Differentiable Manifolds §22. Manifolds with Boundary

Sichuan University, Fall 2022

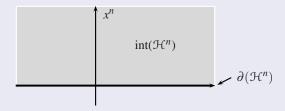
The Upper Half-Space \mathbb{H}^n

Definition

• The (closed) upper half-space is

$$\mathbb{H}^n = \{(x^1, \dots, x^n) \in \mathbb{R}^n; \ x^n \ge 0\}.$$

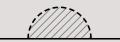
- The points $(x^1, \dots, x^n) \in \mathbb{H}^n$ with $x^n > 0$ are called *interior points*. The set of interior points is denoted $Int(\mathbb{H}^n)$.
- The points $(x^1, \dots, x^n) \in \mathbb{H}^n$ with $x^n = 0$ are called boundary points. The set of boundary points is denoted $\partial(\mathbb{H}^n)$.



The Upper Half-Space \mathbb{H}^n

Remark

There are two types of open subsets of \mathbb{H}^n , depending on whether they intersect with the boundary $\partial \mathbb{H}^n$:



These open sets are the local models for manifolds with boundary.

Remark

- \mathbb{H}^1 is the right half-line $[0, \infty)$.
- It also convenient to consider the left-half line $\mathbb{L}^1 = (-\infty, 0]$.

Definition (Definition 22.1)

Let S be a subset of \mathbb{R}^n and let $f: S \to \mathbb{R}^m$ be a map.

- We say that f is smooth at a point $p \in S$ if there is an open set $U \subset \mathbb{R}^n$ containing p and a smooth map $\tilde{f}: U \to \mathbb{R}^m$ such that $\tilde{f} = f$ on $U \cap S$.
- We say that f is smooth on S if it is smooth at every point $p \in S$.

Definition

We say that subsets $S \subset \mathbb{R}^n$ and $T \subset \mathbb{R}^m$ are diffeomorphic if there are smooth maps $f: S \to T \subset \mathbb{R}^m$ and $g: T \to S \subset \mathbb{R}^n$ which are inverses of each other.

Exercise (Exercise 22.2)

Let S be a subset of \mathbb{R}^n and let $f: S \to \mathbb{R}^m$ be a map. Using a partition of unity show that TFAE:

- (i) f is smooth on S.
- (ii) There is an open $U \subset \mathbb{R}^n$ containing S and a smooth map $\tilde{f}: U \to \mathbb{R}^m$ such that $\tilde{f}_{|S} = f$.

Consequence

Assume that S is an immersed submanifold in \mathbb{R}^n , and let $f: S \to \mathbb{R}^m$ be a map. Then TFAE:

- (i) f is smooth in the sense of the previous slide.
- (ii) f is smooth as a map from the manifold S to \mathbb{R}^m .

Theorem (Smooth invariance of domain; Theorem 22.3)

Let S be a subset of \mathbb{R}^n which is diffeomorphic to an open of \mathbb{R}^n . Then S is an open of \mathbb{R}^n .

Proposition (Proposition 22.4)

Let $f: U \to V$ be a diffeomorphism between open subsets of \mathbb{H}^n . Then

$$f(U \cap \operatorname{Int}(\mathbb{H}^n)) = V \cap \operatorname{Int}(\mathbb{H}^n), \quad f(U \cap \partial(\mathbb{H}^n)) = V \cap \partial(\mathbb{H}^n).$$

Definition (Definition 22.1)

Let S be any subset of a manifold M, and let $f: S \to N$ be a map, where N is a manifold.

- We say that f is smooth at a point $p \in S$ if there is an open set $U \subset M$ containing p and a smooth map $\tilde{f}: U \to N$ such that $\tilde{f} = f$ on $U \cap S$.
- We say that f is smooth on S if it is smooth at every point $p \in S$.

Definition

We say that subsets $S \subset M$ and $T \subset N$ are diffeomorphic if there are smooth maps $f: S \to T \subset N$ and $g: T \to S \subset M$ that are inverse of each other.

Theorem (Smooth invariance of domain)

Let S be a subset of M which is diffeomorphic to an open of M. Then S is an open of M.

Definition (Definition 22.6)

We say that a topological space M is *locally* \mathbb{H}^n if every $p \in M$ has a neighborhood which is homeomorphic to an open subset of \mathbb{H}^n .

Definition (Topological manifolds with boundary; Definition 22.6)

A topological n-manifold with boundary is a Hausdorff second-countable topological space which is locally \mathbb{H}^n .

Definition

Let M be a topological n-manifold with boundary.

