# Commutative Algebra Chapter 5: Integral Dependence and Valuations

Sichuan University, Fall 2022

#### Reminder

Let k be a field.

 An element x of some field extension of k is said to be algebraic over k if it is the root of some polynomial equation with coefficients in k, i.e.,

$$a_0x^n + a_1x^{n-1} + \cdots + a_n = 0,$$
  $a_i \in k, \ a_n \neq 0.$ 

- An algebraic extension of k is a field extension L of k in which every element is algebraic over k.
- We say that k is algebraically closed when the all the roots of every polynomial equation with coefficients in k are in k.
- Every field admits an algebraically closed extension.

#### Definition

Let  $A \subseteq B$  be rings. We say that  $x \in B$  is *integral over A* if it solution of a *monic* polynomial equation with coefficients in A, i.e., an equation of the form,

$$x^n + a_1 x^{n-1} + \dots + a_n = 0, \qquad a_i \in A.$$

#### Remark

Every  $x \in A$  is integral over A.

#### Example

Let  $A = \mathbb{Z}$  and  $B = \mathbb{Q}$ . Then  $x \in \mathbb{Q}$  is integral over  $\mathbb{Z}$  if and only if  $x \in \mathbb{Z}$ .

#### Proof.

• Let x = p/q be integral over  $\mathbb{Z}$  with p, q coprime:

$$(p/q)^n + a_1(p/q)^{n-1} + \cdots + a_n = 0, \qquad a_i \in \mathbb{Z}.$$

Multiplying by q<sup>n</sup> gives

$$p^{n} = -(a_{1}q + \cdots + a_{n}q^{n}) = -(a_{1} + \cdots + a_{n}q^{n-1})q.$$

Thus, q divides  $p^n$ .

• As p and q are coprime this is possible only if q=1, i.e.,  $x \in \mathbb{Z}$ .

### Proposition (Proposition 5.1)

Let  $A \subseteq B$  be rings and  $x \in B$ . TFAE:

- (i) x is integral over A.
- (ii) A[x] is a finitely generated A-module.
- (iii) A[x] is contained in a subring C of B such that C is a finitely generated A-module.
- (iv) There is a faithful A[x]-module M which is finitely generated as an A-module.

### Reminder (Faithful module; see Chapter 2)

A module M over A is faithful when its annihilator is zero, i.e., if  $a \in A$ , then

$$ax = 0 \quad \forall x \in M \implies a = 0.$$

### Reminder (Proposition 2.4; Cayley-Hamilton Theorem)

Let M be a finitely generated A-module and  $\mathfrak a$  and ideal of A. Let  $\phi: M \to M$  be an A-module endomorphism such that  $\phi(M) \subseteq \mathfrak a M$ . Then  $\phi$  satisfies an equation of the form,

$$\phi^n + a_1\phi^{n-1} + \cdots + a_n = 0,$$
  $a_i \in \mathfrak{a}.$ 

#### Proof of Proposition 5.1.

- If x is integral over A, then  $x^n = -(a_1x^{n-1} + \dots + a_n)$ . Thus,  $x^{n+r} = -(a_1x^{n+r-1} + \dots + a_nx^r) \quad \forall r > 0$ .
- By induction  $x^{n+r} \in Ax^{n-1} + \cdots + A$  for all  $r \ge 0$ , and hence A[x] is generated by  $x^{n-1}, \ldots, 1$ .
- In particular, A[x] is finitely generated. Thus, (i) implies (ii).
- (ii) $\Rightarrow$  (iii): Take C = A[x].
- (iii)  $\Rightarrow$  (iv): Take M = C. Here C is a faithful module, since  $yC = 0 \Rightarrow y1 = 0 \Rightarrow y = 0$ .

#### Proof of Proposition 5.1; Continued.

- Assume (iv). Apply Proposition 2.4 to M and  $\mathfrak{a} = A$  and  $\phi: M \to M$  given by the multiplication by x.
- Here  $\phi(M) = xM \subseteq M = AM$ , and so by Prop. 2.4 there are  $a_1, \ldots, a_n \in A$  such that

$$\phi^n + a_1\phi^{n-1} + \cdots + a_n = 0.$$

- That is,  $(x^n + a_1x^{n-1} + \cdots + a_n)M = 0$ , and hence  $x^n + a_1x^{n-1} + \cdots + a_n = 0$ , since M is faithful.
- This means that x integral over A, and hence (iv) implies (i).

The proof is complete.

#### Reminder (Proposition 2.16)

Let  $A \subseteq B$  be rings. If M is a finitely generated B-module and B is finitely generated as an A-module, then M is finitely generated as an A-module.

### Corollary (Corollary 5.2)

Let  $x_1, \ldots, x_n$  be elements of B that are integral over A. Then the ring  $A[x_1, \ldots, x_n]$  is a finitely generated A-module.

