Differentiable Manifolds §20. The Lie Derivative and Interior Multiplication

Sichuan University, Fall 2022

The Lie Derivative

Reminder

Let X be a smooth vector field on a smooth manifold M. Then X defines a derivation on $C^{\infty}(M) = \Omega^{0}(M)$,

$$X: C^{\infty}(M) \longrightarrow C^{\infty}(M), \qquad f \longrightarrow Xf.$$

Question

Can we extend this derivation to a derivation on all $\Omega^*(M)$?

Solution (Lie)

Use the flow generated by X.

Reminder: Flows of Vector Fields

Reminder (Integral curves; see Section 14)

Suppose that X is a smooth vector field on M.

• An *integral curve* of X is any smooth curve $c:(a,b)\to M$ satisfying the equation,

$$\frac{d}{dt}c(t)=X_{c(t)} \qquad t\in(a,b).$$

- If the interval (a, b) contains 0 and c(0) = p, then we say that curve starts at p and p is its initial point.
- We say that an integral curve is maximal if it cannot be extended to an integral curve defined on a larger interval.

Reminder (see Theorem 14.7)

Given any $p \in M$, there is a unique maximal integral curve for X that starts at p.

Reminder: Flows of Vector Fields

Reminder (Fundamental Theorem on Flows; see Section 14 slides)

Suppose that X is a smooth vector field on M. Define

$$\Omega = \bigcup_{p \in M} I^{(p)} \times \{p\} \subset \mathbb{R} \times M,$$

where $I^{(p)}$ is the open interval around 0 on which is defined the maximal integral curve of X starting at p. Then:

- (i) Ω is an open set in $\mathbb{R} \times M$ containing $\{0\} \times M$.
- (ii) There is a smooth map $\varphi: \Omega \to M$, $(t,p) \to \varphi_t(p)$ (called the flow of X) such that, for every $p \in M$, the curve $I^{(p)} \ni t \to \varphi_t(p) \in M$ is the maximal integral curve of X starting at p.

Reminder: Flows of Vector Fields

Remarks (see Section 14 slides)

- For $t \in \mathbb{R}$, the set $M_t := \{ p \in M; (t, p) \in \Omega \}$ is open in M.
- If $M_t \neq \emptyset$, then $\varphi_t : M_t \to M_{-t}$ is a diffeomorphism with inverse $\varphi_{-t} : M_{-t} \to M_t$.
- We have the 1-paramter group properties,

$$\varphi_0 = \mathbb{1}_M, \qquad \varphi_t \circ \varphi_s = \varphi_{t+s} \quad \text{on } M_s \cap M_{t+s}.$$

Remarks

- We say that the vector field X is *complete* when its flow is defined on $\mathbb{R} \times M$.
- In this case $\varphi_t : M \to M$ is a diffeomorphism for every $t \in \mathbb{R}$,

Flow and Lie Derivative

Remark

Let $p \in M$. As $c(t) = \varphi_t(p)$, $t \in I^{(p)}$, is an integral curve for X starting at p, this is a smooth curve in M such that c(0) = p and

$$c'(0) = \frac{d}{dt}\varphi_t(p)\bigg|_{t=0} = X_{\varphi_t(p)}\bigg|_{t=0} = X_{\varphi_0(p)} = X_p.$$

Consequence (see Proposition 20.6)

Let $f \in C^{\infty}(M)$. For every $p \in M$, we have

$$(Xf)(p) = X_p f = \frac{d}{dt}\Big|_{t=0} f(c(t)) = \frac{d}{dt}\Big|_{t=0} f \circ \varphi_t(p).$$

As $f \circ \varphi_t = \varphi_t^* f$, we may rewrite this as

$$Xf = \frac{d}{dt} \bigg|_{t=0} \varphi_t^* f.$$

Flow and Lie Derivative

Remarks

- If $\omega \in \Omega^k(M)$, then we can make sense of $\varphi_t^*\omega$.
- However, we still need to make sense of $\frac{d}{dt}\Big|_{t=0} \varphi_t^* \omega$.
- To do this we need a little digression on smooth families in $\Omega^k(M)$.

Reminder

- By definition $\Omega^k(M)$ is the space of smooth sections of $\Lambda^k(T^*M)$.
- In particular, any smooth k-form is a smooth map from M to $\Lambda^k(T^*M)$.