- If $n \ge 2$, a chart is a pair (U, ϕ) , where $U \subset M$ is an open set and $\phi : U \to \phi(U) \subset \mathbb{H}^n$ is a homeorphism onto an open set of \mathbb{H}^n .
- If n=1 we allow a chart to be a pair (U,ϕ) , where U is an open set of M and $\phi:U\to\phi(U)$ is a homeomorphism onto an open set of $\mathbb{H}^1=[0,\infty)$ or $\mathbb{L}^1=(-\infty,0]$.

Remark

- With this convention, if $(U, x^1, x^2, ..., x^n)$ is a chart, then $(U, -x^1, x^2, ..., x^n)$ is a chart as well.
- In particular, for n = 1, if (U, x^1) is chart, then so is $(U, -x^1)$.

Definition

If M is a topological manifold with boundary, a C^{∞} atlas is a collection of charts $\{(U_{\alpha}, \phi_{\alpha})\}$ covering M such that the transition maps, $\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \longrightarrow \phi_{\beta}(U_{\alpha} \cap U_{\beta})$

are diffeomorphisms between open subsets of \mathbb{H}^n (or \mathbb{L}^1).

Definition (Differentiable manifold with boundary)

A differentiable manifold with boundary (or smooth manifold with boundary) is a topological manifold with boundary with a maximal C^{∞} atlas.

Definition

Let M be a smooth manifold with boundary.

- We say that a point $p \in M$ is an *interior point* if there is a chart (U, ϕ) near p such that $\phi(p) \in Int(\mathbb{H}^n)$.
- We say that p is a boundary point if there is a chart (U, ϕ) near p such that $\phi(p) \in \partial \mathbb{H}^n$.

Definition

- The set of interior points is called the interior of M and is denoted Int(M).
- The set of boundary points is called the boundary of M and is denoted $\partial(M)$.

Remark

Let p be an interior (resp., boundary) point, and (U, ϕ) a chart near p such that $\phi(p)$ is an interior (resp., boundary) point of \mathbb{H}^n .

- Let (V, ψ) be another chart near p. Then the transition map $\psi \circ \phi^{-1} : \phi(U \cap V) \to \psi(U \cap V)$ is a diffeomorphism between open subsets of \mathbb{H}^n (or \mathbb{L}^1).
- Thus it maps interior (resp., boundary) points of $\phi(U \cap V)$ to interior (resp., boundary) points of $\psi(U \cap V)$.
- In particular, $\psi(p) = \psi \circ \phi^{-1}(\phi(p))$ is an interior (resp., a boundary) point of \mathbb{H}^n .

This shows that the notions of interior and boundary points are independent of the chart.

Remark

Most of the concepts introduced for manifolds extend *verbatim* for manifolds with boundary.

For instance:

Definition

Let M be a C^{∞} manifold with boundary. A function $f:M\to\mathbb{R}$ is smooth if, for every chart (U,ϕ) , the function $f\circ\phi^{-1}:\phi(U)\to\mathbb{R}$ is smooth.

Remark

If p is a boundary point in U, this means that $f \circ \phi^{-1}$ has a C^{∞} extension to an open neighborhood of $\phi(p)$.

Remark

The interior and boundary in the sense of manifolds need not agree with the topological interior or the topological boundary.

Example (Example 22.7)

Let $D = \{x \in \mathbb{R}^2; \|x\| < 1\}$ be the open unit disk in \mathbb{R}^2

- *D* is a manifold without boundary, i.e., its manifold boundary is empty.
- However, its topological boundary is the unit circle \mathbb{S}^1 .
- For the closed disk $\overline{D} = \{x \in \mathbb{R}^2; ||x|| \le 1\}$ the manifold and topological boundaries agree; they are both equal to \mathbb{S}^1 .

Example (Example 22.8)

Consider the band,

$$B = \{(x, y) \in \mathbb{H}^2; y \le 1\} = \mathbb{R} \times [0, 1].$$

- The topological interior of B in \mathbb{H}^2 is $\mathbb{R} \times [0,1)$.
- Its manifold interior is $\mathbb{R} \times (0,1)$.

The Boundary of a Manifold with Boundary

Remark

The boundary $\partial \mathbb{H}^n$ of \mathbb{H}^n is $\{x_n = 0\} = \mathbb{R}^{n-1} \times \{0\}$. This is just \mathbb{R}^{n-1} under its standard embedding into \mathbb{R}^n .

Facts

Let M be a manifold with boundary and (U, ϕ) a chart for M. Denote by ϕ' the restriction of ϕ to $U \cap \partial M$.

