Noncommutative Geometry
Chapter 6:
Connes' Integration and Weyl's Laws.
Birman-Schwinger Principle

Sichuan University, Fall 2022

Singular Values and Schatten Classes

Additional References

- McDonald, E.; Ponge, R.: Cwikel estimates and negative eigenvalues of Schrödinger operators on noncommutative tori.
 J. Math. Phys. 61 (2022), 043503.
- Ponge, R.: Connes' integration and Weyl's laws. Preprint, arXiv, July 2021. To appear in J. Noncomm. Geom..

Setup

Throughout this chapter \mathcal{H} is a separable Hilbert space.

Definition

If $A \in \mathcal{L}(\mathcal{H})$, its real and imaginary parts are

$$\Re A := \frac{1}{2} (A + A^*), \qquad \Im A := \frac{1}{2i} (A - A^*).$$

Definition

If $A^* = A$, its positive and negative parts are

$$A^{+} := \frac{1}{2} (|A| + A), \qquad A^{-} := \frac{1}{2} (|A| - A).$$

Remark

The operators A^+ and A^- are positive, and we have

$$A = A^{+} - A^{-},$$
 $|A| = A^{+} + A^{-},$ $A^{+}A^{-} = A^{-}A^{+} = 0.$

Remark

Assume A is compact (and selfadjoint).

- Let (ξ_j) be an orthonormal family such that $A\xi_j = \lambda_j(A)\xi_j$.
- We then have

$$A^{+} = \sum_{\lambda_{j}(A)>0} \lambda_{j}(A)|\xi_{j}\rangle\langle\xi_{j}|, \qquad A^{-} = \sum_{\lambda_{j}(A)<0} (-\lambda_{j}(A))|\xi_{j}\rangle\langle\xi_{j}|.$$

Definition

If $A=A^*$ is compact, then $\pm \lambda_j^{\pm}(A)$, $j\geq 0$, are the positive eigenvalues of A such that

$$\lambda_0^{\pm}(A) \geq \lambda_1^{\pm}(A) \geq \cdots,$$

where each eigenvalue is repeated according to multiplicity.

Remark

In other words,

$$\lambda_j^{\pm}(A) = \lambda_j(A^{\pm}) = \mu_j(A^{\pm}), \qquad j \ge 0.$$

Definition

We say that $A \in \mathcal{L}^{p,\infty}$ is a Weyl operator if one of the following conditions is satisfied:

- (i) $A \ge 0$ and $\lim_{j\to\infty} j^{1/p} \lambda_j(A)$ exists.
- (ii) $A=A^*$ and $\lim_{j o\infty}j^{1/p}\lambda_j^\pm(A)$ both exist.
- (iii) The real and imaginary parts both satisfy (ii).

Notation

The class of Weyl operators in $\mathcal{L}^{p,\infty}$ is denoted $\mathcal{W}^{p,\infty}$.

Definition

Let A be a Weyl operator in $\mathcal{L}^{p,\infty}$.

• If $A \ge 0$, then we set

$$\Lambda(A) := \lim_{j \to \infty} j^{\frac{1}{p}} \lambda_j(A).$$

② If $A^* = A$, then we set

$$\Lambda^{\pm}(A) := \lim_{j \to \infty} j^{\frac{1}{p}} \lambda_j^{\pm}(A).$$

In general, we set

$$\Lambda^{\pm}(A) := \Lambda^{\pm}(\Re A) + i\Lambda^{\pm}(\Im A).$$

Proposition (Birman-Solomyak '70s)

- **1** $\mathcal{W}^{p,\infty}$ is a closed subset of $\mathcal{L}^{p,\infty}$ on which the functions Λ^{\pm} are continuous.
- ② If $A \in \mathcal{W}^{p,\infty}$ and $B \in \mathcal{L}_0^{p,\infty}$, then $A + B \in \mathcal{W}^{p,\infty}$ and $\Lambda^{\pm}(A + B) = \Lambda^{\pm}(A)$.

