Noncommutative Geometry Chapter 10: Connes' Trace Theorem, Integration Formula, and Lower Dimensional Volumes

Sichuan University, Fall 2022

Reminder: Weak Schatten Classes

Definition (Weak Schatten Classes $\mathcal{L}^{p,\infty}$)

Let $p \in (0, \infty)$.

① The weak Schatten class $\mathcal{L}^{p,\infty}$ consists of all $T\in\mathcal{L}(\mathcal{H})$ such that

$$\mu_n(T) = O\left(n^{-\frac{1}{p}}\right)$$
 as $n \to \infty$.

② For $T \in \mathcal{L}(\mathcal{H})$, we set

$$||T||_{p,\infty} := \sup_{n\geq 0} (n+1)^{\frac{1}{p}} \mu_n(T).$$

Reminder: Weak Schatten Classes

Proposition

- **1** $\mathcal{L}^{p,\infty}$ is a two-sided ideal of $\mathcal{L}(\mathcal{H})$.
- $\|\cdot\|_{p,\infty}$ is a quasi-norm which respect to which $\mathcal{L}^{p,\infty}$ is a quasi-Banach ideal.

Remark

1 If p > 1, then $\|\cdot\|_{p,\infty}$ is equivalent to the norm,

$$\|T\|'_{p,\infty} = \sup_{N\geq 1} \left\{ N^{-1+rac{1}{p}} \sum_{j\leq N} \mu_j(T)
ight\}, \qquad T\in \mathcal{L}^{p,\infty}$$

2 In this case, $\mathcal{L}^{p,\infty}$ is a Banach ideal (w.r.t. that norm).

Reminder: Weak Schatten Classes

Notation

 $\mathcal{L}_0^{p,\infty}$ is the closure in $\mathcal{L}^{p,\infty}$ of the ideal of finite-rank operators.

Proposition

We have

$$\mathcal{L}_0^{p,\infty} = \left\{ T \in \mathcal{L}(\mathcal{H}); \ \mu_n(T) = o\left(n^{-\frac{1}{p}}\right) \right\}.$$

- **2** We have a strict inclusion $\mathcal{L}_0^{p,\infty} \subsetneq \mathcal{L}^{p,\infty}$.
- **1** In particular, $\mathcal{L}^{p,\infty}$ is not separable.

Remark

For 0 we have strict inclusions,

$$\mathcal{L}^p \subsetneq \mathcal{L}_0^{p,\infty} \subsetneq \mathcal{L}^{p,\infty} \subsetneq \mathcal{L}^q$$
.

Reminder: Quantized Calculus

Classical	Quantum (Connes)
Complex variable	Operator on Hilbert space ${\cal H}$
Real variable	Selfadjoint operator on ${\cal H}$
Infinitesimal variable	Compact operator on ${\cal H}$
Infinitesimal of $\ $ order $\ $ $lpha$	Compact operator s.t. $\mu_j(T) = \mathrm{O}(j^{-\alpha})$
Integral $\int f(x)dx$	NC integral $\int T$

Here the $\mu_j(A)$ are the singular values of A.

Reminder: Quantized Calculus

Definition (Infinitesimal Operator)

An operator $T \in \mathcal{L}(\mathcal{H})$ is infinitesimal if, for all $\epsilon > 0$, there is a subspace $E \subset \mathcal{H}$, dim $E < \infty$, such that

$$||T_{|E^{\perp}}|| < \epsilon.$$

Proposition

Let $T \in \mathcal{L}(\mathcal{H})$. Then TFAE

- 1 T is an infinitesimal operator.
- **3** T is a compact operator.

Reminder: Quantized Calculus

Definition

A (compact) operator T is an infinitesimal of order α , $\alpha > 0$, if

$$\mu_j(T) = O(j^{-\alpha})$$
 as $j \to \infty$.

That is,

$$T \in \mathcal{L}^{p,\infty}$$
 with $p = \alpha^{-1}$.

