1}y = 0$, and so $x^{n-1} \in D$ (contradiction).

This shows that $x \in D$, and hence $r(D) \subseteq D$.

• By using the previous fact, we then get

$$D = r(D) = r\left(\bigcup_{x \neq 0} \operatorname{Ann}(x)\right) = \bigcup_{x \neq 0} r\left(\operatorname{Ann}(x)\right).$$

The result is proved.

Example

 $A = \mathbb{Z}$, $\mathfrak{a} = (m)$. Let p_1, \ldots, p_r be the prime divisors of m. Then

$$r(\mathfrak{a})=(p_1\cdots p_r)=\bigcap_{i=1}^r(p_i).$$

Proposition (Proposition 1.16)

If $\mathfrak a$ and $\mathfrak b$ are ideals of A such that $r(\mathfrak a)$ and $r(\mathfrak b)$ are coprime, then $\mathfrak a$ and $\mathfrak b$ are coprime.

Let $f: A \rightarrow B$ be a ring homomorphism.

Fact

If \mathfrak{a} is an ideal, then $f(\mathfrak{a})$ need not be an ideal.

Definition (Extension)

The extension \mathfrak{a}^e of \mathfrak{a} is the ideal $Bf(\mathfrak{a})$ generated by \mathfrak{a} . That is, \mathfrak{a}^e consists of all finite sums $\sum y_i f(x_i)$ with $y_i \in B$ and $x_i \in \mathfrak{a}$.

Fact

If \mathfrak{b} is an ideal of B, then $f^{-1}(\mathfrak{b})$ is in ideal of A.

Definition (Contraction)

 $f^{-1}(\mathfrak{b})$ is called the contraction of \mathfrak{b} and is denoted by \mathfrak{b}^c .

Fact

If \mathfrak{b} is prime, then its contraction \mathfrak{b}^c is prime as well.

Proof.

If b is prime, then

$$xy \in \mathfrak{b}^c \iff f(xy) \in \mathfrak{b} \iff f(x)f(y) \in \mathfrak{b}$$

 $\iff f(x) \in \mathfrak{b} \text{ or } f(y) \in \mathfrak{b}$
 $\iff x \in \mathfrak{b}^c \text{ or } y \in \mathfrak{b}^c.$

Thus, \mathfrak{b}^{c} is a prime ideal.

Fact

If \mathfrak{a} is a prime ideal of A, then its extension \mathfrak{b}^e need not be prime.

Example

Take $A = \mathbb{Z}$ and $B = \mathbb{Z}[i]$, where $i = \sqrt{-1}$.

- We have $(2)^e = (2\mathbb{Z})\mathbb{Z}[i] = 2\mathbb{Z}[i]$.
- However, $2\mathbb{Z}[i]$ is not prime, since

$$(1+i) \notin 2\mathbb{Z}[i]$$
 and $(1+i)^2 = 2i \in 2\mathbb{Z}[i]$.

Definition

- C is the set of contracted ideals in A.
- E is the set of extended ideals in B.

Proposition (Proposition 1.17; see also Carlson)

- (i) $\mathfrak{a} \subseteq \mathfrak{a}^{ec}$ and $\mathfrak{b} \supseteq \mathfrak{b}^{ce}$.
- (ii) $\mathfrak{a}^e = \mathfrak{a}^{ece}$ and $\mathfrak{b}^c = \mathfrak{b}^{cec}$.
- (iii) $C = \{\mathfrak{a}; \ \mathfrak{a}^{ec} = \mathfrak{a}\}, \ E = \{\mathfrak{b}; \ \mathfrak{b}^{ce} = \mathfrak{b}\}, \ and \ \mathfrak{a} \to \mathfrak{a}^e \ is \ a$ bijection from C onto E with inverse $\mathfrak{b} \to \mathfrak{b}^c$.

Proof of Proposition 1.17.

• For (i) we have

$$\mathfrak{a}^{\operatorname{ec}} = f^{-1}(Bf(\mathfrak{a})) \supseteq f^{-1}(f(\mathfrak{a})) \supseteq \mathfrak{a},$$

 $\mathfrak{b}^{\operatorname{ce}} = Bf(f^{-1}(\mathfrak{b})) \subseteq B\mathfrak{b} = \mathfrak{b}.$

• For (ii), by using (i) we get

$$\mathfrak{a}^e\subseteq (\mathfrak{a}^{ec})^e=(\mathfrak{a}^e)^{ce}\subseteq \mathfrak{a}^e.$$

Thus, $\mathfrak{a}^e = \mathfrak{a}^{ece}$. Likewise, $\mathfrak{b}^c = \mathfrak{b}^{cec}$.

- For (iii), set $C' = \{\mathfrak{a}; \ \mathfrak{a}^{ec} = \mathfrak{a}\}$ and $E' = \{\mathfrak{b}; \ \mathfrak{b}^{ce} = \mathfrak{b}\}.$
 - Clearly, $C' \subseteq C$ and $E' \subseteq E$.
 - If $\mathfrak{a} = \mathfrak{b}^c$, then $\mathfrak{a}^{ec} = \mathfrak{b}^{cec} = \mathfrak{b}^c = \mathfrak{a}$.
 - Thus, C = C'. Likewise E = E'.
 - (ii) implies that $\mathfrak{a} \to \mathfrak{a}^e$ is a bijection from C' = C onto E' = E with inverse $\mathfrak{b} \to \mathfrak{b}^c$.

The result is proved.