Remark

In particular, if $A_\ell \to A$ in $\mathcal{L}^{p,\infty}$ with $A_\ell = A_\ell^* \in \mathcal{W}^{p,\infty}$, then $A \in \mathcal{W}^{p,\infty}$, and $\Lambda^\pm(A) = \lim_{\ell \to \infty} \Lambda^\pm(A_\ell).$

That is,

$$\lim_{j\to\infty}j^{\frac{1}{p}}\lambda_j^\pm(A)=\lim_{\ell\to\infty}\lim_{j\to\infty}j^{\frac{1}{p}}\lambda_j^\pm(A_\ell).$$

Definition

 $|\mathcal{W}|^{p,\infty}$ consists of operators $A\in\mathcal{L}^{p,\infty}$ s.t. $|A|\in\mathcal{W}^{p,\infty}$. That is,

$$\lim_{j\to\infty}j^{\frac{1}{p}}\lambda_j(|A|)=\lim_{j\to\infty}j^{\frac{1}{p}}\mu_j(A) \text{ exists.}$$

Remark

If $|A| \in \mathcal{W}^{p,\infty}$, then

$$\Lambda(|A|) = \lim_{j \to \infty} j^{\frac{1}{p}} \lambda_j(|A|) = \lim_{j \to \infty} j^{\frac{1}{p}} \mu_j(A).$$

Proposition (Birman-Solomyak '70s)

- $|\mathcal{W}|^{p,\infty}$ is a closed subset of $\mathcal{L}^{p,\infty}$ on which $A \to \Lambda(|A|)$ is continuous.
- ② If $A \in |\mathcal{W}|^{p,\infty}$ and $B \in \mathcal{L}_0^{p,\infty}$, then $A + B \in |\mathcal{W}|^{p,\infty}$ and $\Lambda(|A + B|) = \Lambda(|A|)$.

Remark

In particular, if $A_\ell o A$ in $\mathcal{L}^{p,\infty}$ with $A_\ell \in |\mathcal{W}|^{p,\infty}$, then

$$\lim_{j\to\infty}j^{\frac{1}{p}}\mu_j(A)=\lim_{\ell\to\infty}\lim_{j\to\infty}j^{\frac{1}{p}}\mu_j(A_\ell).$$

Proposition

• If $A \in \mathcal{W}^{1,\infty}$, then A is strongly measurable, and we have

$$\int A = \Lambda^+(A) - \Lambda^-(A).$$

2 In particular, if $A^* = A$, then

$$\int A = \lim_{j \to \infty} j \lambda_j^+(A) - \lim_{j \to \infty} j \lambda_j^-(A).$$

Proof.

We have

$$A = (\Re A)^{+} - (\Re A)^{-} + i ((\Im A)^{+} - (\Im A)^{-}).$$

- By linearity it is enough to prove the result for $(\Re A)^{\pm}$ and $(\Im A)^{\pm}$.
- This reduces the proof to the case $A \ge 0$.

Proof (Continued).

Assume $A \geq 0$, and set $c = \Lambda(A)$.

- As $A \in \mathcal{W}^{1,\infty}$ and $\Lambda(A) = c$, we have $\lim_{j \to j} \lambda_j(A) = c$, i.e., $\lambda_i(A) = cj^{-1} + o(j^{-1})$.
- Thus, $\sum_{j < N} \lambda_j(A) = c \log N + \mathrm{o}(\log N).$
- ullet That is, $\lim_{N o \infty} rac{1}{\log N} \sum_{j < N} \lambda_j(A) = c.$
- This means that A is measurable and $\int A = c$.

Proof (Continued).

It remains to show that A is strongly measurable.

- Let (ξ_j) be an orthonormal family such that $A\xi_j = \lambda_j(A)\xi_j$.
- Let $T_0 \in \mathcal{L}^{1,\infty}$ be such that $T_0 \xi_j = (j+1)^{-1} \xi_j$.
- Set $B = A cT_0$. We have

$$B\xi_j = \left(\lambda_j(A) - c(j+1)^{-1}\right)\xi_j$$

- It then can be shown that $\mu_j(B) = o(j^{-1})$, i.e., $B \in \mathcal{L}_0^{1,\infty}$.
- Here $T_0 \in \mathcal{M}_s$ and $\mathcal{L}_0^{1,\infty} \subset \mathcal{M}_s$.
- Thus, $A = cT_0 + B \in \mathcal{M}_s$.

