Commutative Algebra Chapter 7: Noetherian Rings

Sichuan University, Fall 2021

Definition

A module M over a ring A is *Noetherian* if it satisfies one of the following equivalent conditions:

- (i) Ascending chain condition (a.c.c.): Every ascending sequence of submodules $M_1 \subseteq M_2 \subseteq \cdots$ is sationnary.
- (ii) Maximal condition: Every non-empty set of submodules of M has a maximal element.

Definition

A ring *A* is *Noetherian* if it is Noetherian as a module over itself, i.e., it satisfies a.c.c. and the maximal condition on ideals.

Examples

- \bullet Any field k is Noetherian.
- **3** Any principal ideal domain is Noetherian (this follows from Proposition 6.2).

Proposition (Proposition 6.2)

Let M be a module over A. TFAE:

- (i) M is Noetherian.
- (ii) Every submodule of M is finitely generated.

In particular, for M = A we get:

Corollary

A ring A is Noetherian if and only if every ideal of A is finitely generated (as an A-module).

Proposition (Proposition 6.5)

Let A be a Noetherian ring and M a finitely generated A-module. Then M is Noetherian.

Proposition (Proposition 6.6)

Let A be a Noetherian ring and $\mathfrak a$ an ideal of A. Then $A/\mathfrak a$ is a Noetherian ring.

Proposition (Proposition 7.1)

Let $\phi: A \to B$ be a surjective ring homomorphism. If A is Noetherian, then so is B.

Proof.

- If $\mathfrak{a} = \ker \phi$, then A/\mathfrak{a} is Noetherian by Proposition 6.6.
- As $B \simeq A/\mathfrak{a}$ it follows that B is Noetherian as well.

Proposition (Proposition 7.2)

Let $A \subseteq B$ be rings such that A is Noetherian and B is finitely generated as an A-module. Then B is Noetherian (as a ring).

Proof.

- By Proposition 6.5 *B* is Noetherian as an *A*-module.
- Any ideal of B is an A-module.
- Thus any ascending chain of ideals of B is stationary, and hence B is Noetherian as a B-module.

Example

The ring of Gaussian integer $B = \mathbb{Z}[i]$ is Noetherian.

Reminder (see Proposition 3.11)

Let A be a ring and S a multiplicatively closed subset of A.

- If \mathfrak{a} is an ideal of A such that $\mathfrak{a} \cap S = \emptyset$, then its extension in $S^{-1}A$ is $S^{-1}\mathfrak{a}$.
- If b is an ideal of $S^{-1}A$, then its contraction in A is

$$\mathfrak{b}^c = \big\{ x \in A; x/1 \in \mathfrak{b} \big\}.$$

• This gives a one-to-one correspondence $\mathfrak{a} \to S^{-1}\mathfrak{a}$ with inverse $\mathfrak{b} \to \mathfrak{b}^c$ between ideals of A that do not meet S and ideals of $S^{-1}A$.

Remark

The above correspondance is order-preserving, i.e.,

$$\mathfrak{a} \subseteq \mathfrak{a}' \Longrightarrow S^{-1}\mathfrak{a} \subseteq S^{-1}\mathfrak{a}'.$$

Proposition (Proposition 7.3)

If A is a Noetherian ring and $S \subseteq A$ is closed under multiplication, then the fraction ring $S^{-1}A$ is Noetherian.

Proof.

- We have an order-preserving one-to-one correspondence between ideals of A which do not meet S and ideals of $S^{-1}A$.
- Thus, we have a one-to-one correspondence between ascending chains of ideals of A which do not meet S and ascending chains of ideals of $S^{-1}A$.
- As A is Noetherian, it follows that ascending chains of ideals of $S^{-1}A$ is stationary, and hence $S^{-1}A$ is Noetherian.

Corollary (Corollary 7.4)

If A is a Noetherian ring and $\mathfrak p$ is a prime ideal of A, then the local ring $A_{\mathfrak p}$ is Noetherian.

Theorem (Hilbert's Basis Theorem; Theorem 7.5)

If A is a Noetherian ring, then the polynomial ring A[x] is Noetherian as well.

Proof.