Definition

Let I be an open interval in \mathbb{R} . A family $\{\omega_t\}_{t\in I}$ in $\Omega^k(M)$ is said to be smooth when the map $(t,p)\to (\omega_t)_p$ is smooth as a map from $I\times M$ to $\Lambda^k(T^*M)$.

Lemma

Let $(U, x^1, ..., x^n)$ be a chart for M and let $\{\omega_t\}_{t \in I}$ be a family in $\Omega^k(U)$. TFAE:

- **1** $\{\omega_t\}_{t\in I}$ is a smooth family in $\Omega^k(U)$.
- We may write $\omega_t = \sum a_I(t, p) dx^I$, $t \in I$, where the coefficients $a_I(t, p)$ are smooth functions on $I \times U$.

Proposition

Let $\{\omega_t\}_{t\in I}$ be a family in $\Omega^k(M)$. TFAE:

- **1** $\{\omega_t\}_{t\in I}$ is a smooth family in $\Omega^k(M)$.
- **2** For every $p \in M$, there is a chart $(U, x^1, ..., x^n)$ near p such that $\omega_t = \sum a_l(t, p) dx^l$ on U, where the coefficients $a_l(t, p)$ are smooth functions on $I \times U$.
- **3** For every chart $(U, x^1, ..., x^n)$ for M we may write $\omega_t = \sum a_I(t, p) dx^I$ on U, where the coefficients $a_I(t, p)$ are smooth functions on $I \times U$.

Remark

Let $\{\omega_t\}_{t\in I}$ be a smooth family in $\Omega^k(M)$. Then, for every $p\in M$, the map $t\to (\omega_t)_p$ is smooth as a map from I to the vector space $\Lambda^k(T_p^*M)$.

Definition

Let $\{\omega_t\}_{t\in I}$ be a smooth family in $\Omega^k(M)$. For every $t_0\in I$, the derivative $\frac{d}{dt}\Big|_{t=t_0}\omega_t$ is the k-form on M defined by

$$\left(\frac{d}{dt}\Big|_{t=t_0}\omega_t\right)(p) = \frac{d}{dt}\Big|_{t=t_0}(\omega_t)_p$$

$$= \lim_{t \to t_0} \frac{(\omega_t)_p - (\omega_{t_0})_p}{t - t_0} \in \Lambda^k(T_p^*M), \quad p \in M.$$

Remark

Let $(U, x^1, ..., x^n)$ be a chart for M. On U write $\omega_t = \sum a_I(t, p) dx^I$ with $a_I(t, p) \in C^{\infty}(I \times U)$. Then, for every $p \in U$, we have

$$\left(\frac{d}{dt}\Big|_{t=t_0}\omega_t\right)(p)=\sum_I\frac{\partial a_I}{\partial t}(t_0,p)dx^I.$$

In particular, $\frac{d}{dt}|_{t=t_0}\omega_t$ is smooth on U, since the coefficients $\partial_t a_I(t_0, p)$ are smooth functions on U.

Proposition

Let $\{\omega_t\}_{t\in I}$ be a smooth family in $\Omega^k(M)$. Then

$$\frac{d}{dt}\Big|_{t=t_0} \omega_t \in \Omega^k(M) \qquad \forall t_0 \in I.$$

Proposition (Product Rule; Proposition 20.1)

Let $\{\omega_t\}$ and $\{\tau_t\}$ be smooth families in $\Omega^k(M)$ and $\Omega^\ell(M)$, respectively. Then $\{\omega_t \wedge \tau_t\}$ is a smooth family in $\Omega^{k+\ell}(M)$, and we have $\frac{d}{dt}(\omega_t \wedge \tau_t) = \left(\frac{d}{dt}\omega_t\right) \wedge \tau_t + \omega_t \wedge \left(\frac{d}{dt}\tau_t\right).$

Proposition (Proposition 20.2)

Let $\{\omega_t\}$ be a smooth family in $\Omega^k(M)$. Then $\{d\omega_t\}$ is a smooth family in $\Omega^{k+1}(M)$, and we have

$$\frac{d}{dt}(d\omega_t) = d\left(\frac{d}{dt}\omega_t\right).$$

Facts

Let $\omega \in \Omega^k(M)$.