_

Corollary

If $A \in |\mathcal{W}|^{1,\infty}$, then |A| is strongly measurable, and

$$\int |A| = \lim_{j \to \infty} j \mu_j(A).$$

Setup

- $(M^n, g) = \text{compact Riemannien manifold.}$
- $\Delta_g : C^{\infty}(M) \to C^{\infty}(M)$ is the Laplacian.
- $\nu_g(x) := \sqrt{\det(g(x))} d^n x$ is the Riemannian measure.
- $Vol_g(M) := \int_M d\nu_g(x)$ is the volume of (M, g).

Facts

- \bullet Δ_g is essentially selfadjoint on $L_g^2(M)$.
- Its spectrum consists of isolated non-negative eigenvalues with finite multiplicity,

$$0 = \lambda_0(\Delta_g) \le \lambda_1(\Delta_g) \le \lambda_2(\Delta_g) \le \cdots,$$

where each eigenvalue is repeated according to multiplicity.

Reminder

ullet Let $(e_j)\subset C^\infty(M)$ be an orthonormal eigenbasis of Δ_g ,

$$\Delta_g e_j = \lambda_j(\Delta_g)e_j, \qquad j \geq 0.$$

• For q > 0, the operator Δ_g^{-q} is defined by

$$\Delta_g^{-q} e_j = \left\{ \begin{array}{cc} \lambda_j (\Delta_g)^{-q} e_j & \text{if } \lambda_j (\Delta_g) > 0, \\ 0 & \text{if } \lambda_j (\Delta_g) = 0. \end{array} \right.$$

Fact

 Δ_g^{-q} is a positive compact operator with

$$\lambda_j\left(\Delta_g^{-q}\right) = \lambda_{j+k}(\Delta_g)^{-q}, \quad k := \dim \ker \Delta_g.$$

Proposition (Weyl's Law)

As $j \to \infty$, we have

$$\lambda_j(\Delta_g) \sim \left(\frac{j}{c(n)\operatorname{Vol}_g(M)}\right)^{\frac{2}{n}}, \qquad c(n) := (2\pi)^{-n}|\mathbb{B}^n|.$$

Consequences

• As $\lambda_i(\Delta_g^{-q}) = \lambda_{i+k}(\Delta_g)^{-q}$, we get

$$\lambda_j\left(\Delta_g^{-q}\right)\sim \left(rac{c(n)\operatorname{Vol}_g(M)}{j}
ight)^{rac{2q}{n}}=\mathrm{O}(j^{-rac{2q}{n}}).$$

In particular,

$$\Delta_g^{-q} \in \mathcal{L}_{rac{n}{2g},\infty}.$$

• That is, Δ_g^{-q} is an infinitesimal of order $2qn^{-1}$.

For q = n/2, we get:

$$\lambda_j\left(\Delta_g^{-\frac{n}{2}}\right)\sim \frac{c(n)\operatorname{Vol}_g(M)}{j}.$$

Therefore, we obtain:

Proposition

The operator $\Delta_g^{-n/2}$ is strongly measurable, and we have

$$\int \Delta_g^{-\frac{n}{2}} = c(n) \operatorname{Vol}_g(M).$$

Remark

In other words the NC integral recaptures the Riemannian volume.

Semiclassical Weyl's Law

Setup

- $(M^n, g) = \text{compact Riemannien manifold.}$
- $\Delta_g: C^{\infty}(M) \to C^{\infty}(M)$ is the Laplacian.
- $\nu_g(x) := \sqrt{\det(g(x))} d^n x$ is the Riemannian measure.
- $V(x) = \text{real-valued } C^{\infty}\text{-potential, i.e., } V \in C^{\infty}(M, \mathbb{R}).$

Facts

- The Schrödinger operator $\Delta_g + V$ is bounded from below and has discrete spectrum.
- In particular, it has finitely many negative eigenvalues.

Definition

 $N^-(\Delta_g + V)$ is the number of negative eigenvalues counted with multiplicity.

Semiclassical Weyl's Law

Theorem (Semiclassical Weyl's Law)

Under the semiclassical limit $h \to 0^+$, we have

$$\lim_{h \to 0^+} h^n N^- (h^2 \Delta_g + V) = c(n) \int_M |V_-(x)|^{\frac{n}{2}} d\nu_g(x),$$

where $V_{-}(x) = \max(0, -V(x))$ is the negative part of V.

Remark (Birman-Solomyak, Cwikel, Rozenblum)

The above asymptotics continue to hold provided one of the following conditions hold:

- $n \geq 3$ and $V \in L_g^{n/2}(M)$.
- n=2 and $V \in L_g^p(M)$, p>1.
- n=1 and $V \in L^1_g(M)$.