Exercise (Exercise 1.18; see Carlson)

1 Let \mathfrak{a}_1 and \mathfrak{a}_2 be ideals of A and let \mathfrak{b}_1 and \mathfrak{b}_2 be ideals of B.

$$\begin{aligned} (\mathfrak{a}_{1}+\mathfrak{a}_{2})^{e} &= \mathfrak{a}_{1}^{e}+\mathfrak{a}_{2}^{e}, & (\mathfrak{b}_{1}+\mathfrak{b}_{2})^{c} \supseteq \mathfrak{b}_{1}^{c}+\mathfrak{b}_{2}^{c}, \\ (\mathfrak{a}_{1}\cap\mathfrak{a}_{2})^{e} \subseteq \mathfrak{a}_{1}^{e}\cap\mathfrak{a}_{2}^{e}, & (\mathfrak{b}_{1}\cap\mathfrak{b}_{2})^{c} = \mathfrak{b}_{1}^{c}\cap\mathfrak{b}_{2}^{c}, \\ (\mathfrak{a}_{1}\mathfrak{a}_{2})^{e} &= \mathfrak{a}_{1}^{e}\mathfrak{a}_{2}^{e}, & (\mathfrak{b}_{1}\mathfrak{b}_{2})^{c} \supseteq \mathfrak{b}_{1}^{c}\mathfrak{b}_{2}^{c}, \\ (\mathfrak{a}_{1}:\mathfrak{a}_{2})^{e} \subseteq (\mathfrak{a}_{1}^{e}:\mathfrak{a}_{2}^{e}), & (\mathfrak{b}_{1}:\mathfrak{b}_{2})^{c} \subseteq (\mathfrak{b}_{1}^{c}:\mathfrak{b}_{2}^{c}), \\ r(\mathfrak{a})^{e} \subseteq r(\mathfrak{a}^{e}), & r(\mathfrak{b})^{c} = r(\mathfrak{b}^{c}). \end{aligned}$$

- The set of extended ideals E is closed under sum and product.
- **3** The set of contracted ideals *C* is closed under the other three operations (intersection, ideal quotient and radical).

Remark

The fact that C is closed under ideal quotient follows from the equality $(\mathfrak{b}_1^c : \mathfrak{b}_2^c) = (\mathfrak{b}_1^{ce} : \mathfrak{b}_2^{ce})^c$ (see Carlson).

Prime Spectrum

Definition

The set of all prime ideals of A is called the *prime spectrum* of A and is denoted Spec(A).

Notation

In what follows we set $X = \operatorname{Spec}(A)$.

Definition

If $E \subseteq A$, then V(E) is the set of prime ideals containing E.

Prime Spectrum. Zariski Topology

Proposition (Problem 1.15; see Carlson)

• If a is the ideal generated by E, then

$$V(E) = V(\mathfrak{a}) = V(r(\mathfrak{a})).$$

- **2** V(0) = X and $V(1) = \emptyset$.
- 4 If a and b are ideals, then

$$V(\mathfrak{a} \cap \mathfrak{b}) = V(\mathfrak{a}\mathfrak{b}) = V(\mathfrak{a}) \cup V(\mathfrak{b}).$$

Consequence

- The collection $\{V(E)\}$ satisfies the axioms for the closed sets in a topological space.
- That is, the collection $\{X \setminus V(E)\}$ is a topology on X.
- It is called the Zariski topology.

Prime Spectrum. Zariski Topology

Remark (see Problem 1.17 and Carlson)

If $f \in A$, set $X_f = X \setminus V(f)$. Then:

- Each X_f is an open set in X.
- 2 The X_f form a basis for the Zariski topology.
- **3** Each X_f is compact (i.e., every open covering has a finite sub-covering; see Carlson).
- 4 In particular, $X = X_1$ is compact (but it need not be Hausdorff).

Prime Spectrum. Examples

Example $(X = \operatorname{Spec}(\mathbb{Z}))$

We have

$$\mathsf{Spec}(\mathbb{Z}) = \{0\} \cup \{(p); \ p \in \mathbb{N}, \mathsf{prime}\}.$$

• The closed sets are

$$\emptyset$$
, X , $\{(p_i); 1 \leq i \leq n\}$.

- The closure of $\{0\}$ is X, and hence $Spec(\mathbb{Z})$ is not Hausdorff (since the interior of $X \setminus \{0\}$ is empty).
- 0 is called a *generic* point.

Prime Spectrum. Examples

Example $(X = \operatorname{Spec}(\mathbb{C}[x]))$

We have

Spec (
$$\mathbb{C}[x]$$
) = {0} \cup {($x - \alpha$); $\alpha \in \mathbb{C}$ }, $\alpha \in \mathbb{C}$ \cup \cup \cup \cup \cup \cup

• The closed sets are

$$\emptyset$$
, X , $\{(x-\alpha_i); 1 \leq i \leq n\}$.

• The closure of $\{0\}$ is X, and so X is not Hausdorff.

Prime Spectrum. Examples

Example $(X = \operatorname{Spec}(\mathbb{R}[x]))$

ullet The irreducible polynomials on ${\mathbb R}$ are

$$x - \alpha$$
, $\alpha \in \mathbb{R}$, and $(x - \beta)(x - \overline{\beta})$, $\Im \beta > 0$.

We have

Spec (
$$\mathbb{R}[x]$$
) = {0} $\cup \mathbb{C} \cup \{\Im \beta > 0\}$.