#### Proof.

We proceed by induction on n.

- For n = 1 this is Proposition 5.1(ii).
- Assume the result is true for n-1. Set  $A_r = A[x_1, \dots, x_r]$ .
- By assumption  $A_{n-1}$  is finitely generated over A.
- Here  $x_n$  is integral over A, and hence is integral over  $A_{n-1}$ .
- By Prop. 5.2(ii)  $A_n = A_{n-1}[x_n]$  is finitely generated over  $A_{n-1}$ .
- By Proposition 2.16  $A_n$  is finitely generated over A.

This gives the result.

#### Corollary (Corollary 5.3)

The set of all elements of B that are integral over A forms a sub-ring of B containing A.

#### Proof.

- Let  $x, y \in B$  be integral over A.
- By Corollary 5.2 A[x, y] is finitely generated over A.
- $A[x \pm y]$  and A[xy] are contained in A[x, y].
- Proposition 5.1(iii) then implies that  $x \pm y$  and xy are integral over A.

This proves the result.

#### Definition (Integral closure)

The sub-ring of elements of B that are integral over A is called the *integral closure of* A in B and is denoted B\*A (Gaillard's notation).

#### Definition

- We say that A is integrally closed if B \* A = A.
- We say that B is integral over A if B \* A = B, i.e., every  $x \in B$  is integral over A.

#### Remark

B \* A is integral over A.

### Reminder (Finite and finite-type algebras; see Chapter 2)

Let B be an A-algebra.

- We say that the algebra *B* is *finite* if it is finitely generated as an *A*-module.
- We say that the algebra B has finite type if  $B = A[x_1, \dots, x_n]$  for some  $x_i \in B$ .

#### Remark

It follows from Corollary 5.2 that if an A-algebra B has finite type and is integral over A, then B is a finite A-algebra.

### Corollary (Corollary 5.4)

Let  $A \subseteq B \subseteq C$  be rings such that B is integral over A and C is integral over B. Then C is integral over A.

#### Proof.

• Let  $x \in C$ . Then x is integral over B, i.e.,

$$x^n + b_1 x^{n-1} + \dots + b_n = 0, \qquad b_i \in B.$$

- By Prop. 5.2  $B' = A[b_1, ..., b_n]$  is finitely generated over A.
- As x is integral over B', Prop. 5.1 ensures that B'[x] is finitely generated over B'.
- By Prop. 2.16 B'[x] is finitely generated over A.
- By Prop. 5.1(iii) x is integral over A, and hence C is integral of A.

The proof is complete.

#### Corollary (Corollary 5.5)

Let  $A \subseteq B$  be rings. Then B \* A is integrally closed in B.

#### Proof.

- We have  $A \subseteq B * A \subseteq B * (B * A)$ .
- Here B \* A is integral over A, and B \* (B \* A) is integral over B \* A.
- By Corollary 5.4 B \* (B \* A) is integral over A.
- This means that if  $x \in B$  is integral over B \* A, then x is integral over A, i.e.,  $x \in B^*A$ .
- That is, B \* A is integrally closed in B.

The proof is complete.

#### **Fact**

Let  $A \subseteq B$  be rings. Let  $\mathfrak{b}$  an ideal of B with canonical homomorphism  $f: B \to B/\mathfrak{b}$ . Set  $\mathfrak{a} = \mathfrak{b} \cap A$ . Then f induces an exact sequence of A-modules,

$$0 \longrightarrow \mathfrak{a} \longrightarrow A \stackrel{f}{\longrightarrow} f(A) \longrightarrow 0.$$

Thus,

$$f(A) \simeq A/\mathfrak{a}$$

### Proposition (Proposition 5.6)

Let  $A \subseteq B$  be rings such that B is integral over A.

- (i) If  $\mathfrak{b}$  is an ideal of B and  $\mathfrak{a} = \mathfrak{b}^c = \mathfrak{b} \cap A$ , then  $B/\mathfrak{b}$  is integral over  $A/\mathfrak{a}$ .
- (ii) Let S be a multiplicatively closed subset of A. Then  $S^{-1}B$  is integral over  $S^{-1}A$ .

#### Proof of Proposition 5.6.

• Let  $x \in B$ . As x is integral over A,

$$x^n + a_1 x^{n-1} + \dots + a_n = 0 \qquad a_i \in A.$$

• Let  $\overline{x}$  be the image of x in  $B/\mathfrak{b}$ . Then:

$$\overline{x}^n + \overline{a_1} \cdot \overline{x}^{n-1} + \cdots + \overline{a_n} = 0.$$

Thus,  $\overline{x}$  is integral over  $A/(A \cap \mathfrak{b}) = A/\mathfrak{a}$  (which is identified with the image of A in  $B/\mathfrak{b}$ ).