Ansatz for a NC Integral (Connes)

The NC integral should have the following properties:

- It is defined on infinitesimals of order 1, i.e., on the weak trace class $\mathcal{L}^{1,\infty}$.
- ② It should take non-negative values on positive operators.
- \odot It vanishes on infinitesimals of order > 1.
- It vanishes on the commutator space,

$$\mathsf{Com}(\mathcal{L}^{1,\infty}) = \mathsf{Span}\,\big\{[A,\,T];\ A\in\mathcal{L}(\mathcal{H}),\ T\in\mathcal{L}^{1,\infty}\big\}.$$

That is, it should be a positive trace on $\mathcal{L}^{1,\infty}$.

Remark

- It can be shown that $Com(\mathcal{L}^{1,\infty})$ contains trace-class operators, including infinitesimals of order > 1.
- Thus, the 3rd condition is encapsulated by the 4th condition.

- **1** Any positive trace on $\mathcal{L}^{1,\infty}$ is continuous.
- Any continuous trace is linear combination of positive traces.

Definition

An eigenvalue sequence $\lambda(T) = {\lambda_i(T)}_{i>0}$ is any sequence s.t.:

- $\lambda_j(T)$ is an eigenvalue of T and is repeated according to (algebraic) multiplicity.
- $|\lambda_0(T) \geq |\lambda_1(T)| \geq \cdots.$

- **1** An eigenvalue sequence need not be unique.
- 2 If $T \geq 0$, then $\lambda_i(T) = \mu_i(T)$.
- 3 We shall denote by $\lambda(T)$ any eigenvalue sequence for T.

Notation

- $\ell^{\infty} = C^*$ -algebra of bounded complex-valued sequences.
- c_0 = closed ideal of sequences converging to 0.

Definition

An extended limit is any positive linear map $\lim_{\omega} : \ell^{\infty} \to \mathbb{C}$ s.t.:

- (i) $\lim_{\omega} 1 = 1$.
- (ii) $\lim_{\omega} a_i = 0$ if $(a_i) \in \mathfrak{c}_0$.

- **1** If $a_i \rightarrow L$, then $\lim_w a_i = L$.
- 2 We have a one-to-one correspondence,

```
\big\{ \text{extended limits} \big\} \longleftrightarrow \big\{ \text{states on } \ell^\infty/\mathfrak{c}_0 \big\}.
```

Definition

If \lim_{ω} is an extended limit, then $\operatorname{Tr}_{\omega}:\mathcal{L}^{1,\infty}\to\mathbb{C}$ is given by

$$\mathsf{Tr}_\omega(T) := \mathsf{lim}_\omega \left\{ rac{1}{\log N} \sum_{j < N} \lambda_j(T)
ight\}, \qquad T \in \mathcal{L}^{1,\infty}.$$

Proposition (Dixmier)

- **1** Tr_{ω} is a positive linear trace on $\mathcal{L}^{1,\infty}$.
- 2 It is annihilated by $\mathcal{L}_0^{1,\infty}$, and hence it vanishes on infinitesimals of order > 1.

Definition

 ${\sf Tr}_\omega$ is called the Dixmier trace associated with the extended limit ${\sf lim}_\omega$.

Definition (Connes)

- **①** An operator $T \in \mathcal{L}^{1,\infty}$ is called measurable if the value of $\mathsf{Tr}_{\omega}(T)$ does not depend on the extended limit.
- 2 We denote by ${\mathcal M}$ the class of measurable operators.
- **3** If $T \in \mathcal{M}$, we define its NC integral by

$$\int T := \mathrm{Tr}_{\omega}(A),$$

where Tr_{ω} is any Dixmier trace.

Proposition (Connes, Lord-Sukochev-Zanin)

Given $T \in \mathcal{L}^{1,\infty}$, TFAE:

- **1** T is measurable and $\int T = L$.
- We have

$$\lim_{N\to\infty}\frac{1}{\log N}\sum_{i\leq N}\lambda_j(T)=L.$$

Proposition

- \mathcal{M} is a closed subspace of $\mathcal{L}^{1,\infty}$ that contains $\mathsf{Com}(\mathcal{L}^{1,\infty})$ and $\mathcal{L}^{1,\infty}_0$.
- ② $f: \mathcal{M} \to \mathbb{C}$ is a positive linear functional that vanishes on $\mathsf{Com}(\mathcal{L}^{1,\infty})$ and $\mathcal{L}^{1,\infty}_0$.
- § In particular, this is a positive trace that annihilates infinitesimals of order > 1.

