Differentiable Manifolds §15. Lie Groups

Sichuan University, Fall 2022

Lie groups were defined in Section 6.

Definition (Lie Groups)

A *Lie group* is a group *G* equipped equipped with a differentiable structure such that:

- (i) The multiplication map $\mu: G \times G \to G$, $(x,y) \to xy$ is a C^{∞} map.
- (ii) The inverse map $\iota: G \to G$, $x \to x^{-1}$ is a C^{∞} map.

In Section 6 the following examples of Lie groups were mentioned.

Examples

- The Euclidean spaces \mathbb{R}^n and \mathbb{C}^n are Lie groups under addition.
- **2** The set of non-zero complex numbers $\mathbb{C}^{\times} := \mathbb{C} \setminus 0$ is a Lie group under multiplication.
- **3** The unit circle $\mathbb{S}^1 \subset \mathbb{C}^{\times}$ is a Lie group under multiplication.
- If G_1 and G_2 are Lie groups, then their Cartesian product $G_1 \times G_2$ is again a Lie group.

Example (Example 6.21)

The general linear group $GL(n,\mathbb{R})$ is a is a Lie group,

$$\mathsf{GL}(n,\mathbb{R}) = \left\{ A \in \mathbb{R}^{n \times n}; \ \det A \neq 0 \right\}.$$

Definition (Left and right multiplication)

Let G be a Lie group

• Given any $a \in G$, we denote by ℓ_a the *left multiplication by a*, i.e., the map,

$$\ell_a: G \longrightarrow G, \quad \ell_a(x) = ax.$$

• We also denote by r_a right multiplication by a, i.e.,

$$r_a: G \longrightarrow G, \quad r_a(x) = xa.$$

Proposition (see Exercise 15.2)

For every $a \in G$, the maps $\ell_a : G \to G$ and $r_a : G \to G$ are both diffeomorphisms of G with respective inverses $\ell_{a^{-1}}$ and $r_{a^{-1}}$.

Definition (Lie group homomorphisms)

Let G and H be Lie groups.

- A map $F: H \to G$ is a Lie group homomorphism if F is both a smooth map and a group homomorphism.
- It is called a *Lie group isomorphism* if it is a Lie group homomorphism and a diffeomorphism.

Remarks

1 A map $F: H \to G$ is a group homomorphism if and only if

$$F(hx) = F(h)F(x) \quad \forall h, x \in H.$$

As $F(hx) = F \circ \ell_h(x)$ and $F(h)F(x) = \ell_{F(h)} \circ F(x)$, the above condition is equivalent to

$$F \circ \ell_h = \ell_{F(h)} \circ F \qquad \forall h \in H.$$

2 Denote by e_H and e_G the respective units of H and G. Taking $h = x = e_H$ above gives

$$F(e_H) = F(e_H^2) = F(e_H)^2$$
 which implies that $F(e_H) = e_G$.

Thus, a group homomorphism always maps the identity to the identity.

Proposition (Theorem 7.5 of Lee's book)

Any Lie group homomorphism $F: H \to G$ has constant rank.

Proof.

• Let $h \in H$. Differentiating at $x = e_H$ the equality $F \circ \ell_h = \ell_{F(h)} \circ F$ gives

$$F_{*,\ell_h(e_H)} \circ (\ell_h)_{*,e_H} = (\ell_{F(h)})_{*,F(e_H)} \circ F_{*,e_H}.$$

That is,

$$F_{*,h} \circ (\ell_h)_{*,e_H} = (\ell_{F(h)})_{*,e_G} \circ F_{*,e_H}$$

- As ℓ_h and $\ell_{F(h)}$ are diffeomorphisms, their differentials $(\ell_h)_{*,e_H}$ and $(\ell_{F(h)})_{*,e_G}$ are isomorphisms.
- It then follows that $\operatorname{rk} F_{*,h} = \operatorname{rk} F_{*,e_H}$ for all $h \in H$.

This proves the result.

Definition (Lie subgroups)

A Lie subgroup of a group G is a subgroup H such that

- \bullet *H* is an immersed submanifold of *H*.
- ② The multiplication and inverse map of H are smooth maps.

Examples

- **1** \mathbb{R}^n is a Lie subgroup of \mathbb{C}^n under addition.
- **2** The circle \mathbb{S}^1 is a Lie subgroup of \mathbb{C}^{\times} under multiplication.
- 3 Any open subgroup of a Lie group is a Lie subgroup.

Reminder (see Chapter 11)

Let M and N be manifolds and S a regular submanifold in M.