• Let  $s \in S$ . Then:

$$(x/s)^{n} + (a_{1}/s)(x/s)^{n-1} + \dots + a_{n}/s^{n}$$
  
=  $(x^{n} + a_{1}x^{n-1} + \dots + a_{n})/s^{n} = 0.$ 

Thus, x/s is integral over  $S^{-1}A$ .

This gives the result.

### Reminder (Integral domains; see Chapter 1)

A ring A is called an integral domain if

$$xy = 0 \Longrightarrow x = 0 \text{ or } y = 0.$$

### Proposition (Proposition 5.7)

Let  $A \subseteq B$  be integral domains such that B is integral over A. Then

B is a field  $\iff$  A is a field.

#### Proof of Proposition 5.7.

• Suppose that A is a field. Let  $y \in B$ ,  $y \neq 0$ . Then:

$$y^n + a_1 y^{n-1} + \dots + a_n = 0, \qquad a_i \in A.$$

- We may assume the above equation to have minimal degree.
- In this case  $a_n \neq 0$ . Otherwise we would have

$$0 = y(y^{n-1} + a_1y^{n-2} + \cdots + a_{n-1}),$$

and hence  $y^{n-1} + a_1 y^{n-2} + \cdots + a_{n-1} = 0$ , since B is an integral domain. This would contradict the minimality of n.

• As  $a_n \neq 0$ , it is invertible in A, and we have

$$1 = a_n^{-1} a_n = -a_n^{-1} (y^n + a_1 y^{n-1} + \dots + a_{n-1} y)$$
  
=  $-a_n^{-1} (y^{n-1} + a_1 y^{n-2} + \dots + a_{n-1}) y$ ,

and hence y is invertible in B. Thus, B is a field.

19 / 54

#### Proof of Proposition 5.7; Continued.

- Suppose that B is a field. Let  $x \in A$ ,  $x \neq 0$ .
- $x^{-1} \in B$  is integral over A, i.e.,

$$x^{-m} + a'_1 x^{-m+1} + \dots + a'_m = 0, \quad a'_i \in A.$$

Thus,

$$x^{-1} = x^{m-1}x^{-m} = -x^{m-1}(a'_1x^{-m+1} + \dots + a'_m)$$
$$= -(a'_1 + \dots + a'_mx^{m-1}) \in A.$$

• It follows that A is a field.

The proof is complete.

### Reminder (Prime and maximal ideals; see Chapter 1)

Let p be an ideal of a ring A. Then

 $\mathfrak{p}$  is prime  $\iff$   $A/\mathfrak{p}$  is an integral domain,

 $\mathfrak{p}$  is maximal  $\iff A/\mathfrak{p}$  is a field,

### Remark (Contractions of ideals; see Chapter 1)

Let  $A \subseteq B$  be rings. The inclusion of A into B is a ring homomorphism. Thus, if  $\mathfrak{b}$  is an ideal of B, then its contraction in A is  $\mathfrak{b}^c = \mathfrak{b} \cap A$ .

#### Corollary (Corollary 5.8)

Let  $A \subseteq B$  be rings such that B is integral over A. Let  $\mathfrak{q}$  be a prime ideal of B and set  $\mathfrak{p} = \mathfrak{q}^c = \mathfrak{q} \cap A$ . Then  $\mathfrak{q}$  is maximal  $\iff \mathfrak{p}$  is maximal.

#### Proof.

- By Proposition 5.6  $B/\mathfrak{q}$  is integral over  $A/\mathfrak{p}$ .
- Here  $\mathfrak{q}$  and  $\mathfrak{p} = \mathfrak{q} \cap A$  are prime ideals, so  $B/\mathfrak{q}$  and  $A/\mathfrak{p}$  are integral domains.
- By Corollary 5.7 B/q is a field if and only if A/p is a field.
- That is, q is maximal if and only if p is maximal.

The result is proved.

### Reminder (Rings of fractions; Corollary 3.4 and Proposition 3.11)

Let S be a multiplicatively closed subset of a ring A.

- If  $\mathfrak{a}$  and  $\mathfrak{b}$  are ideals of A, then  $S^{-1}(\mathfrak{a} \cap \mathfrak{b}) = S^{-1}(\mathfrak{a}) \cap S^{-1}(\mathfrak{b})$ .
- There is a one-to-correspondence ( $\mathfrak{p} \leftrightarrow S^{-1}\mathfrak{p}$ ) between the prime ideals of  $S^{-1}A$  and the prime ideals of A that don't meet S.
- In particular, if  $\mathfrak p$  and  $\mathfrak p'$  are prime ideals of A that don't meet S, then  $S^{-1}\mathfrak p=S^{-1}\mathfrak p'\Rightarrow \mathfrak p=\mathfrak p'.$
- If  $S = A \setminus \mathfrak{p}$ , where  $\mathfrak{p}$  is a prime ideal of A, then  $S^{-1}\mathfrak{p}$  is the maximal ideal of the local ring  $A_{\mathfrak{p}} = S^{-1}A$ .