Reminder: Strong Measurability

Definition

A trace $\varphi: \mathcal{L}^{1,\infty} \to \mathbb{C}$ is called normalized if

$$(T \ge 0 \text{ and } \lambda_j(T) = (j+1)^{-1}) \Longrightarrow \varphi(T) = 1.$$

Remarks

- **1** Every Dixmier trace Tr_{ω} is a normalized trace.
- **2** There are (uncountably) many normalized positive traces on $\mathcal{L}^{1,\infty}$ that are not Dixmier traces.

Definition

An operator $T\in\mathcal{L}^{1,\infty}$ is called strongly measurable (or positively measurable) if $\varphi(T)$ takes the same value as φ ranges over all normalized positive traces.

Reminder: Strong Measurability

Notation

 \mathcal{M}_s = class of strongly measurable operators.

Proposition

- **1** \mathcal{M}_s is a closed subspace of $\mathcal{L}^{1,\infty}$.
- ② It contains $Com(\mathcal{L}^{1,\infty})$ and $\mathcal{L}^{1,\infty}_0$. In particular, it contains all infinitesimals of order > 1.
- **3** It does not depend on the inner product of $\mathcal{L}(\mathcal{H})$.

Proposition

Let $T \in \mathcal{L}^{1,\infty}$ be such that

$$\sum_{j < N} \lambda_j(T) = L \cdot \log N + O(1).$$

Then T is strongly measurable and $\int T = L$.

Definition

If $A \in \mathcal{L}(\mathcal{H})$, its real and imaginary parts are

$$\Re A := \frac{1}{2} (A + A^*), \qquad \Im A := \frac{1}{2i} (A - A^*).$$

Definition

If $A^* = A$, its positive and negative parts are

$$A^{+} := \frac{1}{2} (|A| + A), \qquad A^{-} := \frac{1}{2} (|A| - A).$$

Definition

If $A=A^*$ is compact, then $\pm \lambda_j^{\pm}(A)$, $j\geq 0$, are the positive eigenvalues of A such that

$$\lambda_0^{\pm}(A) \geq \lambda_1^{\pm}(A) \geq \cdots,$$

where each eigenvalue is repeated according to multiplicity.

Remark

In other words,

$$\lambda_j^{\pm}(A) = \lambda_j(A^{\pm}) = \mu_j(A^{\pm}), \qquad j \ge 0.$$

Definition

We say that $A \in \mathcal{L}^{p,\infty}$ is a Weyl operator if one of the following conditions is satisfied:

- (i) $A \ge 0$ and $\lim_{j\to\infty} j^{1/p} \lambda_j(A)$ exists.
- (ii) $A = A^*$ and $\lim_{j \to \infty} j^{1/p} \lambda_j^{\pm}(A)$ both exist.
- (iii) The real and imaginary parts both satisfy (ii).

Definition

Let A be a Weyl operator in $\mathcal{L}^{p,\infty}$.

• If $A \ge 0$, then we set

$$\Lambda(A) := \lim_{j \to \infty} j^{\frac{1}{p}} \lambda_j(A).$$

② If $A^* = A$, then we set

$$\Lambda^{\pm}(A) := \lim_{j \to \infty} j^{\frac{1}{p}} \lambda_j^{\pm}(A).$$

In general, we set

$$\Lambda^{\pm}(A) := \Lambda^{\pm}(\Re A) + i\Lambda^{\pm}(\Im A).$$

Proposition

Let A be a Weyl operator in $\mathcal{L}^{1,\infty}$.

A is strongly measurable, and we have

$$\int A = \Lambda^+(A) - \Lambda^-(A).$$

2 In particular, if $A^* = A$, then

$$\int A = \lim_{j \to \infty} j \lambda_j^+(A) - \lim_{j \to \infty} j \lambda_j^-(A).$$

Corollary

If |A| is a Weyl operator in $\mathcal{L}^{1,\infty}$, then |A| is strongly measurable, and $\int |A| = \lim_{i \to \infty} j\mu_j(A).$

Setup

- (M^n, g) = closed Riemannian manifold.
- $(\mathcal{E}, \|\cdot\|_{\times}) = \text{smooth Hermitian vector bundle over } M.$

Definition

We say that $P \in \Psi^m(M, \mathcal{E})$, m > 0, is positive-elliptic if the following conditions are satisfied:

- (i) P is elliptic with $\sigma_m(P)(x,\xi) > 0$.
- (ii) P is selfadjoint and ≥ 0 .
- (iii) P is invertible, i.e., $0 \notin Sp(P)$.