- By Proposition 6.2 it is enough to show that every ideal α of A[x] is finitely generated.
- Let i consist of leading coefficients of polynomials in a, i.e.,

$$i = \{a \in A; \exists f \in \mathfrak{a} \text{ s.t. } f = ax^r + (\text{lower terms})\}.$$

Claim

i is an ideal of A.

Proof of the Claim.

- Let $a \in i$ and $f \in \mathfrak{a}$ be s.t. $f = ax^p + (lower terms)$.
- If $y \in A$, then $yf \in \mathfrak{a}$ and $yf = yax^p + (\text{lower terms})$, and hence $ya \in \mathfrak{i}$.
- Let $b \in \mathfrak{i}$ and $g \in \mathfrak{a}$ be s.t. $g = bx^q + (\text{lower terms})$. Then $x^q f + x^p g \in \mathfrak{a}$ and $x^q f + x^p g = (a + b)x^{p+q} + (\text{lower terms})$. Thus, $a + b \in \mathfrak{i}$.

Proof of Theorem 7.5; Continued.

- As A is Noetherian, the ideal i is finitely generated by a_1, \ldots, a_n .
- For each i there is $f_i \in \mathfrak{a}$ s.t. $f_i = a_i x^{r_i} + (\text{lower terms})$.
- Let \mathfrak{a}' be the ideal of A[x] generated by f_1, \ldots, f_n . Then $\mathfrak{a}' \subseteq \mathfrak{a}$.
- Set $r = \max(r_1, \dots, r_n)$ and $M = A + Ax + \dots + Ax^r$.

Claim

 $a = M \cap a + a'$.

Proof of the Claim.

- If $f \in \mathfrak{a}$ has degree $\leq r$, then $f \in M \cap \mathfrak{a} \subseteq M \cap \mathfrak{a} + \mathfrak{a}'$.
- We shall show by induction that if $f \in \mathfrak{a}$ has degree $m \geq r$, then $f \in M \cap \mathfrak{a} + \mathfrak{a}'$.
- This is true for m = r.

Proof of the Claim; Continued.

- Assume the assertion is true for m-1 (with $m \ge r+1$).
- Let $f \in \mathfrak{a}$ have degree m, i.e., $f = ax^m + (lower terms)$.
- As $a \in \mathfrak{i}$, we may write $a = u_1 a_1 + \cdots + u_n a_n$, $u_i \in A$.
- Set $g = u_1 f_1 x^{m-r_1} + \dots + u_n f_n x^{m-r_n}$. Then $g \in \mathfrak{a}'$, and $g = (u_1 a_1 + \dots + u_n a_n) x^m + (\text{lower terms})$ $= a x^m + (\text{lower terms})$ = f + (lower terms).
- Thus, f g is in \mathfrak{a} and has degree $\leq m 1$, and hence is in $M \cap \mathfrak{a} + \mathfrak{a}'$.
- Thus, f = g + (f g) is in $M \cap \mathfrak{a} + \mathfrak{a}'$, and hence the assertion is true for m.

This proves the claim.

Back to the Proof of Theorem 7.5.

- By definition \mathfrak{a}' is generated by $f_1, \ldots f_n$.
- $M = A + Ax + \cdots + Ax^r$ is a finitely A-generated module.
- As A is Noetherian, by Proposition 6.5 M is Noetherian.
- By Proposition 6.2 $M \cap \mathfrak{a}$ is finitely generated as an A-module.
- Thus, there are g_1, \ldots, g_k in $M \cap \mathfrak{a}$ such that

$$M \cap \mathfrak{a} = Ag_1 + \cdots + Ag_k \subseteq g_1A[x] + \cdots + g_kA[x].$$

- Thus, $\mathfrak{a} = M \cap \mathfrak{a} + \mathfrak{a}'$ is generated over A[x] by f_1, \ldots, f_n and g_1, \ldots, g_k .
- Therefore, every ideal of A[x] is finitely generated, and hence A[x] is Noetherian by Proposition 6.2.

The proof is complete.

Remark

If A is a Noetherian ring, then it can be also shown that the ring of formal power series A[[x]] is Noetherian (see Carlson's notes; see also Corollary 10.27).

Corollary (Corollary 7.6)

If A is a Noetherian ring, then the ring $A[x_1, ..., x_n]$ is Noetherian.

Proof.