### Corollary (Corollary 5.9)

Let  $A \subseteq B$  be rings such that B is integral over A. Let q and q' be prime ideals of B such that  $q \subseteq q'$  and  $q \cap A = q' \cap A$ . Then q = q'.

#### Proof of Corollary 5.9.

- By Proposition 5.6  $B_p$  is integral over  $A_p$ .
- Let  $\mathfrak{m}$  be the extension of  $\mathfrak{p}$  in  $A_{\mathfrak{p}}$ . This is the unique maximal ideal of the local ring  $A_{\mathfrak{p}}$ .
- Let  $\mathfrak{n}$  and  $\mathfrak{n}'$  be the extensions of  $\mathfrak{q}$  and  $\mathfrak{q}'$  in  $B_{\mathfrak{p}}$ . Then  $\mathfrak{n} \subseteq \mathfrak{n}'$ .
- $\mathfrak{n} \cap A_{\mathfrak{p}}$  is the extension of  $\mathfrak{q} \cap A = \mathfrak{p}$  in  $A_{\mathfrak{p}}$ , and hence is equal to  $\mathfrak{m}$ .
- In particular  $\mathfrak{n} \cap A_{\mathfrak{p}}$  is maximal, and hence  $\mathfrak{n}$  is maximal by Corollary 5.8.
- Likewise  $\mathfrak{n}'$  is maximal. As  $\mathfrak{n} \subseteq \mathfrak{n}'$  it follows that  $\mathfrak{n} = \mathfrak{n}'$ .
- By Proposition 3.11 the contractions in A of  $\mathfrak n$  and  $\mathfrak n'$  are  $\mathfrak q$  and  $\mathfrak q'$ , respectively, so we see that  $\mathfrak q=\mathfrak q'$ .

The proof is complete.

### Theorem (Theorem 5.10)

Let  $A \subseteq B$  be rings such that B is integral over A. Then, for any prime ideal  $\mathfrak p$  of A, there is a prime ideal  $\mathfrak q$  of B such that  $\mathfrak q \cap A = \mathfrak p$ .

#### Proof of Theorem 5.10.

- By Proposition 5.6  $B_p$  is integral over  $A_p$ .
- We also have a commutative diagram,

- Let  $\mathfrak{n}$  be a maximal ideal of  $B_{\mathfrak{p}}$ . By Proposition 5.8  $\mathfrak{m} = \mathfrak{n} \cap A_{\mathfrak{p}}$  is maximal.
- Thus,  $\mathfrak{m} = \alpha(\mathfrak{p})$ , since  $\alpha(\mathfrak{p})$  is the unique maximal ideal of  $A_{\mathfrak{p}}$ . Hence  $\mathfrak{p} = \alpha^{-1}(\mathfrak{m})$ .
- Set  $q = \beta^{-1}(n)$ . This is a prime ideal. As the diagram above is commutative, we have

$$\mathfrak{q} \cap A = \iota^{-1} \left( \beta^{-1}(\mathfrak{n}) \right) = \alpha^{-1} \left( \iota_{\mathfrak{p}}^{-1}(\mathfrak{n}) \right) = \alpha^{-1}(\mathfrak{n} \cap A_{\mathfrak{p}}) = \alpha^{-1}(\mathfrak{m}) = \mathfrak{p}.$$

This proves the result.



### Theorem (Going-Up Theorem; Theorem 5.11)

Let  $A \subseteq B$  be rings such that B is integral over A. Suppose we are given the following:

- A chain  $\mathfrak{p}_1 \subseteq \cdots \subseteq \mathfrak{p}_n$  of prime ideals of A.
- A chain  $q_1 \subseteq \cdots \subseteq q_m$  of prime ideals of B with m < n such that  $q_i \cap A = \mathfrak{p}_i$  for  $i = 1, \dots, m$ .

Then the latter chain extends to a chain  $\mathfrak{q}_1 \subseteq \cdots \subseteq \mathfrak{q}_n$  of ideals of B such that  $\mathfrak{q}_i \cap A = \mathfrak{p}_i$  for  $i = 1, \ldots, n$ .