• If X is a complete vector field, then $\varphi_t: M \to M$ is a diffeomorphism for every $t \in \mathbb{R}$, and so we can form the pullback,

$$(\varphi_t^*\omega)_p = (\varphi_t)_{*,p}^* [\omega_{\varphi_t(p)}], \qquad p \in M.$$

- Here $(\varphi_t)_{*,p}^* : \Lambda^k(T_{\varphi_t(p)}^*M) \to \Lambda^k(T_p^*M)$ is the pullback by the differential $(\varphi_t)_{*,p} : T_pM \to T_{\varphi_t(p)}M$.
- In general $(\varphi_t^*\omega)_p = (\varphi_t)_{*,p}^*[\omega_{\varphi_t(p)}] \in \Lambda^k(T_p^*M)$ is defined for $(t,p) \in \Omega$ only.
- If $I \subset \mathbb{R}$ is an open interval and $U \subset M$ is an open such that $I \times U \subset \Omega$, then $\{(\varphi_t^* \omega)_{|U}\}_{t \in I}$ is a family in $\Omega^k(U)$.

Proposition

Let $\omega \in \Omega^k(M)$.

- (i) The map $(t,p) \to (\varphi_t^* \omega)_p$ is smooth as a map from Ω to $\Lambda^k(T^*M)$.
- (ii) If $I \subset \mathbb{R}$ is an open interval and $U \subset M$ is an open such that $I \times U \subset \Omega$, then $\{(\varphi_t^*\omega)_{|U}\}_{t \in I}$ is a smooth family in $\Omega^k(U)$.

Proof

- Let $(t_0, p) \in \Omega$ and let (V, y^1, \dots, y^n) be a local coordinates for M near $\varphi_{t_0}(p)$.
- As $\mathscr{V} = \{(t, q) \in \Omega; \ \varphi_t(q) \in V\}$ is an open set, there are an open interval $I \subset \mathbb{R}$ and an open $U \subset M$ such that $(t_0, p) \in I \times U \subset \mathscr{V}$. In particular, $\varphi_t(U) \subset V$ for all $t \in I$.
- Moreover, as $I \times U \subset \Omega$ we know that $\{(\varphi_t^* \omega)_{|U}\}_{t \in I}$ is a family in $\Omega^k(U)$.

Proof (Continued).

- We may assume that U is the domain of a chart (x^1, \ldots, x^n) near p. Set $\varphi_t^j = y^j \circ \varphi_t$ and write $\omega = \sum b_J dy^J$ on V with $b_J \in C^{\infty}(V)$.
- ullet By the local expression for pullbacks (see next slide), on ${\it U}$ we have

$$\varphi_t^*\omega = \sum_{I,J} (b_J \circ \varphi_t) \frac{\partial (\varphi_t^{j_1}, \dots \varphi_t^{j_k})}{\partial (x^{i_1}, \dots, x^{i_k})} dx^I, \quad t \in I.$$

- The coefficients of dx^I are smooth functions on $I \times U$, and so $\{(\varphi_t^*\omega)_{|U}\}_{t\in I}$ is a smooth family in $\Omega^k(U)$.
- Thus, the map $(t,q) \to (\varphi_t^* \omega)_q$ is smooth near (t_0,p) for every $(t_0,p) \in \Omega$, and hence is smooth on Ω .

This proves (i). The 2nd part (ii) follows from (i).

Reminder (Local expression for pullback; see slides on Section 18)

Suppose that $F: N \to M$ is a smooth map. Let (U, x^1, \ldots, x^m) be a chart for N and (V, y^1, \ldots, y^n) a chart for M such that $U \subset F^{-1}(V)$. Set $F^j = y^j \circ F$. For any k-form $\omega = \sum b_J dy^J$ on V, we have

$$F^*\omega = \sum_{I,J} (b_J \circ F) \frac{\partial (F^{j_1}, \dots F^{j_k})}{\partial (x^{i_1}, \dots, x^{i_k})} dx^J \quad \text{on } U.$$

Remark

Let $p \in M$.

- As Ω is an open containing (0, p), we always can find $\epsilon > 0$ and an open U of M containing p such that $(-\epsilon, \epsilon) \times U \subset \Omega$.
- By the previous proposition $\{(\varphi_t^*\omega)_{|U}\}_{|t|<\epsilon}$ is a smooth family in $\Omega^k(U)$.
- In particular, $\varphi_t^*\omega$ is a C^{∞} -family of smooth k-forms near p and t=0.