Semiclassical Weyl's Law

Remark

The previous results also hold for Schrödinger operators on \mathbb{R}^n and bounded domains $\Omega \subset \mathbb{R}^n$ with Dirichlet or Neumann conditions.

Counting Functions of Compact Operators

Definition

Let $A = A^*$ be compact. For $\lambda > 0$, we set

$$N^{\pm}(A;\lambda) := \#\{j; \ \lambda_j^{\pm}(A) > \lambda\}.$$

Remark

In other words, $N^{\pm}(A; \lambda)$ is the number of positive/negative eigenvalues (counted with multiplicity) that are $> \lambda$.

Counting Functions of Compact Operators

Definition

If $\lambda>0$, then $\mathcal{F}^\pm(A;\lambda)$ is the class of subspaces $F\subset\mathcal{H}$ such that $\pm \left\langle A\xi|\xi\right\rangle>\lambda\left\langle \xi|\xi\right\rangle \quad \forall \xi\in F\setminus 0.$

Lemma (Glazman's Lemma)

For all $\lambda > 0$, we have

$$N^{\pm}(A; \lambda) = \max \left\{ \dim F; F \in \mathcal{F}^{\pm}(A; \lambda) \right\}.$$

Counting Functions of Compact Operators

Facts

We always have

$$\lim_{\lambda \to 0^{+}} \inf \lambda^{p} N^{\pm}(A; \lambda) = \lim_{j \to \infty} \inf j \lambda_{j}^{\pm}(A)^{p},
\lim_{\lambda \to 0^{+}} \sup \lambda^{p} N^{\pm}(A; \lambda) = \lim_{j \to \infty} \sup j \lambda_{j}^{\pm}(A)^{p}.$$

In particular, we have

$$\lim_{\lambda \to 0^+} \lambda^p N^{\pm}(A; \lambda) = \left(\lim_{j \to \infty} j^{\frac{1}{p}} \lambda_j^{\pm}(A)\right)^p,$$

provided any of the above limits exist.

Setup

- H = selfadjoint (unbounded) operator with non-negative spectrum.
- V = selfadjoint operator such that $(1 + H)^{-1/2}V(1 + H)^{-1/2}$ is compact.

Facts

- The operator $H_V := H + V$ is selfadjoint.
- The negative part of its spectrum is discrete, i.e., it consists of isolated eigenvalues with finite multiplicity.

Definition

 $N^-(H_V)$ is the number of negative eigenvalues counted with multiplicity.

Remarks

• The quadratic form of *H* is

$$Q_H(\xi,\xi) = \langle H\xi|\xi\rangle = \langle H^{1/2}\xi|H^{1/2}\xi\rangle.$$

- Its domain is $dom(Q_H) = dom(1+H)^{1/2}$.
- H_V is the (selfadjoint) operator whose quadratic form is

$$Q_{H_V}(\xi,\xi) = Q_H(\xi,\xi) + Q_V(\xi,\xi)$$

= $Q_H(\xi,\xi) + \langle V\xi|\xi \rangle$.

• It has same domain as Q_H .

Definition

- $\mathcal{F}^-(H_V)$ consists of all subspaces $E \subset \text{dom}(Q_H)$ such that $Q_{H_V}(\xi,\xi) < 0 \quad \forall \xi \in E \setminus 0.$
- ② $\mathcal{F}_0^+(H_V)$ consists of all subspaces $E \subset \text{dom}(Q_H)$ such that $Q_{H_V}(\xi,\xi) \geq 0 \quad \forall \xi \in E$.

Lemma (Glazman's Lemma)

We have

$$N^{-}(H_{V}) = \max \left\{ \dim E; E \in \mathcal{F}^{-}(H_{V}) \right\},$$

= $\min \left\{ \operatorname{codim} E; E \in \mathcal{F}_{0}^{+}(H_{V}) \right\}.$

Theorem (Birman-Schwinger Principle)

Assume
$$0 \notin Sp(H)$$
, and set $H_V = H^{-1/2}VH^{-1/2}$. Then, $N^-(H_V) = N^-(K_V; 1)$.

Proof.