#### Proof of Theorem 5.11.

- We may assume m = 1. By induction we may further assume that n = m + 1 = 2.
- Set  $\overline{A} = A/\mathfrak{p}_1$  and  $\overline{B} = B/\mathfrak{q}_1$ . Then  $\overline{A} \subseteq \overline{B}$ , and  $\overline{B}$  is integral of over  $\overline{A}$  by Proposition 5.6.
- Let  $\overline{\mathfrak{p}}_2$  be the image of  $\mathfrak{p}_2$  in  $\overline{A}$ . As  $\mathfrak{p}_2 \supseteq \mathfrak{p}_1$  this is a prime ideal of  $\overline{A}$  by Proposition 1.1\*.
- By Theorem 5.10 there is a prime ideal  $\overline{\mathfrak{q}}_2$  of  $\overline{B}$  such that  $\overline{\mathfrak{q}}_2 \cap \overline{A} = \overline{\mathfrak{p}}_2$ .
- Let  $\mathfrak{q}_2$  be the contraction of  $\overline{\mathfrak{q}}_2$  in B. This is a prime of ideal of B containing  $\mathfrak{q}_1$  by Proposition 1.1\*.
- Moreover,

$$\mathfrak{q}_2 \cap A = (\overline{\mathfrak{q}}_2)^c \cap \overline{A}^c = (\overline{\mathfrak{q}}_2 \cap \overline{A})^c = (\overline{\mathfrak{p}}_2)^c = \mathfrak{p}_2.$$

Thus  $q_2$  has the required properties.

The proof is complete.



### Reminder (Fraction Field; slides on Chapter 3)

If A is an integral domain, its field of fraction, denoted Frac(A), is  $S^{-1}A$  with  $S=A\setminus 0$ .

#### **Facts**

Let A be a integral domain and let  $S \subset A \setminus 0$  be multiplicatively closed. Set  $K = \operatorname{Frac}(A)$ .

- (i)  $S^{-1}A$  is a subring of K, and hence is an integral domain.
- (ii) The natural homomorphism  $A \to S^{-1}A$ ,  $a \to a/1$ , is injective.
- (iii)  $\operatorname{Frac}(S^{-1}A) = K$ .

#### Proof.

- (i) The homomorphism  $S^{-1}A \ni a/s \to a/s \in K$  is injective.
- (ii) Follows from (i). It actually holds for any arbitrary ring provided *S* does not contain any zero-divisor.
- (iii) The homomorphism  $\operatorname{Frac}(S^{-1}A) \ni (a/s)/(b/t) \to (at)/(bs) \in K$  is injective and surjective, and hence is an isomorphism.

### Proposition (Proposition 5.12)

Let  $A \subseteq B$  be rings, A integral domain, and let  $S \subseteq A \setminus 0$  be multiplicatively closed. Then  $S^{-1}(B*A)$  is the integral closure of  $S^{-1}A$  in  $S^{-1}B$ , i.e.,

$$(S^{-1}B) * (S^{-1}A) = S^{-1}(B * A).$$

#### Remarks

- This result holds for arbitrary rings provided *S* does not contain any zero-divisor.
- ② In Atiyah-MacDonald's book this assumption on *S* is missing. The result fails without it.

#### Proof of Proposition 5.12.

- As B \* A is integral over A, Proposition 5.6(ii) ensures that  $S^{-1}(B * A) \subset (S^{-1}B) * (S^{-1}A)$ .
- Let  $b/s \in (S^{-1}B) * (S^{-1}A)$  with  $b \in B$  and  $s \in S$ . Then:  $(b/s)^n + (a_1/s_1)(b/s)^{n-1} + \cdots + (a_n/s_n) = 0, \quad a_i \in A, \ s_i \in S.$
- Set  $t = s_1 \cdots s_n$ . Multiplying by  $(st)^n$  gives  $0 = (bt)^n / 1 + a_1 s(t/s_1)(bt)^{n-1} + \cdots + a_n s^n t^{n-1}(t/s_n)$   $= ((bt)^n + a'_1(bt)^{n-1} + \cdots + a'_n) / 1,$ 
  - where we have set  $a'_i = a_i s^i t^{i-1} s_1 \cdots s_{i-1} s_{i+1} \cdots s_n \in A$ .
- As the homomorphism  $a \to a/1$  is injective, this gives  $(bt)^n + a_1'(bt)^{n-1} + \cdots + a_n' = 0$ , and hence  $bt \in B * A$ .
- Thus  $b/s = (bt)/(ts) \in S^{-1}(B * A)$ , and hence  $(S^{-1}B) * (S^{-1}A) \subseteq S^{-1}(B * A)$ .

This proves the result.



#### Definition

A say that an integral domain A is integrally closed when it is integrally closed in its fraction ring Frac(A).

#### Example

The ring  $A=\mathbb{Z}$  is an integral domain with fraction field  $\mathbb{Q}$  and it is integrally closed in  $\mathbb{Q}$  (see slide 3). Thus,  $\mathbb{Z}$  is an integrally closed integral domain.

