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Differential Forms

Reminder (see Section 3)

Let V be a vector space (over R). Set n = dim V.
@ A k-covector on V is an alternating k-linear map f : VK — R,
f(vg(l), e Vo‘(k)) = (sgno)f(vi,...,Vn) Vo € Sk.

e We denote by Ay(V) the space of k-covectors on V.

@ We have

A(V)=R,  A(V)=V*  A(V)=1{0}, k>n+l.
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Differential Forms

Reminder (Wedge product; see Section 3)

o If f € A(V) and g € Ay(V), the wedge product f A g is the
(k + £)-covector in Ay (V) defined by

(FAE)(vasee ey Vipe) =
1
Pl Z sgn(0)f (Vo(1) - - Vo(k)) 8 (Vo(kt1)s - - - Vo(kt0)) -

S )
@ The wedge product A : Ag(V) x Ag(V) = Ake(V) is a
bilinear map which is anti-commutative and associative, i.e.,
fAg=(-1)gnf, fAf=0 (kodd),
(FAg)ANh=1FNA(gAh).




Differential Forms

Reminder (Wedge products of 1-covectors; see Section 3)

o If o', ..., ok are 1-covectors, then
(P A Aa¥) (v, ..., ) =det[a'(v)], vieV.
o Let 81, ..., 3% be k-covectors such that
g = Z aj’:aj, for some matrix A = [aj’:] € Rkxk,
J

Then

BLA--ABK = (detA)ar A--- Aok,




Differential Forms

Definition

Z.n is the set of ascending multi-indices | = (i1, ..., ix) such that
1§i1<---<ik§n.

Reminder (Bases of k-covectors; see Section 3)

Let e1,...,e, be a basis of V and let o, ..., a" be the dual basis
of V* = Al(\/) For | = (il, ceey ik) € jk,n set

al =a A A Ak,
o If J=(j1,...,jk) € fk,n and e; = (ejl, o0y ejk), then
al(eJ) = 55.
@ The k-covectors o/, | € Fi n, form a basis of Ax(V).
o In particular dim A, (V) = () for k < n.




Differential Forms

@ Any linear map F : V — W gives rise to a linear map
F*: Ac(W) — Ak(V) defined by

F*g(vl,. . .,Vk) = g(FVl,...,FVk), g < Ak(W), v; e V.

e If F:V— Wand G: W — Z are linear maps, then
(GoF)"=F o G".

Consequence

The construction V' — A (V) is a (contravariant) functor from the
category Vecty to itself.
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Differential Forms

@ There is a another construction V — AX(V) called k-th
exterior power.

@ This is a covariant functor on Vecty.

o We have A, (V) = AK(V*), so the space of k-covectors is
often denoted AK(V*).




Differential Forms

Definition (Differential k-forms)

Let M be a smooth manifold.
o The space Ay(T,M) is denoted A*(T;M).
@ An element of /\k(TIjI\/I) is called a k-covector at p.

e A differential k-form (or a k-covector field) is the assignment
for each p € M of a k-covector w € A*(T;M).

RENEIS

@ Differential k-forms are also called differential forms of degree
k, or simply k-forms.

@ A differential form of degree k = dim M is also called a top
form.




Differential Forms

Definition

If w is a differential k-form and Xi, ..., X are vector fields on M,
we denote by w(Xi, ..., Xk) the function on M defined by

w(X1, ..., Xi)(P) = wp((X1)p, - - (Xk)p)s pE M.

Proposition (Proposition 8.1)

Let w be a differential k-form. For any vector fields X1, ..., Xy and
function h on M, we have

w(hX, ..., hXk) = hw(Xq, ..., X¢).




Differential Forms

Let (U,x%,...,x™) be a chart for M.
o If pe U, then {9/0x o ,8/8x”‘p} is a basis of T,M.
e The dual basis of TxM is {(dx'),, ..., (dx"),}.
@ For | = (i,...,ix) € Finlet dx' be the k-form defined by
/ i in
(dx)p:(dxl)p/\"-/\(dx )p, peU.

By the results of Section 3 (see slide 5) {(dx’)p; | fkm} is
a basis of A*(TxM) for every p € U.
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Local Expression for a k-Form

o Let pe U. As {(dx')p; | € Fin} is a basis of /\k(T;M),
every k-covector wp € /\k(T;I\/I) can be uniquely written as

Wy — Z a/(dx’)p, aj €R.
/G]k’n
@ Set 9; = 0/0x" and for | = (i1, ..., i) € Fk.n Set
0y = (0, -..,0;). By the results of Section 3 (see slide 5):
dx'(9)) = 4.
It follows that if wp = 37,c 4, | a/(dx’)p, then a; = w,(9)).