By Glazman's lemma,

$$N^-(H_V) = \max \left\{ \dim E; E \in \mathcal{F}^-(H_V) \right\},$$

 $N^-(K_V; 1) = \max \left\{ \dim F; F \in \mathcal{F}^-(K_V; 1) \right\}.$

- Here $\mathcal{F}^-(H_V)$ consists of subspaces $E\subset {\rm dom}(Q_H)$ such that $Q_{H_V}(\xi,\xi)<0\quad {\rm on}\ E\setminus 0.$
- \bullet $\mathcal{F}^-(\textit{K}_{\textit{V}};1)$ consists of subspaces $\textit{F} \subset \mathcal{H}$ such that

$$-\langle K_V \eta | \eta \rangle > \langle \eta | \eta \rangle$$
 on $F \setminus 0$.

Proof (Continued).

- Let $\xi \in \text{dom}(Q_H)$ and set $\eta = H^{1/2}\xi$ (i.e., $\xi = H^{-1/2}\eta$).
- We have

$$\begin{aligned} Q_{H_V}(\xi,\xi) &= Q_H(\xi,\xi) + Q_V(\xi,\xi) \\ &= \left\langle H^{1/2}\xi | H^{1/2}\xi \right\rangle + \left\langle V\xi | \xi \right\rangle. \end{aligned}$$

• Here $\langle H^{1/2}\xi|H^{1/2}\xi\rangle=\langle\eta|\eta\rangle$, and

$$\langle V\xi|\xi\rangle = \left\langle VH^{-1/2}\eta|H^{-1/2}\eta\right\rangle = \left\langle H^{-1/2}VH^{-1/2}\eta|\eta\right\rangle = \left\langle K_V\eta|\eta\right\rangle.$$

• Thus, $Q_{H_V}(\xi,\xi) = \langle \eta | \eta \rangle + \langle K_V \eta | \eta \rangle$, and hence

$$\begin{split} Q_{H_V}(\xi,\xi) < 0 &\iff \langle \eta | \eta \rangle + \langle K_V \eta | \eta \rangle < 0 \\ &\iff - \langle K_V \eta | \eta \rangle > \langle \eta | \eta \rangle \,. \end{split}$$

Proof (Continued).

• As $H^{1/2}$ is a bijection from $dom(Q_H) = dom(H^{1/2})$ onto \mathcal{H} , we get

$$E \in \mathcal{F}^-(H_V) \Longleftrightarrow H^{1/2}(E) \in \mathcal{F}^-(K_V; 1).$$

- Thus, $H^{1/2}$ yields a one-to-one correspondence between $\mathcal{F}^-(H_V)$ and $\mathcal{F}^-(K_V;1)$.
- As this preserves the dimension, we get

$$\begin{split} N^{-}(H_{V}) &= \max \left\{ \dim E; E \in \mathcal{F}^{-}(H_{V}) \right\} \\ &= \max \left\{ \dim H^{1/2}(E); E \in \mathcal{F}^{-}(H_{V}) \right\} \\ &= \max \left\{ \dim F; F \in \mathcal{F}^{-}(K_{V}; 1) \right\} \\ &= N^{-}(K_{V}; 1). \end{split}$$

The proof is complete.

Definition

If $\lambda \leq 0$, then $N^-(H_V; \lambda)$ is the number of eigenvalues counted with multiplicity that are $< \lambda$.

Remark

$$N^-(H_V; \lambda) = N^-(H_V - \lambda).$$

Applying the previous result to $H - \lambda$ we get:

Theorem (Birman-Schwinger Principle)

Let
$$\lambda < 0$$
, and set $K_V(\lambda) = (H - \lambda)^{-1/2}V(H - \lambda)^{-1/2}$. Then,
$$N^-(H_V;\lambda) = N^-(K_V(\lambda);1).$$

Remark

- The above proof is due to Birman-Solomyak.
- It is much simpler than various other proofs in the literature.

Theorem (Borderline Birman-Schwinger Principle)

Assume 0 is an isolated eigenvalue of H with finite multiplicity. Set $K_V = H^{-1/2}VH^{-1/2}$. Then:

$$N^{-}(K_{V}; 1) \leq N^{-}(H_{V}) \leq N^{-}(K_{V}; 1) + \dim \ker H.$$

Proof.