More generally, any principal domain with the unique factorization property is integrally closed. In particular, we have:

#### Example

Any polynomial ring  $A = k[x_1, ..., x_n]$  over a field k is integrally closed.

### Reminder (Surjectivity is a local property; Proposition 3.9)

Let  $\phi: M \to N$  be an A-module homomorphism between A-modules. Then TFAE:

- $\bullet$  is surjective.
- ②  $\phi_{\mathfrak{p}}: M_{\mathfrak{p}} \to N_{\mathfrak{p}}$  is surjective for every prime ideal  $\mathfrak{p}$  of A.
- **3**  $\phi_{\mathfrak{m}}: M_{\mathfrak{m}} \to N_{\mathfrak{m}}$  is surjective for every maximal ideal  $\mathfrak{m}$  of A.

Integral closedness is a local property:

### Proposition (Proposition 5.13)

Let A be an integral domain. Then TFAE:

- (i) A is integrally closed.
- (ii)  $A_p$  is integrally closed for every prime ideal p.
- (iii)  $A_m$  is integrally closed for every maximal ideal m.

#### Proof of Proposition 5.13.

- Set  $K = \operatorname{Frac}(A)$ . Let  $f : A \to K * A$  be the inclusion. Then: (A integrally closed)  $\iff A = K * A \iff (f \text{ surjective})$ .
- By the facts on Slide 30  $Frac(A_p) = K$ .
- If  $\mathfrak p$  is prime, then by Proposition 5.12  $K*A_{\mathfrak p}=K_{\mathfrak p}*A_{\mathfrak p}=(K*A)_{\mathfrak p}.$
- Under these equalities the inclusion of  $A_p$  into  $K * A_p$  is  $f_p : A_p \to (K * A)_p$ .
- Thus,

$$(A_{\mathfrak{p}} \text{ is integrally closed}) \Longleftrightarrow (f_{\mathfrak{p}} \text{ is surjective}).$$

• Combining this with Proposition 3.9 gives the result.

The proof is complete.

#### Definition

Let  $A \subseteq B$  be rings and  $\mathfrak{a}$  an ideal of A.

• An element  $x \in B$  is said to be integral over a if it is solution of monic equation with coefficients in a, i.e.,

$$x^n + a_1 x^{n-1} + \dots + a_n = 0, \qquad a_i \in \mathfrak{a}.$$

The set of all such elements is called the *integral closure of* α in B and is denoted B \* α (Gaillard's notation).

### Remark (Contractions of ideals; see Chapter 1)

Let  $A \subseteq B$  be rings. The inclusion of A into B is a ring homomorphism. Therefore:

- If  $\mathfrak{a}$  is an ideal of A, then its extension in B is  $\mathfrak{a}^e = B\mathfrak{a}$ , i.e., it consists all finite sums  $\sum b_i a_i$  with  $b_i \in B$  and  $a_i \in \mathfrak{a}$ .
- If b is an ideal of B, then its contraction in A is  $b^c = b \cap A$ .

## Lemma (Lemma 5.14)

Let  $A \subseteq B$  be rings and  $\mathfrak a$  an ideal of A. Then the integral closure of  $\mathfrak a$  in B is the radical of its extension in B\*A. That is,

$$B * \mathfrak{a} = r((B * A)\mathfrak{a}).$$

In particular,  $B * \mathfrak{a}$  is an ideal of B.

#### Proof of Lemma 5.14.

- If  $x \in B * \mathfrak{a}$ , then  $x^n + a_1 x^{n-1} + \cdots + a_n = 0$  with  $a_i \in \mathfrak{a}$ . In particular,  $x \in B * A$ .
- Thus,  $x^n = -(a_1x^{n-1} + \cdots + a_n) \in (B * A)\mathfrak{a}$ , and hence  $x \in r((B * A)\mathfrak{a})$ .
- Conversely, let  $x \in r((B*A)\mathfrak{a})$ . Then  $x^n = \sum_{i=1}^m a_i x_i$  with  $a_i \in \mathfrak{a}$  and  $x_i \in B*A$ .
- By Proposition 5.2  $M = A[x_1, ..., x_m]$  is a finitely generated A-module. Moreover  $x^n M \subset \mathfrak{a} M$ .
- Let  $\phi: M \to M$  be the multiplication by  $x^n$ . As  $\phi(M) \subseteq \mathfrak{a}M$ , by the Cayley-Hamilton theorem (Proposition 2.4),

$$\phi^p + a_1\phi^{p-1} + \cdots + a_p = 0, \qquad a_i \in \mathfrak{a}.$$

• Evaluating at 1 gives  $x^{pn} + a_1 x^{n(p-1)} + \cdots + a_n = 0$ , and hence  $x \in B * \mathfrak{a}$ .