Lemma

For every $\sigma(x,\xi) \in S_m(T^*M,\mathcal{E})$ such that $\sigma(x,\xi) > 0$ we can find $P \in \Psi^m(M,\mathcal{E})$ such that $\sigma_m(P)(x,\xi) = \sigma(x,\xi)$ and P is positive-elliptic.

Proof.

- Let $Q \in \Psi^m(M, \mathcal{E})$ be such that $\sigma_m(Q)(x, \xi) = \sigma(x, \xi)$.
- By assumption $\sigma(x,\xi) > 0$. Thus, $\sigma(x,\xi)$ is invertible for all $(x,\xi) \in T^*M \setminus 0$, and hence Q is elliptic.
- Therefore, $|Q| = \sqrt{Q^*Q}$ is an operator in $\Psi^m(M, \mathcal{E})$ such that

$$\sigma_m(|Q|)(x,\xi) = |\sigma_m(Q)(x,\xi)| = \sigma(x,\xi) > 0.$$

- By construction |Q| is selfadjoint and ≥ 0 .
- Thus, the conditions (i)-(ii) are satisfied.
- We get condition (iii) by taking $P = |Q| + \Pi_0$, where Π_0 is the orthogonal projection onto $\ker |Q| = \ker Q$.

Remark

Let $P \in \Psi^m(M, \mathcal{E})$ be positive-elliptic.

 The spectrum of P can be can be arranged as a non-decreasing sequence,

$$0 < \lambda_0(P) \leq \lambda_1(P) \leq \cdots$$

where each eigenvalue is repeated according to multiplicity.

2 As $j \to \infty$, we have the Weyl's law,

$$\lambda_j(P) \sim j^{\frac{m}{n}} \left(\frac{1}{n} \int_{S^*M} \operatorname{tr}_{\mathcal{E}} \left[\sigma_m(P)(x,\xi)^{-\frac{n}{m}} \right] dx d\xi \right)^{-\frac{m}{n}}.$$

Lemma

Let $P \in \Psi^m(M, \mathcal{E})$ be positive-elliptic.

(i) P^{-1} is a Weyl operator in $\mathcal{L}^{nm^{-1},\infty}$, and we have

$$\lim_{j\to\infty} j^{\frac{m}{n}} \lambda_j \left(P^{-1}\right) = \left(\frac{1}{n} \int_{S^*M} \operatorname{tr}_{\mathcal{E}} \left[\sigma_m(P)(x,\xi)^{-\frac{n}{m}}\right] dx d\xi\right)^{\frac{m}{n}}.$$

(ii) If m = n, then P^{-1} is strongly measurable, and we have

$$\int P^{-1} = \frac{1}{n} \int_{S^*M} \operatorname{tr}_{\mathcal{E}} \left[\sigma_n(P)(x,\xi)^{-1} \right] dx d\xi.$$

Proof.

• The Weyl's law for P gives

$$j^{\frac{m}{n}}\lambda_{j}\left(P^{-1}\right) = \left(j^{-\frac{m}{n}}\lambda_{j}(P)\right)^{-1}$$

$$\longrightarrow \left(\frac{1}{n}\int_{S^{*}M} \operatorname{tr}_{\mathcal{E}}\left[\sigma_{m}(P)(x,\xi)^{-\frac{n}{m}}\right] dx d\xi\right)^{\frac{m}{n}}.$$

