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The Integral of an n-Form on Rn

Remark

Throughout this section we assume familiarity with measure theory
and Lebesgue’s integral on Rn.

Definition

Let ω = f (x)dx1 ∧ · · · ∧ dxn be a smooth n-form on an open
U ⊂ Rn with coordinates x1, . . . , xn. The integral of ω over a
Borel set A ⊂ U is defined by∫

A
ω =

∫
A
f (x)dx1 ∧ · · · ∧ dxn :=

∫
A
f (x)dx .
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The Integral of an n-Form on Rn

Reminder (see Section 21)

Let φ : V → U be a diffeomorphism between open subsets of Rn.

φ is orientation-preserving if and only if det(J(φ)) > 0 on V .

It is orientation-reversing if and only if det(J(φ)) < 0 on V .

Here J(φ) is the Jacobian of φ.
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The Integral of an n-Form on Rn

Facts

Let φ : V → U be a diffeomorphism between open subsets of Rn.
Use coordinates (x1, . . . , xn) on U and coordinates (y1, . . . , yn) on
V . Set φi = x i ◦ φ = φ∗x i .

Let ω = f (x)dx1 ∧ · · · ∧ dxn be a C∞ n-form on U. As
pullback commutes with wedge product and differential,

φ∗ω = φ∗
(
fdx1 ∧ · · · ∧ dxn) = (φ∗f )

(
φ∗dx1

)
∧ · · · ∧

(
φ∗dxn

)
,

= (f ◦ φ)d
(
φ∗x1

)
∧ · · · ∧ d

(
φ∗xn

)
,

= (f ◦ φ)dφ1 ∧ · · · ∧ dφn.

By using the local expression for wedge of differentials
(Proposition 18.3), we get

φ∗ω = (f ◦ φ)
∂(φ1, . . . , φn)

∂(y1, . . . , yn)
dy1 ∧ · · · ∧ dyn

= (f ◦ φ) det
(
J(φ)

)
dy1 ∧ · · · ∧ dyn.
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The Integral of an n-Form on Rn

Facts (Continued)

Assume that the diffeomorphism φ is orientation-preserving or
orientation-reversing. Then

φ∗ω = (f ◦ φ) det
(
J(φ)

)
dy1 ∧ · · · ∧ dyn,

= ±(f ◦ φ)
∣∣ det

(
J(φ)

)∣∣dy1 ∧ · · · ∧ dyn,

where the sign ± depends on whether φ is
orientation-preserving or orientation-reversing.

By using the usual change of variable formula, we get∫
V
φ∗ω = ±

∫
φ−1(U)

(f ◦φ)
∣∣ det

(
J(φ)

)∣∣dy = ±
∫
U
fdx = ±

∫
U
ω.
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The Integral of an n-Form on Rn

Therefore, we obtain:

Lemma

Let φ : V → U be a diffeomorphism between open subsets of Rn,
and ω a smooth n-form on U.

If φ is orientation-preserving, then∫
V
φ∗ω =

∫
U
ω.

If φ is orientation-reversing, then∫
V
φ∗ω = −

∫
U
ω.
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Integral of a Differential Form over a Manifold

Definition

If M is a smooth manifold, we denote by Ωk
c (M) the space of

smooth k-forms with compact support.

Definition

Assume M is oriented and is equipped with an oriented atlas
{(Uα, φα)}. Set n = dimM. Let (U, φ) be chart in this atlas. The
integral of any top-form ω ∈ Ωn

c(U) is defined by∫
U
ω :=

∫
φ(U)

(φ−1)∗ω.
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Integral of a Differential Form over a Manifold

Remark

Let (U, ψ) be another chart with same domain in the oriented
atlas.

The transition map φ ◦ ψ−1 : ψ(U)→ φ(U) is an
orientation-preserving diffeomorphism, since the charts (U, φ)
and (U, ψ) belong to the same oriented atlas.

Thus, by the previous lemma we have∫
ψ(U)

(ψ−1)∗ω =

∫
ψ(U)

(
φ ◦ ψ−1

)∗[
(φ−1)∗ω

]
=

∫
φ(U)

(φ−1)∗ω

This shows that the integral
∫
U ω is well-defined and

independent of the choice of the coordinate system φ on U.
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Integral of a Differential Form over a Manifold

Facts

Let ω ∈ Ωn
c(M) and {ρα} a C∞ partition of unity subordinated to

the open cover {Uα}.
As ω has compact support, we have

ω =
∑
α

ραω,

where the sum is actually finite (see Problem 18.6).

By Problem 18.4 supp(ραω) = supp ρα ∩ suppω, and so ραω
has compact support.

Thus, the integral
∫
Uα
ραω is well defined.
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Integral of a Differential Form over a Manifold

Definition

Let ω ∈ Ωn
c(M). The integral of ω over M is defined by∫

M
ω =

∑
α

∫
Uα

ραω.