This proves the result.

### Proposition (Proposition 5.15)

Let  $A \subseteq B$  be integral domains such that A is integrally closed. Let  $x \in B$  be integral over an ideal  $\mathfrak{a}$  of A. Then:

- **1**  $\times$  is algebraic over the fraction field K = Frac(A).
- 2 Let  $\mu(t) = t^n + a_1 t^{n-1} + \dots + a_n$  be the minimal polynomial of x over K. Then all the coefficients  $a_1, \dots, a_n$  lie in  $r(\mathfrak{a})$ .

## Reminder (Contracted ideals; see Proposition 1.17(iii))

Let  $f: A \rightarrow B$  be a ring homomorphism.

- An ideal  $\mathfrak{a}$  of A is a the contraction of an ideal of B if and only if  $\mathfrak{a}^{ec} = \mathfrak{a}$ .
- In particular, if  $A \subseteq B$  and f is the inclusion map, then the above condition amounts to

$$(B\mathfrak{a})\cap A=\mathfrak{a}.$$

## Reminder (Corollary 3.13)

Let A be a ring and  $\mathfrak p$  a prime ideal. Then we have a one-to-one correspondence between prime ideals of  $A_{\mathfrak p}$  and prime ideals of A contained in  $\mathfrak p$ .

## Theorem (Going-Down Theorem; Theorem 5.16)

Let  $A \subseteq B$  be integral domains such that A is integrally closed and B is integral over A, i.e., K\*A=A and B\*A=B, where  $K=\operatorname{Frac}(A)$ . Assume we are given the following:

- A chain  $\mathfrak{p}_1 \supseteq \cdots \supseteq \mathfrak{p}_n$  of prime ideals of A.
- A chain  $q_1 \supseteq \cdots \supseteq q_m$  of prime ideals of B with m < n such that  $q_i \cap A = p_i$  for  $i = 1, \dots, m$ .

Then the latter chain extends to a chain  $\mathfrak{q}_1 \supseteq \cdots \supseteq \mathfrak{q}_n$  of ideals of B such that  $\mathfrak{q}_i \cap A = \mathfrak{p}_i$  for  $i = 1, \ldots, n$ .

#### Definition

We say that a ring B is a valuation ring of a field K if K contains B as a sub-ring and

$$x \in K \setminus 0 \implies x \in B \text{ or } x^{-1} \in B.$$

#### Remarks

- Any sub-ring of a field is automatically an integral domain, and so any valuation ring is an integral domain.
- **2** If B is a valuation ring for a field K, then K is the fraction field of B. (An isomorphism from Frac(B) to K is  $x/y \rightarrow xy^{-1}$ .)

## Reminder (Characterization of local rings; see Proposition 1.6(i))

Let A be a ring and m a proper ideal that contains all non-units of A. Then m is the unique maximal ideal of A, and hence A is a local ring.

## Proposition (Proposition 5.18)

Let B a valuation ring in a field K.

- (i) B is a local ring.
- (ii) Any sub-ring of K containing B is a valuation ring of K.
- (iii) B is integrally closed in K.

### Proof of Proposition 5.18(i).

• Let  $\mathfrak{m}$  be the set of non-units of B. Thus, if  $x \in B$ , then

$$x \in \mathfrak{m} \iff (x = 0 \text{ or } x^{-1} \notin B)$$
.

- If  $a \in B$  and  $x \in \mathfrak{m}$ , then  $ax \in \mathfrak{m}$ . Otherwise,  $(ax)^{-1} \in B$  and  $x^{-1} = a(ax)^{-1} \in B$  (not possible).
- Let  $x, y \in \mathfrak{m} \setminus 0$ . Then  $xy^{-1} \in B$  or  $yx^{-1} \in B$ .
- If  $xy^{-1} \in B$ , then  $x + y = (1 + xy^{-1})y \in \mathfrak{m}$ .
- Likewise, if  $yx^{-1} \in B$ , then  $x + y \in \mathfrak{m}$ .
- This shows that m is an ideal of B.
- As m contains all the non-units of B, Proposition 1.6(i) ensures that m is the unique maximal ideal of B, and hence B is a local ring.

## Proof of Proposition 5.18(iii).

• Let  $x \in K * B$ . Then:

$$x^{n} + b_{1}x^{n-1} + \cdots + b_{n} = 0, \quad b_{i} \in B.$$

• Suppose that  $x \notin B$ . Then  $x^{-1} \in B$ , and hence

$$x = x^{-n+1}x^n = -x^{-n+1} (b_1 x^{n-1} + \dots + b_n)$$
  
=  $-b_1 - b_2 x^{-1} - \dots - b_n (x^{-1})^{n-1} \in B$ .

This is a contradiction, so  $x \in B$ , and hence K \* B = B.

