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Differential Forms

Reminder (see Section 3)

Let V be a vector space (over R). Set n = dimV .

A k-covector on V is an alternating k-linear map f : V k → R,

f
(
vσ(1), . . . , vσ(k)

)
= (sgnσ)f (v1, . . . , vn) ∀σ ∈ Sk .

We denote by Ak(V ) the space of k-covectors on V .

We have

A0(V ) = R, A1(V ) = V ∗, Ak(V ) = {0}, k ≥ n+1.
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Differential Forms

Reminder (Wedge product; see Section 3)

If f ∈ Ak(V ) and g ∈ A`(V ), the wedge product f ∧ g is the
(k + `)-covector in Ak+l(V ) defined by

(f ∧ g)(v1, . . . , vk+`) =

1

k!`!

∑
σ∈Sk+`

sgn(σ)f
(
vσ(1), . . . , vσ(k)

)
g
(
vσ(k+1), . . . , vσ(k+`)

)
.

The wedge product ∧ : Ak(V )× A`(V )→ Ak+`(V ) is a
bilinear map which is anti-commutative and associative, i.e.,

f ∧ g = (−1)k`g ∧ f , f ∧ f = 0 (k odd),

(f ∧ g) ∧ h = f ∧ (g ∧ h).
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Differential Forms

Reminder (Wedge products of 1-covectors; see Section 3)

If α1, . . . , αk are 1-covectors, then(
α1 ∧ · · · ∧ αk

)
(v1, . . . , vk) = det

[
αi (vj)

]
, vi ∈ V .

Let β1, . . . , βk be k-covectors such that

βi =
∑
j

aijα
j , for some matrix A = [aij ] ∈ Rk×k .

Then
β1 ∧ · · · ∧ βk = (detA)α1 ∧ · · · ∧ αk .
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Differential Forms

Definition

Ik,n is the set of ascending multi-indices I = (i1, . . . , ik) such that
1 ≤ i1 < · · · < ik ≤ n.

Reminder (Bases of k-covectors; see Section 3)

Let e1, . . . , en be a basis of V and let α1, . . . , αn be the dual basis
of V ∗ = A1(V ). For I = (i1, . . . , ik) ∈ Ik,n set

αI = αi1 ∧ · · · ∧ αik .

If J = (j1, . . . , jk) ∈ Ik,n and eJ = (ej1 , . . . , ejk ), then

αI (eJ) = δIJ .

The k-covectors αI , I ∈ Ik,n, form a basis of Ak(V ).

In particular dimAk(V ) =
(n
k

)
for k ≤ n.

5 / 32



Differential Forms

Facts

Any linear map F : V →W gives rise to a linear map
F ∗ : Ak(W )→ Ak(V ) defined by

F ∗g(v1, . . . , vk) = g(Fv1, . . . ,Fvk), g ∈ Ak(W ), vi ∈ V .

If F : V →W and G : W → Z are linear maps, then

(G ◦ F )∗ = F ∗ ◦ G ∗.

Consequence

The construction V → Ak(V ) is a (contravariant) functor from the
category VectR to itself.
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Differential Forms

Remark

There is a another construction V → Λk(V ) called k-th
exterior power.

This is a covariant functor on VectR.

We have Ak(V ) = Λk(V ∗), so the space of k-covectors is
often denoted Λk(V ∗).
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Differential Forms

Definition (Differential k-forms)

Let M be a smooth manifold.

The space Ak(TpM) is denoted Λk(T ∗pM).

An element of Λk(T ∗pM) is called a k-covector at p.

A differential k-form (or a k-covector field) is the assignment
for each p ∈ M of a k-covector ω ∈ Λk(T ∗pM).

Remarks

1 Differential k-forms are also called differential forms of degree
k, or simply k-forms.

2 A differential form of degree k = dimM is also called a top
form.
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Differential Forms

Definition

If ω is a differential k-form and X1, . . . ,Xk are vector fields on M,
we denote by ω(X1, . . . ,Xk) the function on M defined by

ω(X1, . . . ,Xk)(p) = ωp

(
(X1)p, . . . , (Xk)p

)
, p ∈ M.

Proposition (Proposition 8.1)

Let ω be a differential k-form. For any vector fields X1, . . . ,Xk and
function h on M, we have

ω(hX1, . . . , hXk) = hω(X1, . . . ,Xk).
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Differential Forms

Example

Let (U, x1, . . . , xn) be a chart for M.

If p ∈ U, then
{
∂/∂x1

∣∣
p
, . . . , ∂/∂xn

∣∣
p

}
is a basis of TpM.

The dual basis of T ∗pM is
{

(dx1)p, . . . , (dx
n)p
}

.

For I = (i1, . . . , ik) ∈ Ik,n let dx I be the k-form defined by(
dx I
)
p

=
(
dx i1

)
p
∧ · · · ∧

(
dx in

)
p
, p ∈ U.

By the results of Section 3 (see slide 5)
{

(dx I )p; I ∈ Ik,n

}
is

a basis of Λk(T ∗pM) for every p ∈ U.
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Local Expression for a k-Form

Facts

Let p ∈ U. As
{

(dx I )p; I ∈ Ik,n

}
is a basis of Λk(T ∗pM),

every k-covector ωp ∈ Λk(T ∗pM) can be uniquely written as

ωp =
∑

I∈Ik,n

aI
(
dx I
)
p
, aI ∈ R.

Set ∂i = ∂/∂x i and for I = (i1, . . . , ik) ∈ Ik,n set
∂I = (∂i1 , . . . , ∂ik ). By the results of Section 3 (see slide 5):

dx I (∂J) = δIJ .

It follows that if ωp =
∑

I∈Ik,n
aI
(
dx I
)
p
, then aI = ωp(∂I ).

In particular, every k-form ω on U can be uniquely written as

ω =
∑

I∈Ik,n

aIdx
I with aI = ω(∂I ).
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Local Expression for a k-Form

Proposition (Proposition 18.3)

Suppose that (U, x1, . . . , xn) is a chart for M, and let f 1, . . . , f k

be smooth functions on U. Then

df 1 ∧ · · · ∧ df k =
∑
I

∂(f 1, . . . , f k)

∂(x i1 , . . . , x ik )
dx I .

Remark

In fact, in the same way as in Section 3 (see slide 4), we have(
df 1 ∧ · · · ∧ df k

)
(∂I ) = det

[
df i (∂ij )

]
= det

[
∂f i/∂x ij

]
=

∂(f 1, . . . , f k)

∂(x i1 , . . . , x ik )
.
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Local Expression for a k-Form

Example

Let (V , y1, . . . , yn) be another chart. Then on U ∩ V we have

dyJ =
∑
I

∂(y j1 , . . . , y jk )

∂(x i1 , . . . , x ik )
dx I .

Corollary (Corollary 18.4)

Suppose that (U, x1, . . . , xn) is a chart for M, and let f , f 1, . . . , f n

be smooth functions on U. Then

df =
∑
i

∂f

∂x i
dx i ,

df 1 ∧ · · · ∧ df n =
∂(f 1, . . . , f n)

∂(x1, . . . , xn)
dx1 ∧ · · · ∧ dxn.
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The Bundle Point of View

Definition

The k-th exterior power of the cotangent bundle is

Λk(T ∗M) =
⊔
p∈M

Λk(T ∗pM) =
{

(p, ω); p ∈ M, ω ∈ Λk(T ∗pM)
}
.

The canonical map π : Λk(T ∗M)→ M is given by

π(p, ω) = p, p ∈ M, ω ∈ Λk(T ∗pM).
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The Bundle Point of View

Facts

Let (U, φ) = (U, x1, . . . , xn) be a chart for M. Set V = φ(U).

Every k-covector ωp ∈ Λk(T ∗pM), can be uniquely written as

ωp =
∑
I

aI (dx
I )p, with aI = ωp(∂I ).

We thus get a natural bijection φ̃ : Λk(T ∗U)→ V × R(nk)

such that, for all p ∈ M and ω ∈ Λk(T ∗pM), we have

φ̃(p, ω) =
(
(x i (p)), (ω(∂I ))

)
.

Remark

In the same way as with the constructions of the tangent bundle
TM and the cotangent bundle T ∗M, the maps φ̃ allow us to define
a topology and a smooth structure on Λk(T ∗M).
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The Bundle Point of View

Definition

Let (U, φ) be a chart for M and set V = φ(U). We endow
Λk(T ∗U) with the topology such that

W ⊂ Λk(T ∗U) is open ⇐⇒ φ̃(W ) is open in V × R(nk).

Proposition

Let {(Uα, φα)} be the maximal atlas of M.

Define

B =
⋃
α

{
W ; W is an open in Λk(T ∗Uα)

}
.

Then B is the basis for a unique topology on Λk(T ∗M).

The collection {(T ∗Uα, φ̃α)} is a C∞ atlas on Λk(T ∗M), and
hence Λk(T ∗M) is a smooth manifold.

Λk(T ∗M)
π→ M is a smooth vector bundle over M.
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Smooth k-Forms

Remark

A k-form on M is a section of the exterior power Λk(T ∗M).

Definition

We say that k-form is C∞ when it is C∞ as a section of
Λk(T ∗M).

We denote by Ωk(M) the space of smooth k-forms on M.

Remarks

1 In other words, Ωk(M) is the space of smooth sections of
T ∗M. In particular, this is a module over the ring C∞(M).

2 As Λ0(T ∗pM) = R, a 0-form is just a map from M to R.
Thus, a smooth 0-form is just a smooth function on M, i.e.,
Ω0(M) = C∞(M).
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Smooth k-Forms

Example

Let (U, φ) = (U, x1, . . . , xn) be a chart for M. Set V = φ(U).

It can be shown that each k-form dx I , I ∈ Ik,n is smooth.

Thus, {dx I ; I ∈ In,k} is a smooth frame of Λk(T ∗M) over U.

Reminder (Proposition 12.2)

Let {s1, . . . , sr} be a C∞ frame of a vector bundle E over U. A
section s =

∑
c i si of E over U is smooth if and only if c1, . . . , c r

are smooth functions on U.

We immediately obtain:

Lemma (Lemma 18.6)

Let (U, x1, . . . , xn) be a chart for M. A k-form ω =
∑

aIdx
I on U

is smooth if and only if the coefficients aI are C∞ functions on U.
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Smooth k-Forms

In the same way as with vector fields and 1-forms by using the
previous lemma we obtain:

Proposition (Proposition 18.7; 1st part)

Let ω be a k-form on M. Then TFAE:

1 ω is a smooth k-form.

2 M has an atlas such that, for every chart (U, x1, . . . , xn) of
this atlas, we may write ω =

∑
aIdx

I on U with aI ∈ C∞(U).

3 For every chart (U, x1, . . . , xn) of M, we may write
ω =

∑
aIdx

I on U with aI ∈ C∞(U).
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Smooth k-Forms

Proposition (Proposition 18.7; 2nd part)

Let ω be a k-form on M. Then TFAE:

1 ω is a smooth k-form.

2 For any smooth vector fields X1, . . . ,Xk on M, the function
ω(X1, . . . ,Xk) is smooth on M.

Proposition (Proposition 18.8)

Let τ be a smooth k-form defined on a neighborhood of p. Then
there exists a smooth k-form τ̃ on M which agrees with τ near p.
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Pullback of k-Forms

Reminder (see slide 6)

Any linear F : V →W between vector spaces gives rise to a linear
map F ∗ : Ak(W )→ Ak(V ) defined by

F ∗g(v1, . . . , vk) = g(Fv1, . . . ,Fvk), g ∈ Ak(W ), vi ∈ V .

Definition (Pullback of a k-form)

Let F : N → M be a smooth map. If ω is a k-form on M, then its
pullback F ∗ω is the k-form on N defined by(

F ∗ω
)
p

=
(
F∗,p

)∗
ωF (p), p ∈ N.

That is,(
F ∗ω

)
p
(v1, . . . , vk) = ωp

(
F∗,pv1, . . . ,F∗,pvk

)
, vi ∈ TpM.
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Pullback of k-Forms

Proposition (Proposition 18.9)

Let F : N → M be a smooth map. If ω and τ are k-forms on M
and a is a constant, then

F ∗(ω + τ) = F ∗ω + F ∗τ,

F ∗(aω) = aF ∗ω.

Remark

We will see later that if ω is a smooth k-form, then its pullback
F ∗ω is a smooth as well (see slide 29).

22 / 32



The Wedge Product

Definition

If ω is a k-form and τ is a `-form on M, then their wedge product
ω ∧ τ is the (k + `)-form on M defined by(

ω ∧ τ
)
p

= ωp ∧ τp ∈ Λk+`(T ∗pM), p ∈ M.

Proposition (Proposition 18.10)

If ω and τ are smooth forms on M, then ω ∧ τ is smooth on M.

Corollary

The wedge product induces an anti-commutative associative
bilinear map,

∧ : Ωk(M)× Ω`(M) −→ Ωk+`(M).

23 / 32



The Wedge Product

Reminder (Graded Algebras)

1 An algebra A over a field K is called graded when it can be
decomposed as

A =
∞⊕
k=0

Ak ,

where the Ak are subspaces such that the multiplication maps
Ak × A` to Ak+`.

2 We say that A is anticommutative (or graded commutative)
when

ba = (−1)k`ab for all a ∈ Ak and b ∈ A`.
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The Wedge Product

Proposition

Set n = dimM. We Define

Ω∗(M) =
n⊕

k=0

Ωk(M).

Then Ω∗(M) is anticommutative graded algebra under the wedge
product.

Remark

Ω∗(M) is called the exterior algebra of differential forms on M.
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Wedge Product and Pullback

Proposition (Proposition 18.11)

Let F : N → M be a smooth map. If ω and τ are differential forms
on M, then

F ∗
(
ω ∧ τ) =

(
F ∗ω

)
∧
(
F ∗τ

)
.

This result is used to prove:

Lemma (Local expression for pullback)

Suppose that F : N → M is a smooth map. Let (U, x1, . . . , xm) be
a chart for N and (V , y1, . . . , yn) a chart for M such that
U ⊂ F−1(V ). Set F j = y j ◦ F . For any k-form ω =

∑
bJdy

J on
V , we have

F ∗ω =
∑
I ,J

(bJ ◦ F )
∂
(
F j1 , . . .F jk

)
∂
(
x i1 , . . . , x ik

)dx I on U.
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Wedge Product and Pullback

Proof.

Thanks to Proposition 18.9, on F−1(V ) we have

F ∗ω = F ∗
(∑

J

bJy
J
)

=
∑
J

F ∗bJF
∗(dyJ) =

∑
J

(
bJ◦F

)
F ∗(dyJ).

It remains to determine F ∗(dyJ). By Proposition 18.11,

F ∗(dyJ) = F ∗
(
dy j1 ∧ · · · ∧ dy jk

)
= (F ∗dy j1) ∧ · · · ∧ (F ∗dy jk ).

By Proposition 17.10 pullback commutes with the differential:

(F ∗dy j`) = d
(
F ∗y j`

)
= d(y j` ◦ F ) = dF j` .

Thus, on U we have

F ∗(dyJ) = dF j1 ∧ · · · ∧ dF jk =
∑
I

∂
(
F j1 , . . .F jk

)
∂
(
x i1 , . . . , x ik

)dx I .
This gives the result.
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Wedge Product and Pullback

By combining the previous lemma with the characterization of
smoothness of k-forms (Proposition 18.7) we obtain:

Proposition (Proposition 19.7)

Let F : N → M be a smooth map. If ω is a smooth k-form on M,
then F ∗ω is a smooth form on N.

Remark

In Tu’s book the above result is proved in Section 19. The
main step is to prove the previous lemma.

However, Tu’s proof uses Proposition 19.5 whose statement
requires Proposition 19.7 in order to makes sense.

Therefore, Proposition 19.5 cannot be used to prove
Proposition 19.7.

Tu’s arguments are fine if we use Proposition 17.10 instead of
Proposition 19.5 (as it is done in the previous slide).
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Invariant Forms on a Lie Group

Definition

Let G be a Lie group. A k-form ω on G is said to be left-invariant
if

`∗gω = ω ∀g ∈ G ,

where `g : G → G is the left-multiplication by g .

Remark

The left-invariance condition means that(
`g )∗∗,x(ωgx) = ωx ∀g , x ∈ G .

In particular, by substituting g for x and g−1 for g we get

ωg =
(
`g−1

)∗
∗,g
(
ωe

)
∀g ∈ G .

Thus, ω is uniquely determined by ωe .
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Invariant Forms on a Lie Group

Remark

Any k-covector ω ∈ Λk(T ∗e G ) generates a left-invariant k-form ω̃
defined by

ω̃g =
(
`g−1

)∗
∗,g
(
ω
)
, g ∈ G .

Proposition (Proposition 18.14)

Every left-invariant k-form on G is smooth.

Consequence

Denote by Ωk(M)G the space of left-invariant k-forms on G . Then
we have a linear isomorphism,

Ωk(G )G −→ Λk(T ∗e G ), ω −→ ωe .

In particular, if n = dimG , then Ωk(G )G has dimension
(n
k

)
.
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Differential Forms on S1

Proposition (Problem 18.8)

Let F : N → M be a surjective submersion.

The pullback by F gives rise to an injective linear map
F ∗ : Ωk(M)→ Ωk(N).

This allows us to identify Ωk(M) with a subspace of Ωk(N).

Definition

A function f : R→ R is a 2π-periodic if f (t + 2π) = f (t).

A 1-form f (t)dt on R is said to be 2π-periodic if the function
f (t) is 2π-periodic.
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Differential Forms on S1

Proposition (Proposition 18.12)

Let h : R→ S1 be the map defined by

h(t) = (cos t, sin t).

Then:

h is a surjective submersion.

For k = 0, 1, under the pullback map h∗ : Ωk(S1)→ Ωk(R)
the smooth k-forms on S1 corresponds to smooth 2π-periodic
k-forms on R.
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