Differentiable Manifolds §10. Categories and Functors

Sichuan University, Fall 2022

Definition (Categories)

A (concrete) category % consists of the following data:

- A collection $\mathsf{Ob}(\mathscr{C})$ of sets called *objects*.
- For each pair of objects $A, B \in \mathsf{Ob}(\mathscr{C})$ a collection $\mathsf{Mor}(A, B)$ of maps $f : A \to B$ called *morphisms*.

We further require the following properties:

(i) *Identity axiom*. For every object A the identity map $\mathbb{1}_A:A\to A$ is a morphism, i.e., $\mathbb{1}_A\in \operatorname{Mor}(A,A)$. In particular, for any morphisms $f:A\to B$ and $g:B\to A$, we have

$$f \circ \mathbb{1}_A = f$$
 and $\mathbb{1}_A \circ g = g$.

(ii) Associativity axiom. If $f \in Mor(A, B)$, $g \in Mor(B, C)$, and $h \in Mor(C, D)$, then

$$h \circ (g \circ f) = (h \circ g) \circ f.$$

Example

The category of sets, where:

- The objects are arbitrary sets.
- The morphisms are arbitrary maps.

This category is denoted **Set**.

Example

The category of groups, where:

- The objects are groups.
- The morphisms are group homomorphisms.

This category is denoted **Grp**.

Example

The category of real vector spaces, where:

- ullet The objects are vector spaces over \mathbb{R} .
- The morphisms are ℝ-linear maps.

This category is denoted $Vect_{\mathbb{R}}$.

Example

The category of real algebras, where:

- The objects are algebras over \mathbb{R} .
- The morphisms are algebra homomorphisms.

This category is denoted $Alg_{\mathbb{R}}$.

Example

The category of topological spaces (a.k.a. *continuous category*), where:

- The objects are topological spaces.
- The morphisms are continuous maps.

This category is denoted **Top**.

Example

The category of smooth manifolds (a.k.a. *smooth category*), where:

- The objects are smooth manifold.
- The morphisms are smooth maps between manifolds.

This category is denoted Man^{∞} .

Example

The category of pointed manifolds, where:

- The objects are pointed manifolds, i.e., pairs (M, q) where M is a (smooth) manifold and q is a point of M.
- A morphism $f \in Mor((N, p), (M, q))$ is a smooth map $F : N \to M$ such that F(p) = q.

This category is denoted Man_{\bullet}^{∞} .

Definition (Definition 10.1)

Let A and B be objects in a given category \mathscr{C} .

- We say that a morphism $f: A \to B$ is an isomorphism when f is a bijection and $f^{-1} \in \text{Mor}(B, A)$.
- We say that the objects A and B are isomorphic, and write $A \simeq B$, when there is an isomorphism $f : A \to B$.

Examples

- In the category **Top** the isomorphisms are called homeomorphisms.
- ② In the category Man[∞] the isomorphisms are called diffeomorphisms.

Definition (Functors; Definition 10.2)

Given categories $\mathscr C$ and $\mathscr D$, a *(covariant) functor* $\mathscr F:\mathscr C\to\mathscr D$ associate to every object A in $\mathscr C$ an object $\mathscr F(A)$ in $\mathscr D$ and associates to every morphism $f:A\to B$ (between objects in $\mathscr C$) a morphism $\mathscr F(f):\mathscr F(A)\to\mathscr F(B)$ in such a way that

$$\mathscr{F}(\mathbb{1}_A) = \mathbb{1}_{\mathscr{F}(A)}$$
 and $\mathscr{F}(f \circ g) = \mathscr{F}(f) \circ \mathscr{F}(g)$.