- By induction on n,
- For n=1 this is Theorem 7.5.
- If $B = A[x_1, ..., x_{n-1}]$ is Noetherian, then by Theorem 7.5 again the ring $A[x_1, ..., x_n] = B[x_n]$ is Noetherian.

Corollary (Corollary 7.7)

If A is Noetherian, then every finitely generated A-algebra is a Noetherian ring. In particular, every finitely generated ring and every finitely generated algebra over a field are Noetherian rings.

Proof.

- By assumption $B = A[b_1, \ldots, b_n], b_i \in B$.
- Let $\phi: A[x_1, \dots, x_n] \to B$ be the homomorphism defined by

$$\phi\big(\sum a_k x_1^{k_1} \cdots x_n^{k_n}\big) = \sum a_k b_1^{k_1} \cdots b_n^{k_n}.$$

• As ϕ is onto, B is Noetherian by Proposition 7.1.

Reminder (see Proposition 5.1)

Let $A \subseteq B$ be rings and $x \in B$. TFAE:

- (i) x is integral over A.
- (ii) A[x] is a finitely generated A-module.
- (iii) A[x] is contained in a subring C of B such that C is a finitely generated A-module.

Reminder (Corollary 5.2)

Let x_1, \ldots, x_n be elements of B that are integral over A. Then the ring $A[x_1, \ldots, x_n]$ is a finitely generated A-module.

Proposition (Proposition 7.8)

Let $A \subseteq B \subseteq C$ be rings. Suppose that A is Noetherian and C is finitely generated as an A-algebra. Assume further that one of the following two conditions holds:

- (i) C is finitely generated as a B-module.
- (ii) C is integral over B, i.e., C = C * B.

Then B is finitely generated as an A-algebra.

Remark

In this situation the conditions (i) and (ii) are equivalent.

Proof of (i)⇒(ii).

- If $x \in C$, then $B[x] \subseteq C$.
- As C is a finitely generated B-module, by Prop. 5.1(iii) $x \in C * B$, and hence C = C * B.

Proof of (ii) \Rightarrow (i).

- Suppose that C = C * B.
- As C is a finitely generated A-algebra, $C = A[x_1, ..., x_n]$, $x_i \in C$, and hence $C = B[x_1, ..., x_n]$
- As $x_1, \ldots, x_n \in C * B$, by Corollary 5.2 $C = B[x_1, \ldots, x_n]$ is a finitely generated B-module.

Proof of Proposition 7.8.

• Let x_1, \ldots, x_m generate C as an A-algebra, and let y_1, \ldots, y_n generate C as a B-module. Then:

$$(*) x_i = \sum b_{ij}y_j, b_{ij} \in B,$$

$$(**) y_iy_j = \sum b_{ijk}y_k, b_{ijk} \in B.$$

- Let B_0 be the A-algebra generated by the b_{ij} and b_{ijk} . We have $A \subseteq B_0 \subseteq B \subseteq C$.
- As A is Noetherian, so is B_0 by Corollary 7.7.
- Let C' be the B_0 -module generated by y_1, \ldots, y_n .
- By using (**) it can be checked by induction that $y_{i_1} \cdots y_{i_p} \in C'$, and hence C' is an algebra over B_0 .
- As the x_i are in B_0 by (*) and generate C as an A-algebra, it follows that C = C'.
- Thus, C is a finitely generated B_0 -module.

Proof of Proposition 7.8; Continued.

- As B_0 is Noetherian, C is Noetherian by Corollary 7.7.
- As B is a submodule of C, by Proposition 6.2 B is finitely generated as a B_0 -module.
- As B_0 is finitely generated as an A-algebra, B is finitely generated as an A-algebra as well.

The proof is complete.

Proposition (Proposition 7.9)

Let k be a field and E a finitely generated k-algebra. If E is a field, then this is a finite algebraic extension of k.

Proof.

- By assumption $E = k[x_1, ..., x_n], x_i \in E$.
- Suppose that *E* is not algebraic over *k*.
- We may assume that x_1, \ldots, x_r are algebraically independent and x_{r+1}, \ldots, x_n are algebraic over the field $F = k(x_1, \ldots, x_r)$.
- Thus, E is a finite algebraic extension of F, and hence is a finite dimensional vector space over F, i.e., a finitely generated F-module.

Proof of Proposition 7.9; Continued.