- This shows that P^{-1} is a Weyl operator in $\mathcal{L}^{nm^{-1},\infty}$.
- In particular, as $P^{-1} \ge 0$, we have $\mu_j(P^{-1}) = \lambda_j(P^{-1}) = O(j^{m/n})$, and hence $P^{-1} \in \mathcal{L}^{nm^{-1},\infty}$.
- For m = n, we get that P^{-1} is a Weyl operator in $\mathcal{L}^{1,\infty}$.
- Thus P^{-1} is strongly measurable, and we have

$$\int P^{-1} = \lim_{j \to \infty} j\lambda_j \left(P^{-1} \right)
= \frac{1}{n} \int_{S^*M} \operatorname{tr}_{\mathcal{E}} \left[\sigma_n(P)(x, \xi)^{-1} \right] dx d\xi.$$

Proposition

If $P \in \Psi^{-m}(M, \mathcal{E})$, m > 0, then P is in the weak Schatten class $\mathcal{L}^{nm^{-1},\infty}$. That is, P is an infinitesimal of order $\geq mn^{-1}$.

Proof.

- Let $Q \in \Psi^m(M, \mathcal{E})$ be positive-elliptic.
- Q^{-1} is in $\mathcal{L}^{nm^{-1},\infty}$.
- PQ is a Ψ DO of order ≤ 0 , and hence is bounded.
- It then follows that $P = (PQ)Q^{-1}$ is in the ideal $\mathcal{L}^{nm^{-1},\infty}$.

Noncommutative Residue

Reminder

• If $P \in \Psi^{\mathbb{Z}}(M)$, then there is a unique density $c_P(x) \in C^{\infty}(M, |\Lambda|(M))$ such that, for every chart $\kappa : U \to V$, we have

$$\kappa_*\left(c_P(x)\right) = c_{\kappa_*(P_{|U})}(x) := \int_{\mathbb{S}^{n-1}} p_{-n}(x,\xi) d\xi,$$

where $p_{-n}(x,\xi)$ is the symbol of degree -n of $\kappa_*(P_{|U})$.

• If $P \in \Psi^{\mathbb{Z}}(M, \mathcal{E})$, then there is a unique density $c_P(x) \in C^{\infty}(M, |\Lambda|(M) \otimes \operatorname{End}(\mathcal{E}))$ such that, for every trivialization $\tau : U \to V$, we have

$$\tau_*\left(c_P(x)\right)=c_{\tau_*(P_{|U})}(x).$$

• If $P \in \Psi^{-n}(M, \mathcal{E})$, then

$$c_P(x) = \left(\int_{|\xi|_{\sigma}=1} \sigma_{-n}(P)(x,\xi) d\xi \right) \nu(g)(x).$$

Noncommutative Residue

Reminder

ullet The noncommutative residue Res : $\Psi^{\mathbb{Z}}(M,\mathcal{E}) o \mathbb{C}$ is given by

$$\operatorname{\mathsf{Res}}(P) = \int_M \operatorname{\mathsf{tr}}_{\mathcal{E}}[c_P(x)], \qquad P \in \Psi^{\mathbb{Z}}(M, \mathcal{E}).$$

• If $P \in \Psi^{-n}(M, \mathcal{E})$, then

$$\operatorname{Res}(P) = \int_{S^*M} \operatorname{tr}_{\mathcal{E}} \left[\sigma_{-n}(P)(x,\xi) \right] dx d\xi.$$

Proposition

- The NC residue is a trace on the algebra $\Psi^{\mathbb{Z}}(M, \mathcal{E})$.
- ② It vanishes on differential operators and ΨDOs of order $\leq -(n+1)$, including smoothing operators.
- In particular,

$$P_1 - P_2 \in \Psi^{-(n+1)}(M, \mathcal{E}) \Longrightarrow \operatorname{Res}(P_1) = \operatorname{Res}(P_2).$$

Proposition

If $P \in \Psi^{-m}(M, \mathcal{E})$, m > 0, then P is in the weak Schatten class $\mathcal{L}^{nm^{-1},\infty}$. That is, P is an infinitesimal of order $\geq mn^{-1}$.

Corollary

Every $P \in \Psi^{-n}(M, \mathcal{E})$ is the weak trace class $\mathcal{L}^{1,\infty}$, i.e., it's an infinitesimal of order ≥ 1 .