Set $\mathcal{H}_1 = (\ker H)^{\perp}$. Let Π_1 be the orthoprojection onto \mathcal{H}_1 . Set

$$H_1 = H_{|\mathcal{H}_1}, \quad V_1 = \Pi_1 V \Pi_1, \quad H_{V_1} = H_1 + V_1, \quad K_{V_1} = H_1^{-\frac{1}{2}} V_1 H_1^{-\frac{1}{2}}.$$

• With respect to the splitting $\mathcal{H} = \ker H \oplus \mathcal{H}_1$, we have

$$H_V = \begin{pmatrix} * & * \\ * & H_{V_1} \end{pmatrix}, \qquad K_V = H^{-1/2}VH^{-1/2} = \begin{pmatrix} 0 & 0 \\ 0 & K_{V_1} \end{pmatrix}.$$

• In particular, $Q_{H_V} = Q_{H_{V_1}}$ on \mathcal{H}_1 , and K_V and K_{V_1} have the same no non-zero eigenvalues with same multiplicity.

Proof (Continued).

• As $0 \notin Sp(H_1)$, by the Birman-Schwinger principle,

$$N^{-}(H_{V_1}) = N^{-}(K_{V_1}; 1).$$

• As K_V and K_{V_1} have the same non-zero eigenvalues,

$$N^-(K_{V_1};1) = N^-(K_V;1).$$

By Glazman's Lemma,

$$N^-(H_V) = \max \left\{ \dim E; E \in \mathcal{F}^-(H_V) \right\},$$

where $\mathcal{F}^-(H_V)$ consists of subspaces $E \subset \text{dom}(Q_H)$ such that $Q_{H_V} < 0$ on $E \setminus 0$.

- As $Q_{H_V} = Q_{H_{V_1}}$ on \mathcal{H}_1 , we have $\mathcal{F}^-(H_{V_1}) \subset \mathcal{F}^-(H_V)$.
- Thus,

$$N^-(H_V) \ge \max\left\{\dim E; E \in \mathcal{F}^-(H_{V_1})\right\} = N^-(H_{V_1}).$$

Proof (Continued).

• By Glazman's Lemma we also have

$$N^-(H_V) = \min \left\{ \operatorname{codim}_{\mathcal{H}} F; F \in \mathcal{F}_0^+(H_V) \right\},$$

where $\mathcal{F}_0^+(H_V)$ consists of subspaces $F \subset \mathcal{H}$ such that $Q_{H_V} \geq 0$ on F.

- Once again $Q_{H_V}=Q_{H_{V_1}}$ on \mathcal{H}_1 , and so $\mathcal{F}_0^+(H_{V_1})\subset \mathcal{F}_0^+(H_V)$.
- Moreover, if $F \subset \mathcal{H}_1$, then

$$\operatorname{\operatorname{codim}}_{\mathcal{H}} F = \operatorname{\operatorname{codim}}_{\mathcal{H}_1} F + \dim \ker H.$$

Therefore, we have

$$\begin{split} N^-(H_V) &\leq \min \left\{ \operatorname{codim}_{\mathcal{H}} F; F \in \mathcal{F}_0^+(H_{V_1}) \right\} \\ &\leq \min \left\{ \operatorname{codim}_{\mathcal{H}_1} F; F \in \mathcal{F}_0^+(H_{V_1}) \right\} + \dim \ker H \\ &\leq N^-(H_{V_1}) + \dim \ker H. \end{split}$$

Proof (Continued).

• To sum up, we have

$$N^{-}(H_{V_1}) = N^{-}(K_{V_1}; 1) = N^{-}(K_{V}; 1),$$

 $N^{-}(H_{V_1}) \le N^{-}(H_{V}) \le N^{-}(H_{V_1}) + \dim \ker H.$

Thus,

$$N^{-}(K_{V};1) \leq N^{-}(H_{V}) \leq N^{-}(K_{V};1) + \dim \ker H.$$

The proof is complete.

Corollary (Semiclassical BSP)

Assume that

- 0 is an isolated eigenvalue of H with finite multiplicity.
- $H^{-1/2}VH^{-1/2}$ is a Weyl operator in $\mathcal{L}^{p,\infty}$, p>0.

Then, we have

$$\lim_{h \to 0^{+}} h^{2p} N^{-} \left(h^{2} H + V \right) = \left(\lim_{j \to \infty} j^{\frac{1}{p}} \lambda_{j}^{-} \left(H^{-\frac{1}{2}} V H^{-\frac{1}{2}} \right) \right)^{p}$$

$$= \int \left(H^{-\frac{1}{2}} V H^{-\frac{1}{2}} \right)_{-}^{p}.$$

Proof.