- If $F: M \to N$ is a smooth map, then the restriction $F_{|S}: S \to N$ is a smooth map (since the inclusion $i: S \to M$ is a smooth map).
- ② If $F: N \to M$ is a smooth map taking values in S, then it induces a smooth $F: N \to S$.

Consequence

Let $F: N \to M$ be a smooth map. Assume that S is a regular submanifold of N and R is a regular submanifold of M such that $F(S) \subset R$. Then F induces a smooth map $\overline{F}: S \to R$.

Proposition (Proposition 15.11)

If H is a subgroup of a Lie group G and a regular submanifold, then this is an embedded Lie subgroup. In particular, this is a Lie group.

Proof.

We only need to check that the multiplication and inverse maps of ${\it H}$ are smooth maps.

- The multiplication $H \times H \to H$ is induced from the multiplication $G \times G \to G$.
- As H and H × H are regular submanifolds, it follows from the corollary on the previous slide that the multiplication of H is a smooth map.
- Likewise, the inverse map $H \to H$ is smooth, since it is induced from the inverse map $G \to G$.

The proof is complete.

Reminder (Constant Rank Level Set Theorem; see Theorem 11.2)

Let $f: N \to M$ be smooth map of constant rank k. For every $c \in f(N)$ the level set $f^{-1}(c)$ is a regular submanifold of codimension k in N.

Proposition

Let $F: G \to H$ be a Lie group homomorphism. Then $F^{-1}(e_H)$ is an embedded Lie subgroup of G.

Proof.

- $F^{-1}(e_H)$ is a subgroup of G.
- By the proposition on slide 7 the homomorphism F has constant rank, and so by the constant rank theorem the level set $F^{-1}(e_H)$ is a regular submanifold of G.
- It then follows from Proposition 15.11 that $F^{-1}(e_H)$ is an embedded Lie subgroup of G.

The proof is complete.

Example (Special linear group; see also Example 9.13)

The special linear group is

$$\mathsf{SL}(n,\mathbb{R}) = \{A \in \mathsf{GL}(n,\mathbb{R}); \ \mathsf{det} \ A = 1\}.$$

- As det : $GL(n, \mathbb{R}) \to \mathbb{R}^{\times}$ is a smooth map and a group homomorphism, this is a Lie group homomorphism.
- It then follows that $SL(n,\mathbb{R}) = \det^{-1}(1)$ is an embedded Lie subgroup of $GL(n,\mathbb{R})$, and hence is a Lie group.
- Here the determinant map has constant rank 1, and so $SL(n,\mathbb{R})$ has codimension 1 in $GL(n,\mathbb{R})$.

Example (Orthogonal group; Example 15.6)

The orthogonal group is

$$O(n) = \{A \in GL(n,\mathbb{R}); A^TA = I\}.$$

- This is a subgroup of $GL(n,\mathbb{R})$.
- Let S_n be the linear subspace of $\mathbb{R}^{n \times n}$ of symmetric matrices $X^T = X$. This is vector space, and so this is a manifold.
- Define $f: GL(n, \mathbb{R}) \to S_n$ by $f(A) = A^T A$. This is a smooth map such that $O(n) = f^{-1}(I)$.
- It can be shown that f is a submersion (see Tu's book). Thus, $O(n) = f^{-1}(I)$ is a regular submanifold.
- It then follows that O(n) is an embedded Lie subgroup of $GL(n, \mathbb{R})$, and hence is a Lie group.

Remark

- Set $k = \dim S_n$. As f is a submersion, it has constant rank k, and hence O(n) has codimension k in $GL(n, \mathbb{R})$.
- As $k = \dim S_n = \frac{1}{2}n(n+1)$ and $\dim \operatorname{GL}(n,\mathbb{R}) = n^2$, we get

dim O(n) =
$$n^2 - \frac{1}{2}n(n+1) = \frac{1}{2}n(n-1)$$

Example (Special Orthogonal Group; see also Problem 15.11)

The special orthogonal group is

$$\mathsf{SO}(n) = \big\{ A \in \mathsf{O}(n); \ \det A = 1 \big\} = \mathsf{O}(n) \cap \mathsf{SL}(n,\mathbb{R}).$$

- If $A \in O(n)$, then $A^T A = I$, and so $1 = \det(I) = \det(A^T A) = \det(A^T) \det(A) = \det(A)^2.$ Thus, $\det A = \pm 1$.
- It follows that $SO(n) = (\det_{O(n)})^{-1}(1) = (\det_{O(n)})^{-1}(\mathbb{R}_+^{\times})$, and so SO(n) is an open set in O(n).
- Here SO(n) is an open subgroup of O(n), and hence this is a Lie subgroup of O(n) and $GL(n, \mathbb{R})$.