Theorem (Connes' Trace Theorem)

If $P \in \Psi^{-n}(M, \mathcal{E})$, then P is strongly measurable, and we have

$$\int P = \frac{1}{n} \operatorname{Res}(P).$$

- Connes (CMP '88) established measurability and derived the trace formula.
- 2 Lord-Potapov-Sukochev (Adv. Math. '13) obtained strong measurability.

Proof.

Step 1: $P \in \Psi^{-(n+1)}(M, \mathcal{E})$.

- In this case Res(P) = 0.
- Moreover, P is in the weak Schatten class $\mathcal{L}^{p,\infty}$, with $p = n(n+1)^{-1} < 1$.
- Thus, P is in $\mathcal{L}^1 \subset (\mathcal{L}^{1,\infty})_0$.
- It follows that P is strongly measurable, and we have

$$\int P = 0 = \frac{1}{n} \operatorname{Res}(P).$$

Proof.

Step 2: $P = Q^{-1}$, where $Q \in \Psi^n(M, \mathcal{E})$ is positive-elliptic.

- In this case we saw that P is strongly measurable, and we have $\oint P = \frac{1}{n} \int_{\mathbb{S}^*M} \operatorname{tr}_{\mathcal{E}} \left[\sigma_n(Q)(x,\xi)^{-1} \right] dx d\xi.$
- Here $\sigma_n(Q)(x,\xi)^{-1} = \sigma_{-n}(Q^{-1})(x,\xi) = \sigma_{-n}(P)(x,\xi)$.
- Thus,

$$\int P = \frac{1}{n} \int_{S^*M} \operatorname{tr}_{\mathcal{E}} \left[\sigma_{-n}(P)(x,\xi) \right] dx d\xi = \frac{1}{n} \operatorname{Res}(P).$$

Proof.

Step 3: $\sigma_{-n}(P)(x,\xi) > 0$.

- Let $Q \in \Psi^n(M, \mathcal{E})$ be pos.-ellipt. w/ $\sigma_n(Q) = \sigma_{-n}(P)(x, \xi)^{-1}$.
- Here Q^{-1} is an operator in $\Psi^{-n}(M,\mathcal{E})$ with

$$\sigma_{-n}\left(Q^{-1}\right)(x,\xi) = \sigma_{n}\left(Q\right)(x,\xi)^{-1} = \sigma_{-n}(P)(x,\xi).$$

- This ensures that $R := P Q^{-1}$ is in $\Psi^{-(n+1)}(M, \mathcal{E})$.
- In particular $Res(P) = Res(Q^{-1})$.
- By Step 2 Q^{-1} is strongly meas. and $\int Q^{-1} = \frac{1}{n} \operatorname{Res}(Q^{-1})$.
- As $R \in \Psi^{-(n+1)}(M, \mathcal{E})$, by Step 1 it is strongly measurable and f = 0.
- It follows that $P = Q^{-1} + R$ is strongly measurable, and

$$\int P = \int Q^{-1} + \int R = \frac{1}{n} \operatorname{Res}(Q^{-1}) = \frac{1}{n} \operatorname{Res}(P).$$

Proof.

Step 4: $P^* = P$.

- Here $\sigma_{-n}(P)(x,\xi)$ is Hermitian for all $(x,\xi) \in T^*M \setminus 0$.
- Bearing in mind that S*M is compact, set

$$c := \sup \{ \|\sigma_{-n}(P)(x,\xi)\|_x; (x,\xi) \in S^*M \} < \infty,$$

where $\|\cdot\|_{x}$ is the norm of $\operatorname{End}(\mathcal{E}_{x})$.

• For $(x, \xi) \in T^*M \setminus 0$, we then have

$$\sigma_{-n}(P)(x,\xi) \leq \|\sigma_{-n}(P)(x,\xi)\|_{x}$$

$$\leq |\xi|_{g}^{-n} \|\sigma_{-n}(P)(x,|\xi|_{g}^{-n}\xi)\|_{x}$$

$$\leq c|\xi|_{g}^{-n}.$$

Proof.