Set $K_V = H^{-1/2}VH^{-1/2}$; this is a Weyl operator in $\mathcal{L}^{p,\infty}$.

• Reminder:

$$\lim_{\lambda \to 0^+} \lambda^p N^-(K_V; \lambda) = \left(\lim_{j \to \infty} j^{\frac{1}{p}} \lambda_j^-(K_V)\right)^p,$$

- The limit in the r.h.s. exists, since K_V is a Weyl operator.
- We have

$$N^{-}(h^{2}H + V) = N^{-}(H + h^{-2}V) = N^{-}(H_{h^{-2}V}),$$

$$N^{-}(K_{h^{-2}V}; 1) = N^{-1}(h^{-2}K_{V}; 1) = N^{-}(K_{V}; h^{2}).$$

• By the Borderline Birman-Schwinger Principle, we have

$$N^{-}(K_{h^{-2}V};1) \leq N^{-}(H_{h^{-2}V}) \leq N^{-}(K_{h^{-2}V};1) + \dim \ker H.$$

Thus,

$$N^{-}(K_{V}; h^{2}) \leq N^{-}(h^{2}H + V) \leq N^{-}(K_{V}; h^{2}) + \dim \ker H.$$

Proof.

• The previous inequalities implies that

$$N^{-}(K_{V}; h^{2}) \leq N^{-}(h^{2}H + V) \leq N^{-}(K_{V}; h^{2}) + \dim \ker H.$$

Thus,

$$\lim_{h \to 0^{+}} h^{2p} N^{-} (h^{2} H + V) = \lim_{h \to 0^{+}} h^{2p} N^{-} (K_{V}; h^{2})$$

$$= \lim_{\lambda \to 0^{+}} \lambda^{p} N^{-} (K_{V}; \lambda)$$

$$= \left(\lim_{j \to \infty} j^{\frac{1}{p}} \lambda_{j}^{-} (K_{V})\right)^{p}.$$

39 / 50

Proof.

• As $\lambda_i^-(K_V)^p = \lambda_i((K_V)^p_-)$, we get

$$\lim_{j\to\infty} j\lambda_j\left((K_V)_-^p\right) = \lim_{j\to\infty} j\lambda_j^-\left(K_V\right)^p = \left(\lim_{j\to\infty} j^{\frac{1}{p}}\lambda_j^-\left(K_V\right)\right)^p.$$

• Therefore, $(K_V)_{-}^p$ is strongly measurable, and we have

$$\int (K_V)_-^p = \left(\lim_{j \to \infty} j^{\frac{1}{p}} \lambda_j^-(K_V)\right)^p.$$

-

Remarks

- The previous result provides a semiclassical interpretation of the NC integral.
- This draws a link between NC geometry and semiclassical analysis.

Setup

- $(M^n, g) = \text{compact Riemannien manifold.}$
- $\Delta_g : C^{\infty}(M) \to C^{\infty}(M)$ is the Laplacian.
- $\nu_g(x) := \sqrt{\det(g(x))} d^n x$ is the Riemannian measure.

Remark

In what follows $c(n) = (2\pi)^{-n} |\mathbb{B}^n|$.

Theorem (Birman-Solomyak '70s)

Let q > 0 and $f \in C^{\infty}(M)$.

- **1** $\Delta_g^{-q/4} f \Delta_g^{-q/4}$ and $|\Delta_g^{-q/4} f \Delta_g^{-q/4}|$ are Weyl operators in \mathcal{L}_g^{q-1} , ∞ (and hence are infinitesimals of order qn^{-1}).
- We have

$$\lim_{j\to\infty} j^{\frac{q}{n}} \mu_j \left(\Delta_g^{-\frac{q}{4}} f \Delta_g^{-\frac{q}{4}} \right) = \left(c(n) \int_M |f(x)|^{\frac{n}{q}} d\nu_g(x) \right)^{\frac{q}{n}}.$$

3 If f(x) is real-valued, then

$$\lim_{j\to\infty}j^{\frac{q}{n}}\lambda_j^{\pm}\left(\Delta_g^{-\frac{q}{4}}f\Delta_g^{-\frac{q}{4}}\right)=\left(c(n)\int_M f_{\pm}(x)^{\frac{n}{q}}d\nu_g(x)\right)^{\frac{2}{n}},$$

where $f_{\pm}(x) = \max(0, \pm f(x))$ are the positive/negative parts of f.