Remark (Complex Linear Groups)

The complex versions of $GL(n,\mathbb{R})$ and $SL(n,\mathbb{R})$ are Lie groups as well. There are the following groups:

• The complex general linear group,

$$\mathsf{GL}(n,\mathbb{C}) = \{ A \in \mathbb{C}^{n \times n}; \ \det A \neq 0 \}.$$

• The complex special linear group,

$$\mathsf{SL}(n,\mathbb{C}) = \{ A \in \mathsf{GL}(n,\mathbb{C}); \ \det A = 1 \}.$$

• Here $SL(n, \mathbb{C})$ is an embedded Lie subgroup of $GL(n, \mathbb{C})$ of codimension 2.

Remark (Unitary Groups; see also Problems 15.12 & 15.13)

The complex analogues of O(n) and SO(n) are the following groups:

• The unitary group,

$$U(n) = \{ A \in \mathsf{GL}(n,\mathbb{C}); \ A^*A = I \}.$$

• The special unitary group,

$$\mathsf{SU}(n) = \big\{ A \in \mathsf{U}(n); \ \det A = 1 \big\} = \mathsf{U}(n) \cap \mathsf{SL}(n,\mathbb{C}).$$

- There are both (embedded) Lie subgroups of $GL(n, \mathbb{C})$.
- Here U(n) has codimension n^2 in $GL(n, \mathbb{C})$ and SU(n) has codimension 1 in U(n).

Definition (Matrix Exponential)

If A is an $n \times n$ matrix with entries in $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , then its exponential, denoted e^A or $\exp(A)$, is

$$\sum_{k=0}^{\infty} \frac{1}{k!} A^k = I + A + \frac{1}{2!} A^2 + \cdots,$$

where the series converges in $\mathbb{K}^{n \times n}$.

Remark

If A has real entries, then $\exp(A)$ has real entries as well.

Example (Exponentials of diagonal matrices)

Let *D* be a diagonal matrix,

$$D = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}.$$

Then its exponential is diagonal,

$$\operatorname{\mathsf{exp}}(D) = egin{bmatrix} e^{\lambda_1} & & 0 \ & \ddots & \ 0 & & e^{\lambda_n} \end{bmatrix}.$$

Proposition (Main algebraic properties)

The following holds:

$$\exp(0) = I, \qquad (e^A)^{-1} = e^{-A},$$

$$e^{A+B} = e^A e^B = e^B e^A \qquad \text{if } AB = BA,$$

$$\exp(P^{-1}AP) = P^{-1} \exp(A)P \qquad \forall P \in \mathsf{GL}(n, \mathbb{C}).$$

Example (Exponentials of diagonalizable matrices)

Let A be a diagonalizable matrix,

$$A = P^{-1}DP,$$
 $D = \begin{bmatrix} \lambda_1 & 0 \\ & \ddots \\ 0 & \lambda_n \end{bmatrix}.$

Then

$$\exp(A) = P^{-1} \exp(D)P = P^{-1} \begin{bmatrix} e^{\lambda_1} & 0 \\ & \ddots & \\ 0 & & e^{\lambda_n} \end{bmatrix} P.$$

In particular, $e^{\lambda_1}, \dots, e^{\lambda_n}$ are the eigenvalues of e^A .

Proposition (Proposition 15.17)

Let $A \in \mathbb{R}^{n \times n}$. Then $\mathbb{R} \ni t \to \exp(tA)$ is a smooth curve in $\mathsf{GL}(n,\mathbb{R})$ such that

$$\frac{d}{dt}\exp(tA) = A\exp(tA) = \exp(tA)A, \qquad t \in \mathbb{R}.$$

Remark

It can be shown that $A \to \exp(A)$ is a C^{∞} map from $\mathbb{R}^{n \times n}$ to $\mathsf{GL}(n,\mathbb{R})$.

Remark

Let $A = [a_{ij}] \in \mathbb{R}^{n \times n}$.