- ϕ' maps $U \cap \partial M$ to $\partial \mathbb{H}^n \simeq \mathbb{R}^{n-1}$, since the points of $U \cap \partial M$ are precisely the points that are mapped to $\partial \mathbb{H}^n$ under ϕ .
- Thus, we get a homeomorphism,

$$\phi': U \cap \partial M \longrightarrow \phi(U) \cap \partial \mathbb{H}^n \subset \mathbb{R}^{n-1}.$$

The Boundary of a Manifold with Boundary

Lemma

Let (V,ψ) be a another chart and let $\psi':V\cap\partial M\to\psi(V)\cap\partial\mathbb{H}^n\subset\mathbb{R}^{n-1}$ the induced homeomorphism on $V\cap\partial M$. Then the transition map,

$$\psi' \circ (\phi')^{-1} : \phi(U \cap V) \cap \partial \mathbb{H}^n \longrightarrow \psi(U \cap V) \cap \partial \mathbb{H}^n$$

is a diffeomorphism between open subsets of \mathbb{R}^{n-1} .

As a consequence we obtain:

Proposition

Let $\{(U_{\alpha}, \phi_{\alpha})\}$ be a C^{∞} atlas of M. Then the collection $\{(U_{\alpha} \cap \partial M, \phi_{\alpha}|_{U_{\alpha} \cap \partial M})\}$ is a C^{∞} atlas of ∂M . In particular, ∂M is a smooth manifold (without of boundary) of dimension n-1.

The Boundary of a Manifold with Boundary

Remark

- It can also be shown that if $\{(U_{\alpha}, \phi_{\alpha})\}$ is a C^{∞} atlas of M, then $\{(U_{\alpha} \cap \operatorname{Int}(M), \phi_{\alpha|U_{\alpha} \cap \operatorname{Int}(M)})\}$ is a C^{∞} atlas of $\operatorname{Int}(M)$.
- It follows that the interior Int(M) is a smooth manifold without boundary of dimension n.

Definition

Let M be a manifold with boundary and $p \in M$.

- Two smooth functions $f: U \to \mathbb{R}$ and $g: V \to \mathbb{R}$ on open neighborhoods of p in M are said to be equivalent if they agree on a (possibly smaller) open neighborhood of p.
- Equivalence classes of such functions are called germs at p.
- The set of germs at p is denoted $C_p^{\infty}(M)$.

Remark

The addition and multiplication of functions induce an addition and a multiplication on $C_p^{\infty}(M)$ with respect to which $C_p^{\infty}(M)$ is an \mathbb{R} -algebra.

Definition

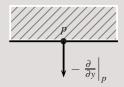
Let M be a manifold with boundary and $p \in M$. The tangent space T_pM is the space of point-derivations on $C_p^{\infty}(M)$, i.e., linear maps $D: C_p^{\infty}(M) \to \mathbb{R}$ such that

$$D(fg) = (Df)g(p) + f(p)Dg \qquad \forall f, g \in C_p^{\infty}(M).$$

Example

Let p be a boundary point of \mathbb{H}^2 .

- The tangent space $T_p(\mathbb{H}^2)$ is a 2-dimensional vector space with basis $\{\partial/\partial x|_p, \partial/\partial y|_p\}$.
- In particular, $-\partial/\partial y|_p$ is a tangent vector at p.
- However, there is no curve in \mathbb{H}^2 which starts at p and has initial velocity $-\partial/\partial y|_p$.



Remarks

- We can define smooth vector bundles over a manifold with boundary in the same way as with manifolds without boundary.
- In this context, a C^{∞} vector bundle E over a manifold with boundary M is itself a manifold with boundary whose boundary is $E_{|\partial M}$.

Remarks

Let M be a manifold with boundary.

• In the same way as with manifolds without boundary, the tangent spaces T_pM , $p \in M$, can be organized as a C^{∞} -vector bundle,

$$TM = \bigsqcup_{p \in M} T_p M.$$

- We call TM the tangent bundle of M.
- A vector field on M is a section of the tangent bundle TM.
- A vector field is *smooth* if it is smooth section of *TM*.

Definition

Let M be a manifold with boundary and $p \in M$.

- The cotangent space T_p^*M is the dual of the tangent space T_pM .
- We denote by $\Lambda^k(T_p^*M)$ the space of k-covectors on T_pM .

Remarks

• As with manifolds without boundary, we get C^{∞} vector bundles,

$$T^*M = \bigsqcup_{p \in M} T_p^*M, \qquad \Lambda^k(T^*M) = \bigsqcup_{p \in M} \Lambda^k(T_p^*M).$$

- The bundle T^*M is called the *cotangent bundle* of M.
- A *k-form* on *M* is a section of $\Lambda^k(T^*M)$.
- A smooth k-form is a smooth section of $\Lambda^k(T^*M)$.