Corollary

If
$$q > 0$$
 and $V \in C^{\infty}(M, \mathbb{R})$, then

$$\lim_{h \to 0^{+}} h^{n} N^{-} \left(h^{2q} \Delta_{g}^{q} + V \right) = c(n) \int_{M} V_{-}(x)^{\frac{n}{2q}} d\nu_{g}(x)$$

$$= \int \left(\Delta_{g}^{-\frac{q}{2}} V \Delta_{g}^{-\frac{q}{2}} \right)_{-}^{\frac{n}{2q}}.$$

Proof.

• Apply the semiclassical version of the Birman-Schwinger principle to $H = \Delta_{\sigma}^{q}$ to get

$$\begin{split} \lim_{h \to 0^{+}} h^{n} N^{-} \left(h^{2q} \Delta_{g}^{q} + V \right) &= \lim_{h \to 0^{+}} (h^{q})^{2 \cdot \frac{n}{2q}} N^{-} \left((h^{q})^{2} \Delta_{g} + V \right) \\ &= \left(\lim_{j \to \infty} j^{\frac{2q}{n}} \lambda_{j}^{-} \left(\Delta_{g}^{-\frac{q}{2}} V \Delta_{g}^{-\frac{q}{2}} \right) \right)^{\frac{n}{2q}} \\ &= c(n) \int_{M} V_{-}(x)^{\frac{n}{2q}} d\nu_{g}(x) \end{split}$$

• The limits are also equal to $\int (\Delta_g^{-q/2} V \Delta_g^{-q/2})^{n/2q}$.

Theorem (Connes' Integration Formula)

For every $f \in C^{\infty}(M)$, the operator $\Delta_g^{-n/4} f \Delta_g^{-n/4}$ is strongly measurable, and we have

$$\int \Delta_g^{-\frac{n}{4}} f \Delta_g^{-\frac{n}{4}} = c(n) \int_M f(x) d\nu_g(x).$$

Proof.

- By linearity it is enough to prove the result for $f \geq 0$.
- If $f \ge 0$, then by Birman-Solomyak's result for q = n we have

$$\lim_{j \to \infty} j\lambda_j \left(\Delta_g^{-\frac{n}{4}} f \Delta_g^{-\frac{n}{4}} \right) = \lim_{j \to \infty} j\lambda_j^+ \left(\Delta_g^{-\frac{n}{4}} f \Delta_g^{-\frac{n}{4}} \right)$$
$$= c(n) \int_M f(x) d\nu_g(x).$$

• It follows that $\Delta_g^{-n/4} f \Delta_g^{-n/4}$ is strongly measurable, and

$$\int \Delta_g^{-\frac{n}{4}} f \Delta_g^{-\frac{n}{4}} = c(n) \int_M f(x) d\nu_g(x).$$

Remarks

- Connes (CMP '88) established the formula and showed measurability.
- Strong measurability was later proved by Lord-Potapov-Sukochev (Adv. Math. '13).
- It was only recently realized that the result can be deduced from Birman-Solomyak's results.

Birman-Solomyak's results further allow us to get an integration formula for absolute values.

Theorem

For every $f \in C^{\infty}(M)$, the operator $|\Delta_g^{-n/4} f \Delta_g^{-n/4}|$ is strongly measurable, and we have

$$\int \left| \Delta_g^{-\frac{n}{4}} f \Delta_g^{-\frac{n}{4}} \right| = c(n) \int_M |f(x)| d\nu_g(x).$$

Proof.

• By Birman-Solomyak's result for singular values for q = n we get

$$\lim_{j\to\infty} j\mu_j\left(\Delta_g^{-\frac{n}{4}}f\Delta_g^{-\frac{n}{4}}\right) = c(n)\int_M |f(x)|d\nu_g(x).$$

• It follows that $|\Delta_g^{-n/4} f \Delta_g^{-n/4}|$ is strongly measurable, and

$$\int \left|\Delta_g^{-\frac{n}{4}} f \Delta_g^{-\frac{n}{4}}\right| = c(n) \int_M |f(x)| d\nu_g(x).$$