- We have $k \subseteq F \subseteq E$, where:
 - *k* is Noetherian, since this is a field.
 - E is finitely generated as k-algebra and as an F-module.
- Thus, by Proposition 7.8 F is a finitely generated k-algebra.
- That is, $F = k[f_1/g_1, \dots, f_s/g_s]$, with $f_j, g_j \in k[x_1, \dots, x_r]$.
- The polynomial $1 + g_1 \cdots g_s$ is prime with each of the g_j .
- Thus, if h is an irreducible component of $1 + g_1 \cdots g_s$, then h is prime with each of the g_j as well.
- $h \in k[x_1, \ldots, x_r] \subseteq F$, and so $h^{-1} \in F = k[f_1/g_1, \ldots, f_s/g_s]$.
- Thus, there are m_1, \ldots, m_s such that

$$g_1^{m_1} \cdots g_s^{m_s} h^{-1} \in k[f_1, \dots, f_s, g_1, \dots, g_s] \subseteq k[x_1, \dots, x_r].$$

• Thus, h divides $g_1^{m_1} \cdots g_s^{m_s}$ in $k[x_1, \dots, x_r]$, and hence divides at least one of the g_j since it is irreducible (contradiction).

Corollary (Weak Nullstellensatz; Corollary 7.10)

Let k be a field, A a finitely generated k-algebra, and \mathfrak{m} a maximal ideal of A. Then the field A/\mathfrak{m} is a finite algebraic extension of k. In particular, if k is algebraically closed, then $A/\mathfrak{m} \simeq k$.

Remark

The weak Nullstellensatz allows us to get the strong form of Hilbert's Nullstellensatz (see Problem 7.14 and Carlson's notes).

Definition

An ideal \mathfrak{a} of a ring A is called *irreducible* if

$$\mathfrak{a} = \mathfrak{b} \cap \mathfrak{c} \implies (\mathfrak{a} = \mathfrak{b} \text{ or } \mathfrak{a} = \mathfrak{c}).$$

Lemma (Lemma 7.11)

In A is a Noetherian ring A, every ideal is finite intersection of irreducible ideals.

Lemma (Lemma 7.12)

In a Noetherian ring A, every irreducible ideal is primary.

From the previous two lemmas we immediately obtain:

Theorem (Theorem 7.13)

In a Noetherian ring, every ideal has a primary decomposition.

Consequence

All the results of Chapter 4 apply to Noetherian rings.

Proposition (Proposition 7.14)

In a Noetherian ring A, every ideal $\mathfrak a$ contains a power of its radical $r(\mathfrak a)$.

Proof.

- As A is Noetherian any ideal of A is finitely generated by Proposition 6.2.
- Let x_1, \ldots, x_n be generators of $r(\mathfrak{a})$, i.e., $x_i^{n_i} \in \mathfrak{a}$.
- Set $m = 1 + \sum_{i=1}^{n} (n_i 1)$. Then $r(\mathfrak{a})^m$ is generated by monomials $x_1^{r_1} \cdots x_n^{r_n}$ with $\sum_{i=1}^{n} r_i = m$.
- If $r_i \le n_i 1$ for all i, then $\sum r_i \le \sum (n_i 1) = m 1$ (contradiction).
- Thus, $r_i \ge n_i$ for some i, and hence $x_i^{r_i} = x_i^{r_i n_i} x_i^{n_i} \in \mathfrak{a}$.
- Thus, each monomial $x_1^{r_1} \cdots x_n^{r_n}$ is in \mathfrak{a} , and hence $r(\mathfrak{a})^m \subseteq \mathfrak{a}$.

This proves the result.

Corollary (Corollary 7.15)

In a Noetherian ring the nilradical \mathfrak{N} is nilpotent.

Proof.

- By definition $\mathfrak{N} = r(\mathfrak{a})$ with $\mathfrak{a} = (0)$.
- By Proposition 7.14 $\mathfrak{N}^m \subseteq (0)$, and hence $\mathfrak{N}^m = (0)$, i.e., \mathfrak{N} is nilpotent.

Reminder (Proposition 4.2)

If $\mathfrak a$ is an ideal in A whose radical $r(\mathfrak a)$ is maximal, then $\mathfrak a$ is primary. In particular, every power of a maximal ideal $\mathfrak m$ is $\mathfrak m$ -primary.