• Let $P_1 \in \Psi^{-n}(M, \mathcal{E})$ have principal symbol

$$\sigma_{-n}(P_1)(x,\xi) = (c+\epsilon)|\xi|_g \operatorname{id}_{\mathcal{E}_x}, \quad \epsilon > 0.$$

• Set $P_2 = P_1 - P$. Then $P_2 \in \Psi^{-n}(M, \mathcal{E})$, and

$$\sigma_{-n}(P_2)(x,\xi) = \sigma_{-n}(P_1)(x,\xi) - \sigma_{-n}(P)(x,\xi) \geq (c+\epsilon)|\xi|_g^{-n} - c|\xi|_g^{-n} \geq \epsilon|\xi|_g^{-n} > 0.$$

- As $\sigma_{-n}(P_j)(x,\xi)$, Step 3 ensures that each P_j is strongly measurable and $\oint P_j = \frac{1}{n} \operatorname{Res}(P_j)$.
- It then follows that $P = P_1 P_2$ is strongly measurable, and

$$\int P = \int P_1 - \int P_2 = \frac{1}{n} \operatorname{Res}(P_1) - \frac{1}{n} \operatorname{Res}(P_2) = \frac{1}{n} \operatorname{Res}(P).$$

Proof.

Step 5: General case $P \in \Psi^{-n}(M, \mathcal{E})$.

• Put $P = \Re P + i \Im P$, with

$$P_1 = \Re P = \frac{1}{2} (P + P^*), \qquad P_2 = \Im P = \frac{1}{2i} (P - P^*).$$

- Here P_1 and P_2 are selfadjoint operators in $\Psi^{-n}(M, \mathcal{E})$.
- By Step 4 each operator P_j is is strongly measurable and $\int P_j = \frac{1}{n} \operatorname{Res}(P_j)$.
- It then follows that $P = P_1 + iP_2$ is strongly measurable, and

$$\int P = \int P_1 + i \int P_2 = \frac{1}{n} \operatorname{Res}(P_1) + \frac{i}{n} \operatorname{Res}(P_2) = \frac{1}{n} \operatorname{Res}(P).$$

Consequence

- The NC integral makes sense for Ψ DOs of order $\leq -n$
- The NC residue, however, makes for all integer order ΨDOs .
- Therefore, the equality between the NC integral and the NC residue enables us to extend the NC integral to all ΨDOs.
- ullet This includes ΨDOs that are not infinitesimals or are not even bounded.

Definition

For any $P \in \Psi^{\mathbb{Z}}(M, \mathcal{E})$ we set

$$\int P := \frac{1}{n} \operatorname{Res}(P) = \frac{1}{n} \int_{M} \operatorname{tr}_{\mathcal{E}}[c_{P}(x)].$$

Connes' Integration Formula

Theorem (Connes' Integration Formula)

For every $f \in C^{\infty}(M)$, the operators $f\Delta_g^{-n/2}$ and $\Delta_g^{-n/4}f\Delta_g^{-n/4}$ are both strongly measurable, and we have

$$\int f\Delta_g^{-\frac{n}{2}} = \int \Delta_g^{-\frac{n}{4}} f\Delta_g^{-\frac{n}{4}} = c(n) \int_M f(x) \nu(g)(x),$$

where we have set $c(n) = \frac{1}{n}(2\pi)^{-n}|\mathbb{S}^{n-1}| = (2\pi)^{-n}|\mathbb{B}^n|$.

- We saw in Chapter 7 that the result for $\Delta_g^{-n/4} f \Delta_g^{-n/4}$ continues to hold for all $f \in LlogL(M)$.
- The result for $f\Delta_g^{-n/2}$ continues to holds for functions f such that $|f|^2 \in Llog L(M)$, including functions in $L^p(M)$, p > 2.

Connes' Integration Formula

Proof.