Remarks

- As with manifolds without boundary, we define the orientation of a manifold with boundary *M* by the datum of a *continuous* pointwise orientation.
- A pointwise orientation is the assignment for each $p \in M$ to an orientation of the tangent space T_pM .
- In the same way as with manifolds without boundary we have one-to-one correspondences:

Remarks

Let M be manifold with boundary.

- The boundary ∂M is an embedded submanifold of M, in the sense that the inclusion $i:\partial M\hookrightarrow M$ is both a topological embedding and an immersion.
- In particular, for every $p \in \partial M$, the differential $\iota_{*,p} : T_p(\partial M) \to T_p M$ is injective.
- This allows us to identify $T_p(\partial M)$ with a subspace of T_pM .

Definition

Let p be a boundary point of M and let $X \in T_p(M)$ be a tangent vector.

• We say that X is inward-pointing if $X \notin T_p(\partial M)$ and there is a smooth curve $c:[0,\epsilon)\to M$ such that

$$c(0) = p,$$
 $c((0, \epsilon)) \subset Int(M),$ $c'(0) = X.$

• We say that X is outward-pointing if -X is inward-pointing.

Example

On \mathbb{H}^2 if $p \in \partial \mathbb{H}^2$, then $\partial/\partial y\big|_p$ is inward-pointing and $-\partial/\partial y\big|_p$ is outward-pointing.

Definition

A vector field along ∂M is a map $X : \partial M \to TM$ such that $X_p \in T_p M$ for all $p \in \partial M$. We say that such a vector field is smooth if it is smooth as a map from ∂M to TM.

Remark

A vector field along ∂M should not be confused with a vector field on ∂M , since it takes values in TM, not in $T(\partial M)$.

Remarks

Let X be a vector field along ∂M .

• If $p \in \partial M$ and (U, x^1, \dots, x^n) is a chart for M near p, then

$$X_q = \sum a^j(q) \frac{\partial}{\partial x^j} \bigg|_q, \qquad q \in U \cap \partial M.$$

- Then X is smooth on $U \cap \partial M$ if and only if the coefficients $a^j(q)$ are smooth functions on $\partial M \cap U$.
- The vector field is outward-pointing along U if and only if $a^n(q) < 0$.

Proposition (Proposition 22.10; see also Problem 22.4)

If M is a smooth manifold with boundary, then there always exists a smooth outward-pointing vector field along ∂M .

Remark

An outward-pointing vector field is always non-vanishing since $X_p \in TM \setminus T(\partial M)$ for all $p \in \partial M$.

Boundary Orientation

Proposition (Proposition 22.11)

Assume that M is oriented manifold with boundary of dimension n. Let ω be an orientation form on M and X a smooth outward-pointing vector field along ∂M . Then $\imath_X(\omega)$ is a non-vanishing smooth (n-1)-form on ∂M , and hence ∂M is orientable.

Remark

It can be shown that the orientation class of $i_X(\omega)$ is independent of ω and X.

Definition

The orientation class of $i_X(\omega)$ is called the *boundary orientation* on ∂M .

Boundary Orientation

Proposition (Proposition 22.11)

Suppose that M is an oriented manifold with boundary of dimension n. Let $p \in \partial M$ and let X_p be an outward-pointing vector in T_pM . If (v_1, \ldots, v_{n-1}) is a basis of $T_p(\partial M)$ representing the boundary orientation on ∂M at p, then $(X_p, v_1, \ldots, v_{n-1})$ is a basis of $T_p(M)$ and represents the orientation of M at p.

Boundary Orientation

Example (Example 22.13; Boundary orientation of \mathbb{H}^n)

- An orientation form for \mathbb{H}^n is $\omega = dx^1 \wedge \cdots \wedge dx^n$ and a smooth outward-pointing vector field on $\partial \mathbb{H}^n$ is $X = -\partial/\partial x^n$.
- Thus, an orientation form on $\partial \mathbb{H}^n$ is

$$i_{X}\omega = -i_{\partial/\partial x^{n}} (dx^{1} \wedge \cdots \wedge dx^{n})$$

$$= -(-1)^{n-1} i_{\partial/\partial x^{n}} (dx^{n} \wedge dx^{1} \wedge \cdots \wedge dx^{n-1})$$

$$= (-1)^{n} dx^{1} \wedge \cdots \wedge dx^{n-1}.$$

- For n=2 we the boundary orientation is given by dx^1 , which is the standard orientation on $\mathbb{R}^1 = \partial \mathbb{H}^2$.
- For n=3 the boundary orientation is given by $-dx^1 \wedge dx^2$, which is the clockwise orientation on $\mathbb{R}^2 = \partial \mathbb{H}^3$.