Remark

The integral
∫
M ω is well defined and independent of the partition

of unity {ρα} (see Tu’s book).
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Integral of a Differential Form over a Manifold

Proposition (Proposition 23.10)

Let −M be the manifold M with the opposite orientation. Then,
for every ω ∈ Ωn

c(M), we have∫
−M

ω = −
∫
M
ω.

Remark

The treatment of integration of differential forms on an oriented
manifolds extends verbatim to differential forms on oriented
manifolds with boundary.
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Integral of a Differential Form over a Manifold

Definition (Domain of Integration; see Definition 23.6)

A subset D ⊂ Rn is called a domain of integration if it is bounded
and its topological boundary has measure zero.

Definition (Parametrized Set)

A parametrized set in an oriented n-manifold M is a subset A
together with a C∞-map F : D → M, where D is a compact
domain of integration in Rn such that:

(i) F (D) = A.

(ii) F restricts to an orientation-preserving diffeomorphism from
Int(D) to F (Int(D)).

The map F : D → A is called a parametrization of A.

Remark

By smooth invariance of domain for manifolds, F (Int(D)) must be
an open subset of M (see Remark 22.5). 12 / 20



Integral of a Differential Form over a Manifold

Definition

Let A be a parametrized set in M and F : D → M a
parametrization. For any ω ∈ Ωn(M), the integral of ω over A is
defined by ∫

A
ω :=

∫
D
F ∗ω.

Remarks

1 The integral
∫
A ω is well defined and independent of the

parametrization F .

2 We don’t need to assume ω to have compact support in the
above definition.
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Integration over a Zero-Dimensional Manifold

Remarks

A zero-dimensional manifold is a discrete countable set of
points.

A connected zero-dimensional manifold is just a point. In this
case there are two classes [1] and [−1] of non-zero 0-forms.

More generally, an orientation on a 0-dimensional manifold is
given by a function on M that assigns the values ±1.
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Integration over a Zero-Dimensional Manifold

Facts

A compact oriented 0-dimensional manifold M is a finite
unions of points oriented by +1 and −1.

We write M =
∑

i pi −
∑

j qj .

The integral of a function f : M → R is then defined by∫
M
f =

∑
i

f (pi )−
∑
j

f (qj).
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Stokes’s Theorem

Theorem (Stokes’s Theorem; Theorem 23.12)

Let M be an oriented manifold with boundary. We endow ∂M with
its boundary orientation. Then, for every ω ∈ Ωn−1

c (M), we have∫
M
dω =

∫
∂M

ω.
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Line Integrals and Green’s Theorem

Notation

If F = 〈P,Q,R〉 is a vector field on R3 and r = 〈x , y , z〉 is the
radial vector field, then F · dr is the 1-form Pdx + Qdy + Rdz .

Theorem (Fundamental theorem for line integrals; Theorem 23.13)

Let C be a smooth curve in R3 with parametrization
r(t) = (x(t), y(t), z(t)), a ≤ t ≤ b. For any smooth function f on
R3 we have ∫

C
grad f · dr = f

(
r(b)

)
− f
(
r(a)

)
.
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Line Integrals and Green’s Theorem

Proof.

Apply Stokes’s theorem to M = C and ω = f to get:∫
C
df =

∫
∂C

f .

We have∫
C
df =

∫
C

{
∂f

∂x
dx +

∂f

∂y
dy +

∂f

∂z
dz

}
=

∫
C

grad f · dr ,∫
∂C

f = f

∣∣∣∣r(b)
r(a)

= f
(
r(b)

)
− f
(
r(a)

)
.

This gives the result.
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Line Integrals and Green’s Theorem

Theorem (Green’s Theorem; Theorem 23.14)

Let D be a planar region with boundary ∂D. For any smooth
functions P and Q near D we have∫

∂D

(
Pdx + Qdy

)
=

∫
D

{
∂Q

∂x
− ∂P

∂y

}
dxdy .
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Line Integrals and Green’s Theorem

Proof.

Stokes’s theorem for M = D and ω = Pdx + Qdy gives∫
∂D

(
Pdx + Qdy

)
=

∫
D
d
(
Pdx + Qdy

)
.

We have

d
(
Pdx + Qdy

)
= dP ∧ dx + dQ ∧ dy

=
∂P

∂y
dy ∧ dx +

∂Q

∂x
dx ∧ dy

=

{
∂Q

∂x
− ∂P

∂y

}
dx ∧ dy .

Thus, by the very definition of the integral of a top form,∫
D
d
(
Pdx + Qdy

)
=

∫
D

{
∂Q

∂x
− ∂P

∂y

}
dxdy .

This gives the result.
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