Definition (Definition 20.5)

If $\omega \in \Omega^k(M)$, then its *Lie derivative* $\mathscr{L}_X \omega$ is the *k*-form on *M* defined by

$$(\mathscr{L}_X\omega)_p = \frac{d}{dt}\Big|_{t=0} (\varphi_t^*\omega)_p, \qquad p \in M.$$

Remark (Proposition 20.6)

If
$$f \in C^{\infty}(M)$$
, then $\mathcal{L}_X f = Xf$.

Proposition

If $\omega \in \Omega^k(M)$, then $\mathscr{L}_X \omega$ is a smooth k-form on M.

Proof.

- Let $p \in M$. From the remark on slide 17 $\varphi_t^* \omega$ is a smooth family of smooth k-forms near p.
- Thus, by the proposition on slide 12 $\mathcal{L}_X \omega = \frac{d}{dt} \Big|_{t=0} \varphi_t^* \omega$ is smooth near p.
- As this true for every $p \in M$, it follows that $\mathscr{L}_{X}\omega$ is a smooth k-form on M.

Corollary

The Lie derivative \mathcal{L}_X defines a degree 0 linear map,

$$\mathscr{L}_X: \Omega^*(M) \longrightarrow \Omega^*(M).$$

Definition

If $F: N \to M$ is a diffeomorphism and Y is a vector field on M, then the *pullback* F^*X is the pushforward of Y by F^{-1} , i.e., $F^*Y = (F^{-1})_*Y$.

Remark

In other words, we have

$$(F^*Y)_p = (F^{-1})_{*,F(p)}(Y_{F(p)}) \qquad \forall p \in M.$$

Remarks

Let X and Y be a smooth vector fields and let $(t, p) \to \varphi_t(p)$ be flow of X.

- $\varphi_t: M_t \to M_{-t}$ is a diffeomorphism.
- We would like to define the Lie derivative $\mathcal{L}_X Y$ as $\frac{d}{dt}\Big|_{t=0} \varphi_t^* Y$.
- Here $\varphi_t^{-1} = \varphi_{-t}$, and so we have

$$(\varphi_t^*Y)_p = (\varphi_t^{-1})_{*,\varphi_t(p)}(Y_{\varphi_t(p)}) = (\varphi_{-t})_{*,\varphi_t(p)}(Y_{\varphi_t(p)}).$$

This makes sense for $(t, p) \in \Omega$.

• If $I \subset \mathbb{R}$ is an open interval and $U \subset M$ such that $I \times U \subset \Omega$, then $\{(\varphi_t^*Y)_{|U}\}_{t \in I}$ is a family in $\mathscr{X}(U)$.

Definition

Let $I \subset \mathbb{R}$ be an open interval. A family $\{Y_t\}_{t \in I}$ in $\mathscr{X}(M)$ is said to be smooth when the map $(t,p) \to (X_t)_p$ is smooth as a map from $I \times M$ to TM.

Proposition

Let $\{Y_t\}_{t\in I}$ be a family in $\mathscr{X}(M)$. TFAE:

- $\{Y_t\}_{t\in I}$ is a smooth family in $\mathscr{X}(M)$.
- ② For every $p \in M$ there is a chart $(U, x^1, ..., x^n)$ near p such that $Y_t = \sum a^i(t, p) \partial/\partial x^i$ on U, where the coefficients $a^i(t, p)$ are smooth functions on $I \times U$.
- **3** For every chart $(U, x^1, ..., x^n)$ for M we may write $Y_t = \sum a^i(t, p) \partial/\partial x^i$ on U, where the coefficients $a^i(t, p)$ are smooth functions on $I \times U$.

Remark

Let $\{Y_t\}_{t\in I}$ be a smooth family in $\mathscr{X}(M)$. Then, for every $p\in M$, the map $t\to (Y_t)_p$ is smooth as a map from I to the vector space T_pM .

Definition

Let $\{Y_t\}_{t\in I}$ be a smooth family in $\mathscr{X}(M)$. For every $t_0\in I$, the derivative $\frac{d}{dt}\Big|_{t=t_0}Y_t$ is the vector field on M defined by

$$\begin{split} \left(\frac{d}{dt}\Big|_{t=t_0} Y_t\right)(p) &= \frac{d}{dt}\Big|_{t=t_0} (Y_t)_p \\ &= \lim_{t \to t_0} \frac{\left(Y_t\right)_p - \left(Y_{t_0}\right)_p}{t - t_0} \in T_p M, \quad p \in M. \end{split}$$

Remark

Let (U, x^1, \ldots, x^n) be a chart near for M. On U write $Y_t = \sum a^i(t, p) \partial/\partial x^i$ with $a^i(t, p) \in C^{\infty}(I \times U)$. Then, for every $p \in U$, we have

$$\left(\frac{d}{dt}\Big|_{t=t_0}Y_t\right)(p) = \sum_{l} \frac{\partial a^{l}}{\partial t}(t_0, p) \frac{\partial}{\partial x^{l}}$$

In particular, $\frac{d}{dt}|_{t=t_0} Y_t$ is smooth on U, since the coefficients $\partial_t a^i(t_0, p)$ are smooth functions on U.

Proposition

Let $\{Y_t\}_{t\in I}$ be a smooth family in $\mathscr{X}(M)$. Then

$$\frac{d}{dt}\Big|_{t=t_0} Y_t \in \mathscr{X}(M) \qquad \forall t_0 \in I.$$

Proposition

Let $Y \in \mathcal{X}(M)$.

- (i) The map $(t,p) \to (\varphi_t^* Y)_p$ is smooth as a map from Ω to TM.
- (ii) If $I \subset \mathbb{R}$ is an open interval and $U \subset M$ is an open such that $I \times U \subset \Omega$, then $\{(\varphi_t^*Y)_{|U}\}_{t \in I}$ is a smooth family in $\mathscr{X}(U)$.

Definition (Definition 20.3)

If $Y \in \mathcal{X}(M)$, then its *Lie derivative* $\mathcal{L}_X Y$ is the vector field on M defined by

$$(\mathscr{L}_X Y)_p = \frac{d}{dt}\Big|_{t=0} (\varphi_t^* Y)_p, \qquad p \in M.$$

Proposition (Theorem 20.4)

If $Y \in \mathcal{X}(M)$, then $\mathcal{L}_X Y = [X, Y]$.

Definition (Interior multiplication)

Let V be a vector space. If β is a k-covector on V and $v \in V$, then the *interior multiplication* or *contraction* of β with v is the (k-1)-covector $\imath_V \beta$ defined as follows:

• If $k \geq 2$, then

$$i_{\mathbf{v}}\beta(\mathbf{v}_1,\ldots,\mathbf{v}_{k-1})=\beta(\mathbf{v},\mathbf{v}_1,\ldots,\mathbf{v}_{k-1}),\quad \mathbf{v}_i\in V.$$

- If k = 1, then $i_{\nu}\beta = \beta(\nu)$.
- If k=0, then $i_V\beta=0$.

Proposition (Proposition 20.7)

Let $\alpha^1, \ldots, \alpha^k$ be 1-covectors (i.e., elements of V^*). Then

$$\imath_{\nu}(\alpha^{1}\wedge\cdots\wedge\alpha^{k})=\sum_{i=1}^{k}(-1)^{i-1}\alpha^{i}(\nu)\alpha^{1}\wedge\cdots\wedge\widehat{\alpha^{i}}\wedge\cdots\wedge\alpha^{k},$$

where • means omission.

Proposition (Proposition 20.8)

Let $v \in V$. The interior multiplication $i_V : A_*(V) \to A_{*-1}(V)$ satisfies the following properties:

- ② If $\beta \in A_k(V)$ and $\gamma \in A_\ell(V)$, then $i_V(\beta \wedge \gamma) = (i_V \beta) \wedge \gamma + (-1)^k \beta \wedge (i_V \gamma)$.

In other words, i_v is an antiderivation of degree -1 whose square is zero.

Definition

Let M be a smooth manifold. If X is a vector field and ω is a k-form on M, then the interior product $\imath_X\omega$ is defined by

$$(\imath_X\omega)_p=\imath_{X_p}\omega_p, \qquad p\in M.$$

Remark

- If $k \ge 2$, then, for any vector fields X_1, \ldots, X_{k-1} on M, we have $i_X \omega(X_1, \ldots, X_{k-1}) = \omega(X, X_1, \ldots, X_{k-1})$.
- If k = 1, then $i_X \omega = \omega(X)$.
- If k=0, then $i_X\omega=0$.

Reminder (Proposition 18.7)

Let ω be a k-form on M. Then TFAE:

- \bullet is a smooth k-form.
- ② For any smooth vector fields X_1, \ldots, X_k on M, the function $\omega(X_1, \ldots, X_k)$ is smooth on M.

Proposition

If X is a smooth vector field and ω is a smooth k-form on M, then $\iota_X \omega$ is a smooth form on M as well.

Proof.

- The case k=0 is immediate, since in this case $i_X\omega=0$.
- If $k \ge 2$, then for any smooth vector fields X_1, \ldots, X_{k-1} on M we have

$$i_X\omega(X_1,\ldots,X_{k-1})=\omega(X,X_1,\ldots,X_{k-1})\in C^\infty(M).$$

• If k = 1, then $i_X \omega = \omega(X) \in C^{\infty}(M)$.

Proposition 18.7 then ensures us that $i_X\omega$ is a smooth form of degree k-1 if $k \ge 1$. The proof is complete.

Corollary

If X is a smooth vector field on M, the interior product with X defines a degree -1 anti-derivation $\imath_X: \Omega^*(M) \to \Omega^{*-1}(M)$ such that $\imath_X \circ \imath_X = 0$.

Reminder

The space of smooth vector fields $\mathscr{X}(M)$ and the exterior algebra $\Omega^*(M)$ are modules over the ring $\mathscr{F} = C^{\infty}(M)$.

Proposition

The map $\mathscr{X}(M) \times \Omega^*(M) \to \Omega^{*-1}(M)$, $(X, \omega) \to \imath_X \omega$ is an \mathscr{F} -bilinear map. In particular,

$$i_{fX}\omega = i_X(f\omega) = f(i_X\omega).$$

Properties of the Lie Derivative

Theorem (Theorem 20.10)

Let X be a smooth vector field on M.

(i) The Lie derivative $\mathscr{L}_X:\Omega^*(M)\to\Omega^*(M)$ is a derivation. That is, it is a linear map such that

$$\mathscr{L}_X(\omega \wedge \tau) = (\mathscr{L}_X\omega) \wedge \tau + \omega \wedge (\mathscr{L}_X\tau) \quad \forall \omega, \tau \in \Omega^*(M).$$

- (ii) $d\mathcal{L}_X = \mathcal{L}_X d$.
- (iii) Cartan homotopy formula: $\mathcal{L}_X = d \imath_X + \imath_X d$.
- (iv) Product formula: If $\omega \in \Omega^k(M)$ and Y_1, \ldots, Y_k are smooth vector fields on M, then

$$\mathcal{L}_{X}(\omega(Y_{1},\ldots,Y_{k})) = (\mathcal{L}_{X}\omega)(Y_{1},\ldots,Y_{k}) + \sum_{i=1}^{k} \omega(Y_{1},\ldots,\mathcal{L}_{X}Y_{i},\ldots,Y_{k}).$$

Global Formulas

The last part of Theorem 20.10 can be reformulated as follows:

Theorem (Theorem 20.12; Global formula for \mathcal{L}_X)

Let X be a smooth vector field on M and $\omega \in \Omega^k(M)$. Then, for any smooth vector fields Y_1, \ldots, Y_{k-1} on M, we have

$$(\mathcal{L}_X\omega)(Y_1,\ldots,Y_k) = X(\omega(Y_1,\ldots,Y_k))$$
$$-\sum_{i=1}^k \omega(Y_1,\ldots,[X,Y_i],\ldots,Y_k).$$

Global Formulas

Proposition (Proposition 20.13)

Let $\omega \in \Omega^1(M)$. Then, for any smooth vector fields X and Y on M, we have

$$d\omega(X,Y) = X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y]).$$

Theorem (Theorem 20.14; Global formula for the exterior derivative)

Let $\omega \in \Omega^k(M)$, $k \ge 1$. Then, for any smooth vector fields Y_0, \ldots, Y_k on M, we have

$$d\omega(Y_0,\ldots,Y_k) = \sum_{i=1}^k (-1)^i Y_i (\omega(Y_0,\ldots,\widehat{Y}_i,\ldots,Y_k))$$

+
$$\sum_{1 \leq i < j \leq k} (-1)^{i+j} \omega([Y_i,Y_j],Y_0,\ldots,\widehat{Y}_i,\ldots,\widehat{Y}_j,\ldots,Y_k).$$