• The map $\mathbb{R} \times \mathbb{R}^n \ni (t, p) \to \exp(tA)p \in \mathbb{R}^n$ is the flow of the vector field,

$$X = \sum_{i,j} a_{ij} x^j \frac{\partial}{\partial x^i} \quad \text{on } \mathbb{R}^n.$$

• Indeed, if $x(t) = (x^1(t), \dots, x^n(t))$, then

$$\frac{dx}{dt} = X_{x(t)} \iff \dot{x}^{i}(t) = \sum_{j} a_{ij} x^{j}(t), \quad i = 1, \dots, n,$$

$$\iff \dot{x}(t) = Ax(t),$$

$$\iff x(t) = e^{tA} x(0).$$

• Thus, if x(0) = p, then $\mathbb{R} \ni t \to e^{tA}p$ is the (maximal) line integral of X that starts at p.

Reminder (Trace of a Matrix)

• If $A = [a_{ij}] \in \mathbb{C}^{n \times n}$, then its *trace* is

$$\operatorname{tr}(A) = a_{11} + \cdots + a_{nn},$$

= $\lambda_1 + \cdots + \lambda_n,$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A counted with multiplicity.

We have

$$\operatorname{tr}(AB) = \operatorname{tr}(BA),$$
 $\operatorname{tr}(P^{-1}AP) = \operatorname{tr}(A) \quad \forall P \in \operatorname{GL}(n,\mathbb{C}).$

Proposition (Proposition 15.20)

Let $A \in \mathbb{C}^{n \times n}$. Then

$$\det\left[e^A\right]=e^{\operatorname{tr}(A)}.$$

Remark

Let A be diagonalizable and have eigenvalues $\lambda_1, \ldots, \lambda_n$.

- By the example of slide 22 the matrix e^A has eigenvalues $e^{\lambda_1} \dots e^{\lambda_n}$.
- Thus,

$$\det [e^A] = e^{\lambda_1} \cdots e^{\lambda_n} = e^{\lambda_1 + \cdots + \lambda_n} = e^{\operatorname{tr}(A)}.$$

Facts

- The determinant is a C^{∞} map $\det : \mathbb{R}^{n \times n} \to \mathbb{R}$.
- The tangent space of the vector space $\mathbb{R}^{n \times n}$ at I is $T_I(\mathbb{R}^{n \times n}) = \mathbb{R}^{n \times n}$.
- The tangent space of \mathbb{R} at 1 is $T_1(\mathbb{R}) = \mathbb{R}$.
- Thus, the differential $\det_{*,I}$ is a linear map $\mathbb{R}^{n\times n}\to\mathbb{R}$.
- For every $X \in \mathbb{R}^{n \times n}$ the curve $c(t) = e^{tX}$ is a smooth curve such that c(0) = I whose velocity at t = 0 is c'(0) = X.

Reminder (Proposition 8.18)

Let $F: N \to M$ be a smooth map. Given $p \in N$ and $X \in T_pN$, for any smooth curve $c: I \to N$ starting at p and with velocity vector X at p, we have

$$F_*(X) = (F \circ c)'(0).$$

Proposition (Proposition 15.21)

We have

$$\det_{*,I}(X) = \operatorname{tr}(X) \qquad \forall X \in \mathbb{R}^{n \times n}$$

Proof.

• Set $c(t) = e^{tX}$. This is a C^{∞} curve in $\mathbb{R}^{n \times n}$ such that c(0) = I and c'(0) = X. Thus,

$$\det_{*,l}(X) = \frac{d}{dt}\Big|_{t=0} \det \left(c(t)\right) = \frac{d}{dt}\Big|_{t=0} \det \left(e^{tX}\right).$$

• As $det(e^{tX}) = e^{t \operatorname{tr}(X)}$, we get

$$\det_{*,I}(X) = \frac{d}{dt}\bigg|_{*=0} e^{t\operatorname{tr}(X)} = \operatorname{tr}(X).$$

The result is proved.

Final Remark

Remark

Let V be a vector space of dimension n.

- V is a smooth manifold of dimension n.
- If $p \in V$, then we have natural map $V \to T_p V$, $v \to D_{p,v}$, where $D_{p,v} \in T_p V$ is defined by

$$D_{p,v}f=\frac{d}{dt}\bigg|_{t=0}f(p+tv), \qquad f\in C_p^\infty(V).$$

• In the same way as with \mathbb{R}^n (cf. Chapter 2) it can be shown that the map $v \to D_{p,v}$ yields an isomorphism,

$$T_p(V) \simeq V$$
.

• It can be also shown that $V \times V \ni (p, v) \to D_{p,v} \in TV$ is a trivialization of V. Thus,

$$TV \simeq V \times V$$
 as C^{∞} vector bundles.