@ In particular, every k-form w on U can be uniquely written as

w= Z adx! with a; = w(9y).
Ieﬂk,n
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Local Expression for a k-Form

Proposition (Proposition 18.3)

Suppose that (U,x",...,x") is a chart for M, and let f*,... fk
be smooth functions on U. Then
o(ft, ... k)
dff A Ndffk =) 2 ]
AR D ¥ ey L

In fact, in the same way as in Section 3 (see slide 4), we have
(dft A+ A dF¥)(0)) = det [df(9;)] = det [Of/Ox"]
o(ft, ... k)

CO(xt, .., xiK)

12/32



Local Expression for a k-Form

Let (V,y!,...,y") be another chart. Then on U N V we have

le . yjk) /
ZE) - )dx.

Corollary (Corollary 18.4)

Suppose that (U, x,...,x") is a chart for M, and let f,f% ... f"
be smooth functions on U. Then

of
df = ox!

dx’,

dxt A A dx".
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The Bundle Point of View

@ The k-th exterior power of the cotangent bundle is
N(T*M) = | | N<(TzM) = {( W) pEM, w e/\k(T;M)}.
peM

o The canonical map 7 : N<(T*M) — M is given by
m(pw)=p, pEM, weN(T;M).
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The Bundle Point of View

Let (U,¢) = (U,x*,...,x") be a chart for M. Set V = ¢(U).
@ Every k-covector w, € /\k(T;M), can be uniquely written as
Gfy = Z ar(dx"),, with a' = w,(9)).
I

@ We thus get a natural bijection ¢ : AK(T*U) — V x R()
such that, for all p € M and w € A¥(T}M), we have

3(p,w) = ((x'(p)): (w(81))) -

In the same way as with the constructions of the tangent bundle
TM and the cotangent bundle T*M, the maps ¢ allow us to define
a topology and a smooth structure on AX(T*M).
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The Bundle Point of View

Let (U, ¢) be a chart for M and set V = ¢(U). We endow
A¥(T*U) with the topology such that

W c AK(T*U) is open <= &(W) is open in V x R(¥).

Let {(Uy, ¢0)} be the maximal atlas of M.

@ Define

B = U {W; W is an open in /\k(T*Ua)}.

Then 2 is the basis for a unique topology on N(T*M).

o The collection {(T*Uy, ¢o)} is a C* atlas on A*(T*M), and
hence N(T*M) is a smooth manifold.

o AK(T*M) 5 M is a smooth vector bundle over M.
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Smooth k-Forms

A k-form on M is a section of the exterior power AK(T*M).

o We say that k-form is C*° when it is C* as a section of
NK(T*M).
o We denote by Q(M) the space of smooth k-forms on M.

Remarks
© In other words, QX(M) is the space of smooth sections of
T*M. In particular, this is a module over the ring C*°(M).
@ As \°(T;M) =R, a 0-form is just a map from M to R.
Thus, a smooth 0-form is just a smooth function on M, i.e.,

QO(M) = C=(M).




Smooth k-Forms

Let (U,¢) = (U,x*,...,x") be a chart for M. Set V = ¢(U).
@ It can be shown that each k-form dx/, | € Fk,n is smooth.
e Thus, {dx'; I € .7, } is a smooth frame of A(T*M) over U.

Reminder (Proposition 12.2)

Let {s1,...,s} be a C* frame of a vector bundle E over U. A
section s = >_ c's; of E over U is smooth if and only if c*,... c
are smooth functions on U.

r

We immediately obtain:

Lemma (Lemma 18.6)

Let (U,x%,...,x") be a chart for M. A k-form w = _ a;dx’ on U
is smooth if and only if the coefficients a; are C*° functions on U.
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Smooth k-Forms

In the same way as with vector fields and 1-forms by using the
previous lemma we obtain:

Proposition (Proposition 18.7; 1st part)
Let w be a k-form on M. Then TFAE:

@ w is a smooth k-form.

@ M has an atlas such that, for every chart (U,x*,...,x") of
this atlas, we may write w = >_ ajdx’ on U with a' € C>(U).
© For every chart (U,x',...,x") of M, we may write

w=>"ajdx! on U with a' € C=(U).
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Smooth k-Forms

Proposition (Proposition 18.7; 2nd part)
Let w be a k-form on M. Then TFAE:

@ w is a smooth k-form.

@ For any smooth vector fields X1, ..., X, on M, the function
w(X1,...,Xk) is smooth on M.

Proposition (Proposition 18.8)

Let T be a smooth k-form defined on a neighborhood of p. Then
there exists a smooth k-form 7 on M which agrees with T near p.




Pullback of k-Forms

Reminder (see slide 6)

Any linear F : V — W between vector spaces gives rise to a linear
map F* : Ax(W) — Ax(V) defined by

F*g(vl,...7vk) = g(FVl,...,FVk), g € Ak(W), v, e V.

A\

Definition (Pullback of a k-form)

Let F: N — M be a smooth map. If w is a k-form on M, then its
pullback F*w is the k-form on N defined by

(F*w)p = (Fu.p) WE(p)> peN.

That is,
(F*w)p(vl, Ce, V) = wp(F*J,vl, e F*,pvk), vi € TpM.




