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Tangent Space at the Identity of a Lie Group

Reminder (see Section 15)

Let G be a Lie group with unit e.

Given any g ∈ G , the left-multiplication `g : G → G , x → gx
is a diffeomorphism such that `g (e) = g .

Thus, the differential (`g )∗,e : TeG → TgG is a linear
isomorphism.

Consequence

Describing TeG allows us to describe TgG for every g ∈ G .
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Tangent Space at the Identity of a Lie Group

Example (Tangent space of GL(n,R) at I )

GL(n,R) is an open subset of the vector space Rn×n. Thus,

TI GL(n,R) = TIRn×n = Rn×n.

Consequence

For any Lie subgroup G ⊂ GL(n,R) the tangent space TIG is a
linear subspace of Rn×n.
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Tangent Space at the Identity of a Lie Group

Reminder (see Section 15)

If X ∈ Rn×n, then

det
(
eX
)

= etr[X ].

The differential det∗,I : