

Differentiable Manifolds

§19. The Exterior Derivative

Sichuan University, Fall 2021

Reminder: Exterior Derivative on an Open Set

Definition (Exterior derivative on open set)

Let U be an open subset of \mathbb{R}^n . The *exterior derivative* $d : \Omega^*(U) \rightarrow \Omega^*(U)$ is defined as follows:

- For $k = 0$ the exterior derivative of a 0-form (i.e., a C^∞ function) f on U is its differential, i.e., $df = \sum \frac{\partial f}{\partial x^i} dx^i$.
- For $k \geq 1$, the exterior derivative $\omega = \sum a_I dx^I \in \Omega^k(U)$ is

$$d\omega = \sum_I da_I \wedge dx^I = \sum_I \left(\sum_j \frac{\partial a_I}{\partial x^j} dx^j \right) \wedge dx^I.$$

Remarks

- If $\omega \in \Omega^k(U)$, then $d\omega \in \Omega^{k+1}(U)$.
- In particular, $d\omega = 0$ for all $\omega \in \Omega^n(U)$.

Reminder: Exterior Derivative on an Open Set

Reminder (Graded Algebras)

An algebra A over a field \mathbb{K} is called *graded* when it can be decomposed as

$$A = \bigoplus_{k=0}^{\infty} A^k,$$

where the A^k are subspaces such that the multiplication maps $A^k \times A^\ell$ to $A^{k+\ell}$.

Reminder (Antiderivation of a Graded Algebra; see Section 4)

Let $A = \bigoplus_{k=0}^{\infty} A^k$ be a graded algebra over a field \mathbb{K} .

- An *antiderivation* of A is any linear map $D : A \rightarrow A$ such that $D(ab) = (Da)b + (-1)^k aDb$ for all $a \in A^k$ and $b \in A$.
- We say that D has *degree* m when $D(A^k) \subset A^{k+m}$ for all k .

Reminder: Exterior Derivative on an Open Set

Reminder

$\Omega^*(U) = \bigoplus_{k=0}^n \Omega^k(U)$ is a graded algebra over \mathbb{R} .

Reminder (Proposition 4.7)

The exterior derivative $d : \Omega^*(U) \rightarrow \Omega^*(U)$ satisfies the following properties:

- (i) It is an antiderivation of degree 1, i.e.,

$$d(\omega \wedge \tau) = (d\omega) \wedge \tau + (-1)^{\deg \omega} \omega \wedge d\tau.$$

- (ii) $d^2 = 0$, i.e., $d(d\omega) = 0$ for all $\omega \in \Omega^*(U)$.

- (iii) If $f \in C^\infty(U)$ and $X \in \mathcal{X}(U)$, then $(df)(X) = Xf$.

Reminder (Proposition 4.8)

The exterior derivative is the unique map $D : \Omega^*(U) \rightarrow \Omega^*(U)$ that satisfies the properties (i)–(iii) above.

Exterior Derivative on a Manifold

Reminder

Let M be a smooth manifold of dimension n . Then the exterior algebra of differential forms $\Omega^*(M) = \bigoplus_{k=0}^n \Omega^k(M)$ is a graded algebra.

Definition

An *exterior derivative* on a manifold M is a linear map $D : \Omega^*(M) \rightarrow \Omega^*(M)$ satisfying the following properties:

- (i) It is an antiderivation of degree 1.
- (ii) $D \circ D = 0$.
- (iii) On $\Omega^0(M) = C^\infty(M)$ it agrees with the differential of functions, i.e., $Df = df$ for all $f \in C^\infty(M)$.

Theorem (Theorem 19.4)

There is a unique exterior derivative $d : \Omega^(M) \rightarrow \Omega^*(M)$.*

Construction of the Exterior Derivative

Reminder

Let (U, x^1, \dots, x^n) be a chart for M .

- $\{dx^I; I \in \mathcal{I}_{k,n}\}$ is a smooth frame of $\Omega^k(M)$ over U .
- Every smooth k -form ω on U can be uniquely written as $\omega = \sum a_I dx^I$ with a_I in $C^\infty(U)$.

Construction of the Exterior Derivative

Definition

Let (U, x^1, \dots, x^n) be a chart. Define $d_U : \Omega^*(U) \rightarrow \Omega^*(U)$ by

(i) If $f \in C^\infty(U) = \Omega^0(U)$, then

$$d_U f = df = \sum \frac{\partial f}{\partial x^i} dx^i.$$

(ii) If $\omega = \sum a_I dx^I \in \Omega^k(U)$, $k \geq 1$, then

$$d\omega = \sum_I da_I \wedge dx^I.$$

In the same way as in the case of an open set of \mathbb{R}^n we get:

Lemma

$d_U : \Omega^*(U) \rightarrow \Omega^*(U)$ is the unique exterior derivative on U .