• That is, B is integrally closed in K.

The proof is complete.

#### **Facts**

Let K be a field and  $\Omega$  an algebraically closed field.

- Define  $\Sigma$  to be the set of pairs (A, f), where A is a sub-ring of K and  $f: A \to \Omega$  is a ring homomorphism.
- Σ is a partially ordered set:

$$(A, f) \le (A', f') \iff A \subseteq A' \text{ and } f'_{|A} = f.$$

By Zorn's lemma ∑ admits a maximal element.

### Theorem (Theorem 5.21; see Atiyah-MacDonald)

If (B,g) is a maximal element of  $\Sigma$ , then the ring B is a valuation ring of K.

## Corollary

Let A be a sub-ring of a field K and  $f:A\to\Omega$  a ring homomorphism, where  $\Omega$  is an algebraically closed field. Then f can be extended to a ring homomorphism  $g:B\to\Omega$ , where B is a valuation ring B for K.

## Corollary (Corollary 5.22)

Let A be a sub-ring of a field K. Then the integral closure K \* A is the intersections of all the valuation rings of K that contain A.

#### Proof.

- If  $B \supseteq A$  is a valuation ring for K, then by Proposition 5.18 B is integrally closed in K, and hence  $B = K * B \supseteq K * A$ .
- Conversely, let  $x \notin K * A$ . Then x is not in the ring  $A' = A[x^{-1}]$ . Otherwise  $x = a_0 + \cdots + a_n x^{-n}$ ,  $a_i \in A$ . Thus,  $x^{n+1} (a_0 x^n + \cdots + a_n) = 0$ ,

and hence  $x \in K * A$  (not possible).

• In particular,  $x^{-1}$  is a unit of A', and so there is a maximal ideal  $\mathfrak{m}'$  of A' containing  $x^{-1}$ .

### Proof of Corollary 5.22; Continued.

- Let  $\Omega$  be the algebraic closure of the field  $k' = A'/\mathfrak{m}'$  and  $f: A' \to k' \subseteq \Omega$  the canonical homorphism.
- By Theorem 5.21 f can be extended to a ring homomorphism  $g: B \to \Omega$ , where B is a valuation ring of K.
- Here  $x^{-1} \in A' \subseteq B$ . If  $x \in B$ , then  $x^{-1}$  is a unit of B, and so  $g(x^{-1})$  is a unit of  $\Omega$ , i.e.,  $g(x^{-1}) \neq 0$ .
- However, as  $x^{-1} \in \mathfrak{m}' \subseteq A'$ , we have  $g(x^{-1}) = f(x^{-1}) = 0$  (contradiction). Thus,  $x \notin B$ .
- By contraposition, if x is contained in all the valuation rings containing A, then  $x \in K * A$ .

The proof is complete.

## Proposition (Proposition 5.23)

Let  $A \subseteq B$  be integral domains such that B is finitely generated over A. Let  $v \in B \setminus 0$ . Then there is  $u \in A \setminus 0$  with the following property: any homomorphism f of A into an algebraically closed field  $\Omega$  such that  $f(u) \neq 0$  extends to a homomorphism  $g: B \to \Omega$  such that  $g(v) \neq 0$ .

## Corollary (Corollary 5.24)

Let k be a field and B a finitely generated k-algebra. If B is a field, then it is a finite algebraic extension of k.

#### Remark

Let  $\Omega$  be the algebraic closure of k.

- A field L/k is an algebraic extension if and only if L embeds into  $\Omega$ .
- A homomorphism  $g: L \to \Omega$  is injective if and only if  $g(1) \neq 0$  (since  $x \neq 0$  and g(x) = 0 implies  $g(1) = g(x)g(x^{-1}) = 0$ ).
- Thus, L/k is an algebraic extension if and only if there is a homomorphism  $g: L \to \Omega$  such that  $g(1) \neq 0$ .

## Proof of Corollary 5.24.

- Apply Proposition 5.23 to v = 1 and the inclusion  $f : k \hookrightarrow \Omega$ .
- We get a homomorphism  $g: B \to \Omega$  such that  $g(1) \neq 0$ .
- By the previous remark B/k is an algebraic extension.

The result is proved.

## Corollary (Weak Nullstellensatz; Corollary 7.10)

Let k be a field, A a finitely generated k-algebra, and  $\mathfrak m$  a maximal ideal of A. Then the field  $A/\mathfrak m$  is a finite algebraic extension of k. In particular, if k is algebraically closed, then  $A/\mathfrak m \simeq k$ .

#### Proof.

- As A is a finitely generated k-algebra, so is  $A/\mathfrak{m}$ .
- Corollary 5.24 then ensures that  $A/\mathfrak{m}$  is a finite algebraic extension of k.

The result is proved.