Pullback of k-Forms

Proposition (Proposition 18.9)

Let F: N — M be a smooth map. If w and T are k-forms on M
and a is a constant, then

Fflw+7)=F'w+ F*r,
F*(aw) = aF*w.

We will see later that if w is a smooth k-form, then its pullback
F*w is a smooth as well (see slide 29).
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The Wedge Product

Definition

If wis a k-form and 7 is a /-form on M, then their wedge product
w AT is the (k + ¢)-form on M defined by

(w A r)p = wp A Tp € NTHTIM), pe M.

Proposition (Proposition 18.10)

If w and T are smooth forms on M, then w A T is smooth on M.

The wedge product induces an anti-commutative associative
bilinear map,

AL QK(M) x QY (M) — QM.




The Wedge Product

Reminder (Graded Algebras)
© An algebra A over a field K is called graded when it can be

decomposed as oo
A= (P A,
k=0

where the AX are subspaces such that the multiplication maps
Ak x Al to AKtHE,

@ We say that A is anticommutative (or graded commutative)
when

ba= (—1)%ab  forall a € AK and b € A"




The Wedge Product

Proposition
Set n = dim M. We Define

Then Q*(M) is anticommutative graded algebra under the wedge
product.

Q*(M) is called the exterior algebra of differential forms on M.




Wedge Product and Pullback

Proposition (Proposition 18.11)

Let F: N — M be a smooth map. If w and T are differential forms

on M, then = (w AT) = (F*w) A (F*T).

This result is used to prove:

Lemma (Local expression for pullback)

Suppose that F : N — M is a smooth map. Let (U,x*, ... ,x™) be
a chart for N and (V,y',...,y") a chart for M such that

UcC FY(V). Set F/ = yJ o F. For any k-form w = 5" bydy”’ on
V., we have

Frw = (bjoF)

1,J

O(Fo,. .. Fix)

O
8(x’1,...,x’k)dx on U.




Wedge Product and Pullback

o Thanks to Proposition 18.9, on F~(V/) we have

Frw=F*(Y_biy’) => F*b,F*(dy’) = (byoF)F*(dy”).
J J J
o It remains to determine F*(dy’). By Proposition 18.11,

F*(dy”) = F*(dy™ A Adyl) = (F*dy) A~ -+ A (F*dy).
@ By Proposition 17.10 pullback commutes with the differential:
(F*dyjl) _ d(F*ij) _ d(yj" oF) = dFie.

@ Thus, on U we have
F.ll ) ij) ;

)X.

This gives the result. O

F*(dy?) = dF* A+ A dFic = Z




Wedge Product and Pullback

By combining the previous lemma with the characterization of
smoothness of k-forms (Proposition 18.7) we obtain:

Proposition (Proposition 19.7)

Let F: N — M be a smooth map. If w is a smooth k-form on M,
then F*w is a smooth form on N.

@ In Tu's book the above result is proved in Section 19. The
main step is to prove the previous lemma.

@ However, Tu's proof uses Proposition 19.5 whose statement
requires Proposition 19.7 in order to makes sense.

@ Therefore, Proposition 19.5 cannot be used to prove
Proposition 19.7.

e Tu's arguments are fine if we use Proposition 17.10 instead of
Proposition 19.5 (as it is done in the previous slide).
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Invariant Forms on a Lie Group

Definition
Let G be a Lie group. A k-form w on G is said to be left-invariant
if

lpw = w Vg € G,

where £, : G — G is the left-multiplication by g.

Remark
The left-invariance condition means that

(gg)I,x(ng) = Wx Vg, x € G.

In particular, by substituting g for x and g~! for g we get
Wg = (Kg_1):7g (we) Vg € G.

Thus, w is uniquely determined by we.
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Invariant Forms on a Lie Group

Any k-covector w € AX(T?G) generates a left-invariant k-form &
defined by

G5 = (6),(@).  £€G.

Proposition (Proposition 18.14)

Every left-invariant k-form on G is smooth.

Consequence

Denote by QX(M)C the space of left-invariant k-forms on G. Then
we have a linear isomorphism,

QK(G)e — AN(TFG), w— we.

In particular, if n = dim G, then Q¥(G)® has dimension (7).
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Differential Forms on S!

Proposition (Problem 18.8)

Let F: N — M be a surjective submersion.
@ The pullback by F gives rise to an injective linear map
F*: QK(M) — QK(N).
o This allows us to identify QX(M) with a subspace of Q¥(N).

Definition

@ A function f : R — R is a 2w-periodic if f(t + 27) = f(t).

e A 1-form f(t)dt on R is said to be 27-periodic if the function
f(t) is 2m-periodic.
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Differential Forms on S!

Proposition (Proposition 18.12)
Let h: R — S! be the map defined by
h(t) = (cos t,sin t).
Then:
@ h is a surjective submersion.

o For k = 0,1, under the pullback map h* : QX(S*) — QK(R)
the smooth k-forms on S' corresponds to smooth 27-periodic
k-forms on R.
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