Corollary (Corollary 7.16)

Suppose that A is a Noetherian ring. Let \mathfrak{m} be a maximal ideal of A and let \mathfrak{q} be any ideal. TFAE:

- (i) q is m-primary.
- (ii) $r(\mathfrak{q}) = \mathfrak{m}$.
- (iii) $\mathfrak{m}^n \subseteq \mathfrak{q} \subseteq \mathfrak{m}$ for some $n \geq 1$.

Proof.

- (i)⇒(ii) is immediate.
- (ii) \Rightarrow (i) is the contents of Proposition 4.2.
- (ii)⇒(iii) follows from Proposition 7.14.
- If $\mathfrak{m}^n \subseteq \mathfrak{q} \subseteq \mathfrak{m}$, then $r(\mathfrak{m}^n) \subseteq r(\mathfrak{q}) \subseteq r(\mathfrak{m})$.
- As $r(\mathfrak{m}^n) = r(\mathfrak{m}) = \mathfrak{m}$, since \mathfrak{m} is prime, it follows that $r(\mathfrak{q}) = \mathfrak{m}$. Thus, (iii) \Rightarrow (ii).

The proof is complete.

Reminder (1st Uniqueness Theorem; Theorem 4.5)

Let $\mathfrak a$ be a decomposable ideal and $\mathfrak a=\cap_{i=1}^n\mathfrak q_i$ a primary decomposition. Set $p_i=r(\mathfrak q_i),\ i=1,\ldots,n$. Then the $\mathfrak p_i$ are exactly the prime ideals of the form $r(\mathfrak a:x),\ x\in A$. In particular, they don't depend on the primary decomposition of $\mathfrak a$.

Remark

The proof of Theorem 4.5 shows that, for all $x \neq 0$,

$$r(\mathfrak{a}:x)=\bigcap_{x\not\in\mathfrak{q}_i}\mathfrak{p}_j.$$

Proposition (Proposition 7.17)

Let A be a Noetherian ring and $\mathfrak{a} \subsetneq A$ an ideal of A. Then the prime ideals which belong to \mathfrak{a} are exactly the prime ideals of the form $(\mathfrak{a}:x), x \in A$.

Proof of Proposition 7.17.

- Let $\mathfrak{a} = \cap \mathfrak{q}_i$ be a min. primary decomposition. Set $\mathfrak{p}_i = r(\mathfrak{q}_i)$.
- Set $\mathfrak{a}_i = \bigcap_{j \neq i} \mathfrak{q}_j$. If $x \in \mathfrak{a}_i \setminus 0$, then by the proof of Thm. 4.5,

$$r(\mathfrak{a}:x)=\cap_{x\not\in\mathfrak{q}_i}\mathfrak{p}_j=\mathfrak{p}_i.$$

- Thus $(\mathfrak{a}:x) \subseteq r(\mathfrak{a}:x) = \mathfrak{p}_i$.
- As \mathfrak{q}_i is \mathfrak{p}_i -primary, by Proposition 7.14 $\mathfrak{p}_i^m \subseteq \mathfrak{q}_i$ for some m, and hence $\mathfrak{a}_i \mathfrak{p}_i^m \subseteq \mathfrak{a}_i \cap \mathfrak{p}_i^m \subseteq \mathfrak{a}_i \cap \mathfrak{q}_i = \mathfrak{a}$.
- Let m be the smallest integer s.t. $\mathfrak{a}_i\mathfrak{p}^m\subseteq\mathfrak{a}$.
- If $x \in \mathfrak{a}_i \mathfrak{p}_i^{m-1}$, $x \neq 0$, then $\mathfrak{p}_i x \in \mathfrak{a}_i \mathfrak{p}_i^m \subseteq \mathfrak{a}$.
- Thus, $\mathfrak{p}_i \subseteq (\mathfrak{a} : x)$, and hence $(\mathfrak{a} : x) = \mathfrak{p}_i$.
- Conversely, if (a:x) is a prime \mathfrak{p} , then $r(a:x) = r(\mathfrak{p}) = \mathfrak{p}$, and hence \mathfrak{p} belongs to \mathfrak{a} by Thm. 4.5.

The proof is complete.