Construction of the Exterior Derivative

Remark

- The proof of uniqueness in Tu's book lacks details.
- Tu's arguments require to show that if $D : \Omega^*(M) \rightarrow \Omega^*(M)$ is an exterior derivative, then

$$D(dx^I) = 0 \quad \forall I \in \mathcal{I}_{k,n}, \quad k \geq 1.$$

This can be proved by induction on k .

- $k = 1$: $D(dx^i) = D \circ D(x^i) = 0$ since $D = d$ on $C^\infty(M)$.
- Assume the result for k . Let $I = (i_1, \dots, i_{k+1}) \in \mathcal{I}_{k+1,n}$ and set $J = (i_2, \dots, i_{k+1}) \in \mathcal{I}_{k,n}$. We have

$$dx^I = dx^{i_1} \wedge dx^{i_2} \wedge \cdots \wedge dx^{i_{k+1}} = dx^{i_1} \wedge dx^J.$$

- As D is an antiderivation, we get

$$D(dx^I) = D(dx^{i_1} \wedge dx^J) = D(dx^{i_1}) \wedge dx^J - dx^{i_1} \wedge D(dx^J) = 0,$$

since $D(dx^{i_1}) = 0$ and $D(dx^J) = 0$.

Construction of the Exterior Derivative

Remark (Continued)

- Once it has been established that $D(dx^I) = 0$, it can be shown that $D = d_U$ as in Tu's book.
- Let $\omega = \sum a_I dx^I \in \Omega^k(U)$. As D is an antiderivation and agrees with the differential on functions, we get

$$\begin{aligned} d\omega &= \sum D(a_I dx^I) = \sum D(a_I) \wedge dx^I + \sum a_I D(dx^I) \\ &= \sum da^I \wedge dx^I \\ &= d_U \omega. \end{aligned}$$

- This shows that d_U is the only exterior derivative on U .

Construction of the Exterior Derivative

Facts

Let $\omega \in \Omega^k(M)$. Let (U, x^1, \dots, x^n) and (V, y^1, \dots, y^n) be charts for M near $p \in M$.

- Write $\omega = \sum a_I dx^I$ on U and $\omega = \sum b_I dy^I$ on V . Then on $U \cap V$ we have

$$\omega = \sum a_I dx^I = \sum b_I dy^I.$$

- In particular, on $U \cap V$ we get

$$\sum da_I \wedge dx^I = d_{U \cap V}(\omega|_{U \cap V}) = \sum db_I \wedge dy^I.$$

- As $p \in U \cap V$, we obtain

$$d_U(\omega|_U)_p = \sum (da_I \wedge dx^I)_p = \sum (db_I \wedge dy^I)_p = d_V(\omega|_V)_p.$$

Construction of the Exterior Derivative

Consequence

$d_U(\omega|_U)_p$ depends only on ω and p , not on U .

Definition

The map $d : \Omega^*(M) \rightarrow \Omega^*(M)$ is defined as follows: if $\omega \in \Omega^k(M)$ and $p \in M$, then

$$(d\omega)_p = d_U(\omega|_U)_p,$$

where U is the domain of any chart near p .

Theorem (Theorem 19.4)

The map $d : \Omega^*(M) \rightarrow \Omega^*(M)$ is the unique exterior derivative on M .

Construction of the Exterior Derivative

Definition

$d : \Omega^*(M) \rightarrow \Omega^*(M)$ is called the *exterior derivative* of M .

Remark

Let $\omega \in \Omega^k(U)$ and (U, x^1, \dots, x^n) a chart for M .

- By definition $(d\omega)_p = d_U(\omega|_U)_p$ for all $p \in U$. Thus,

$$(d\omega)|_U = d_U(\omega|_U).$$

- In particular, if $\omega = \sum a_I dx^I$ on U , then

$$(d\omega)|_U = d_U(\omega|_U) = \sum da^I \wedge dx^I \quad \text{on } U.$$

Exterior Differentiation Under a Pullback

Reminder (see slides on Section 18)

Let $F : N \rightarrow M$ be a smooth map.

- If ω is a k -form on M , then its pullback $F^*\omega$ is the k -form on N given by

$$\begin{aligned}(F^*\omega)_p(v_1, \dots, v_k) &= ((F_{*,p})^*\omega_p)(v_1, \dots, v_k) \\ &= \omega_p(F_{*,p}v_1, \dots, F_{*,p}v_k), \quad v_i \in T_p N.\end{aligned}$$

- If ω is a smooth form on M , then $F^*\omega$ is a smooth form on N .