- $\Delta_g^{-n/2}$ is Ψ DOs of order -n with $\sigma_{-n}(\Delta_g^{-n/2})(x,\xi) = |\xi|_g^{-n}$.
- As $f \in C^{\infty}(M)$, this is a ΨDO of order 0.
- So $f\Delta_g^{-n/2} \in \Psi^{-n}(M)$ and $\sigma_{-n}(f\Delta_g^{-n/2})(x,\xi) = f(x)|\xi|_g^{-n}$.
- Thus, by Connes' trace theorem $f\Delta_g^{-n/2}$ is strongly measurable, and we have

$$\int f\Delta_g^{-\frac{n}{2}} = \frac{1}{n}\operatorname{Res}\left(\Delta_g^{-\frac{n}{2}}\right) = \frac{1}{n}\int_{S^*M} \sigma_{-n}\left(f\Delta_g^{-\frac{n}{2}}\right)(x,\xi)dxd\xi$$

$$= \frac{1}{n}\int_{S^*M} f(x)|\xi|_g^{-n}dxd\xi$$

$$= \frac{1}{n}(2\pi)^{-n}|\mathbb{S}^{n-1}|\int_M f(x)\nu(g)(x).$$

• The result for $\Delta_g^{-n/4} f \Delta_g^{-n/4}$ is proved similarly.

Consequence

 Connes' integration formula shows that the NC integral recaptures the Riemannian volume density. Namely,

$$\int f\nu(g)(x) = c(n)^{-1} \int f\Delta_g^{-\frac{n}{2}} \qquad \forall f \in C^{\infty}(M).$$

- We regard $c(n)^{-1}\Delta_g^{n/2}$ as the NC volume element.
- The volume element is ds^n , where ds is the length element.
- Thus, ds as the n-th root of the volume element.

Definition

The NC length element of (M^n, g) is the operator,

$$ds := \left(c(n)^{-1}\Delta_g^{-\frac{n}{2}}\right)^{\frac{1}{n}} = c(n)^{-\frac{1}{n}}\Delta_g^{-\frac{1}{2}}.$$

Remark

ds is a Ψ DO of order -1.

Facts

- For k = 1, ..., n the k-th dimensional volume is meant to be the integral of ds^k .
- Here ds^k is a Ψ DO of order -k.
- The NC integral has been extended to all ΨDOs .
- This enables us to define k-dimensional volumes for all k = 1, ..., n 1.

Definition

For k = 1, ..., n, the k-th dimensional volume of (M^n, g) is

$$\operatorname{Vol}_{g}^{(k)}(M) := \int ds^{k} = c(n)^{-\frac{k}{n}} \int \Delta_{g}^{-\frac{k}{2}}.$$

In particular, the length and area of (M, g) are

$$\begin{split} \mathsf{Length}_g(M) := & \int ds = c(n)^{-\frac{1}{n}} \int \Delta_g^{-\frac{1}{2}}, \\ \mathsf{Area}_g(M) := & \int ds^2 = c(n)^{-\frac{2}{n}} \int \Delta_g^{-1}. \end{split}$$

Proposition

- If k and n have opposite parities (i.e., n k is odd), then $Vol_g^{(k)}(M) = 0$.
- 2 If k = n 2, then

$$\operatorname{Vol}_{g}^{(n-2)}(M) = c(n,2) \int_{M} \kappa_{g}(x) \nu(g)(x),$$

where $\kappa_g(x)$ is the scalar curvature of (M, g).

3 In general, we have

$$Vol_{g}^{(n-k)}(M) = c(n,k) \int_{M} I_{g}^{(k)}(x) \nu(g)(x),$$

where $l_g^{(k)}(x)$ is a universal polynomial in the curvature tensor and its covariant derivatives.

- The definition of the *k*-th dimensional volumes involved noncommutative geometry.
- However, the formulas in the previous slide provide purely differential-geometric expressions for the k-th dimensional volumes.

- The functional $g \to \int_M \kappa_g(x) \nu(g)(x)$ is called the Einstein-Hilbert action.
- It accounts for the contribution of gravity forces in the Standard Model from Theoretical Physics.
- We have

$$\int_{M} \kappa_{g}(x)\nu(g)(x) = c(n,2)^{-1} \int \Delta_{g}^{-n+2}$$

$$= \frac{1}{n}c(n,2)^{-1} \operatorname{Res} \left(\Delta_{g}^{-n+2}\right)$$

$$= \frac{2}{n}c(n,2)^{-1} \operatorname{Res}_{z=\frac{n}{2}-1} \operatorname{Tr} \left[\Delta_{g}^{-z}\right].$$

- This yields a spectral theoretic interpretation of the Einstein-Hilbert action.
- This an important ingredient in the spectral action formalism of Connes-Chamseddine.