Example

The tangent space construction gives rise to a functor $\mathscr{F}: \mathsf{Man}^{\infty}_{\bullet} \to \mathsf{Vect}_{\mathbb{R}}.$

- To any pointed manifold (N, p) is associated the tangent space $\mathscr{F}(N) = T_p N$, which is a vector space.
- To any smooth map $f:(N,p) \to (M,q)$ is associated the differential $\mathscr{F}(f) = f_{*,p}: T_pN \to T_qM$, which is a linear map.
- The differential of the identity $\mathbb{1}_N : N \to N$ is the identity map $\mathbb{1}_{T_pN} : T_pN \to T_pN$.
- The functorial property $\mathscr{F}(f \circ g) = \mathscr{F}(f) \circ \mathscr{F}(g)$ is just the Chain Rule,

$$(g\circ f)_{*,p}=g_{*,f(p)}\circ f_{*,p}.$$

Remark

Let $\mathscr{F}:\mathscr{C}\to\mathscr{D}$ be a functor and let $f:A\to B$ be an isomorphism between objects in \mathscr{C} . We get morphisms,

$$\mathscr{F}(f):\mathscr{F}(A)\to\mathscr{F}(B),\qquad \mathscr{F}(f^{-1}):\mathscr{F}(B)\to\mathscr{F}(A).$$

By the functor properties we have

$$\mathscr{F}(f^{-1})\circ\mathscr{F}(f)=\mathscr{F}(f^{-1}\circ f)=\mathscr{F}(\mathbb{1}_{A})=\mathbb{1}_{\mathscr{F}(A)}.$$

Likewise, $\mathscr{F}(f) \circ \mathscr{F}(f^{-1}) = \mathbb{1}_{\mathscr{F}(B)}$. Therefore, we arrive at the following result:

Proposition (Proposition 10.3)

If $\mathscr{F}:\mathscr{C}\to\mathscr{D}$ is a functor and $f:A\to B$ is an isomorphism, then the morphism $\mathscr{F}(f):\mathscr{F}(A)\to\mathscr{F}(B)$ is an isomorphism with inverse $\mathscr{F}(f^{-1}):\mathscr{F}(B)\to\mathscr{F}(A)$.

Example

Let $f: N \to M$ be a diffeomorphism between manifolds.

- If $p \in N$, then $f: (N, p) \to (M, f(p))$ is an isomorphism in the category $\operatorname{Man}_{\bullet}^{\infty}$, and so the differential $\mathscr{F}(f) = f_{*,p}: T_pN \to T_{f(p)}M$ is an isomorphism of vector spaces (Corollary 8.6).
- It follows that $\dim N = \dim M$, i.e., the dimension of a manifold is invariant under diffeomorphisms (Corollary 8.7).

In the definition of functor we may reverse the direction of the arrows.

Definition (Contravariant Functors; Definition 10.4)

Given categories $\mathscr C$ and $\mathscr D$, a contravariant functor $\mathscr F:\mathscr C\to\mathscr D$ associate to every object A in $\mathscr C$ an object $\mathscr F(A)$ in $\mathscr D$ and associate to every morphism $f:A\to B$ (between objects in $\mathscr C$) a morphism $\mathscr F(f):\mathscr F(B)\to\mathscr F(A)$ in such a way that

$$\mathscr{F}(\mathbb{1}_A) = \mathbb{1}_{\mathscr{F}(A)}$$
 and $\mathscr{F}(f \circ g) = \mathscr{F}(g) \circ \mathscr{F}(f)$.

In the same way as with covariant functors, we have:

Proposition

If $\mathscr{F}:\mathscr{C}\to\mathscr{D}$ is a contravariant functor and $f:A\to B$ is an isomorphism, then the morphism $\mathscr{F}(f):\mathscr{F}(B)\to\mathscr{F}(A)$ is an isomorphism with inverse $\mathscr{F}(f^{-1}):\mathscr{F}(A)\to\mathscr{F}(B)$.

Definition

Let $F: N \to M$ be a smooth map between manifolds. The pullback map $F^*: C^\infty(M) \to C^\infty(N)$ is defined by

$$F^*h = h \circ F, \qquad h \in C^{\infty}(M).$$

Fact

If $F: N \to M$ and $G: P \to N$ are smooth maps, and $h \in C^{\infty}(M)$, then we have

$$(F\circ G)^*h=h\circ F\circ G=(F^*h)\circ G=G^*(F^*h)=(G^*\circ F^*)h.$$

Thus,

$$(F \circ G)^* = G^* \circ F^*.$$

Example

The smooth functions on manifolds give rise to a contravariant functor $\mathscr{F}: \mathbf{Man}^{\infty} \to \mathbf{Alg}_{\mathbb{R}}$.