Exterior Differentiation Under a Pullback

Exterior differentiation commutes with pullback. Namely, we have:

Proposition (Proposition 19.5)

Let $F : N \rightarrow M$ be a smooth map. If $\omega \in \Omega^k(M)$, then

$$F^*(d\omega) = d(F^*\omega).$$

Remark

- In Tu's book, Proposition 19.5 is used to show that smoothness of k -forms is preserved by pullback.
- This is not fully rigorous since in order to make sense Proposition 19.5 requires the smoothness of pullbacks of smooth forms.
- Anyway, smoothness of pullbacks of forms can be proved without using Proposition 19.5 (see slides on Section 18).

Restriction of k -Forms to Submanifolds

Reminder

Let S be an immersed submanifold in M .

- The inclusion $i : S \rightarrow M$ is an immersion, and so its differential $i_{*,p} : T_p S \rightarrow T_p M$ is an injection for every $p \in S$.
- This allows us to identify $T_p S$ with a subspace of $T_p M$.
- We thus can restrict to S any k -covector $\omega_p \in \Lambda^k(T_p^* M)$; this defines a k -covector on $T_p S$, i.e., an element of $\Lambda^k(T_p^* S)$.

Definition

If ω is a k -form on M , its *restriction* to S , denoted $\omega|_S$, is the k -form on S defined by

$$(\omega|_S)_p(v_1, \dots, v_k) = \omega_p(v_1, \dots, v_k) \quad \text{for all } p \in S \text{ and } v_i \in T_p S.$$

Restriction of k -Forms to Submanifolds

In the same way as with 1-forms we have:

Proposition

Let S be an immersed submanifold in M . If $i : S \rightarrow M$ is the inclusion of S into M and ω is a k -form on M , then $\omega|_S = i^*\omega$.

As pullbacks by smooth maps preserve smoothness we get:

Corollary

Let S be an immersed submanifold in M . If ω is a smooth k -forms on M , then $\omega|_S$ is a smooth k -form on S .

Restriction of k -Forms to Submanifolds

Corollary

Let S be an immersed submanifold in M . If $\omega \in \Omega^k(M)$, then

$$(d\omega)|_S = d(\omega|_S).$$

Proof.

Let $i : S \rightarrow M$ be the inclusion of S into M . As exterior differentiation commutes with pullback by i , we get

$$(d\omega)|_S = i^*(d\omega) = d(i^*\omega) = d(\omega|_S).$$

The result is proved. □

Remark

As $(d\omega)|_S$ and $d(\omega|_S)$ agree, we simply write $d\omega|_S$ to mean either expression.

A Nowhere-Vanishing 1-Forms on \mathbb{S}^1

Example

- The unit circle \mathbb{S}^1 has equation $x^2 + y^2 = 1$. This a regular submanifold of \mathbb{R}^2 . Thus,

$$[d(x^2 + y^2)]_{|\mathbb{S}^1} = d[(x^2 + y^2)_{|\mathbb{S}^1}] = d1 = 0.$$

- On \mathbb{R}^2 we also have

$$d(x^2 + y^2) = \frac{\partial}{\partial x}(x^2 + y^2)dx + \frac{\partial}{\partial y}(x^2 + y^2)dy = 2xdx + 2ydy.$$

- Thus,

$$(xdx + ydy)_{|\mathbb{S}^1} = 0.$$

- In particular, on regions of \mathbb{S}^1 where $x \neq 0$ and $y \neq 0$, we have

$$\frac{dy}{x} = -\frac{dx}{y}.$$

A Nowhere-Vanishing 1-Forms on \mathbb{S}^1

Example (continued)

- Set $U_x = \{(x, y) \in \mathbb{S}^1; x \neq 0\}$ and $U_y = \{(x, y) \in \mathbb{S}^1; y \neq 0\}$. Let ω be the 1-form on \mathbb{S}^1 defined by

$$\omega = \frac{dy}{x} \quad \text{on } U_x, \quad \omega = -\frac{dx}{y} \quad \text{on } U_y.$$

- This is well-defined since $\frac{dy}{x} = -\frac{dx}{y}$ on $U_x \cap U_y$.
- ω is a smooth 1-form, since on both U_x and U_y it is the restriction of a smooth 1-form on an open of \mathbb{R}^2 .

Proposition (see Tu's book)

The 1-form ω is a nowhere-vanishing smooth 1-form on \mathbb{S}^1 , i.e., $\omega_p \neq 0$ for all $p \in \mathbb{S}^1$.