- To a manifold M is associated the algebra $\mathscr{F}(M) = C^{\infty}(M)$.
- To a smooth map $F: \mathbb{N} \to M$ is associated the pullback $\mathscr{F}(F) = F^*: C^{\infty}(M) \to C^{\infty}(\mathbb{N}).$
- We have $(\mathbb{1}_M)^* = \mathbb{1}_{C^{\infty}(M)}$.
- If $F: N \to M$ and $G: P \to N$ are smooth maps, then

$$\mathscr{F}(F \circ G) = (F \circ G)^* = G^* \circ F^* = \mathscr{F}(G) \circ \mathscr{F}(F).$$

Therefore, \mathcal{F} is a contravariant functor.

Reminder

- If V is a vector space, then $V^{\vee} = \operatorname{Hom}(V, \mathbb{R})$ is the dual space of V consisting of all linear forms $\alpha: V \to \mathbb{R}$.
- If $\{e_1, \ldots, e_n\}$ is a basis of V, then the dual basis $\{\alpha^1, \ldots, \alpha^n\}$ of V^{\vee} is given by

$$\alpha^{i}(e_{j}) = \delta^{i}_{j}, \qquad 1 \leq i, j \leq n.$$

Definition (Dual of a linear map)

If $L:V\to W$ is a linear map, its *dual map* is the linear map $L^\vee:W^\vee\to V^\vee$ defined by

$$L^{\vee}(\alpha) = \alpha \circ L, \qquad \alpha \in W^{\vee}.$$

Proposition (Proposition 10.5)

- $(1_V)^{\vee} = 1_{V^{\vee}}.$
- ② If $f: V \to W$ and $g: W \to U$ are linear maps, then $(f \circ g)^{\vee} = g^{\vee} \circ f^{\vee}$.

Corollary

The dual construction gives rise to a contravariant functor

- $\mathscr{F}:\mathsf{Vect}_\mathbb{R}\to\mathsf{Vect}_\mathbb{R}$:
 - To each vector space is associated its dual $\mathscr{F}(V) = V^{\vee}$.
 - To each linear map $L: V \to W$ is associated its dual map $\mathscr{F}(L) = L^{\vee}: W^{\vee} \to V^{\vee}$.

In particular, if $L: V \to W$ is an isomorphism, then its dual map $L^{\vee}: W^{\vee} \to V^{\vee}$ is an isomorphism as well.

Reminder

If V is a vector space, then $A_k(V)$, $k \ge 1$, is the vector space of k-covectors on V, i.e., alternating k-linear maps $f: V^k \to \mathbb{R}$.

Definition (Pullback by a linear map)

If $L:V\to W$ is a linear map, then its *pullback map* is the linear map $L^*:A_k(W)\to A_k(V)$ defined by

$$(L^*f)(v_1,\ldots,v_k) = f(L(v_1),\ldots,L(v_k)), \quad f \in A_k(W), \ v_i \in V.$$

Proposition (Proposition 10.5)

- ② If $K: U \to V$ and $L: V \to W$ are linear maps, then $(K \circ L)^* = L^* \circ K^*$.

Corollary

The construction $A_k(\cdot)$ gives rise to a contravariant functor $\mathscr{F}: \mathbf{Vect}_{\mathbb{R}} \to \mathbf{Vect}_{\mathbb{R}}$:

- To each vector space is associated its space of k-covectors $\mathscr{F}(V) = A_k(V)$.
- To each linear map $L: V \to W$ is associated its pullback map $\mathscr{F}(L) = L^*: A_k(W) \to A_k(V)$.

In particular, if $L: V \to W$ is an isomorphism, then its pullback map $L^*: A_k(W) \to A_k(V)$ is an isomorphism as well.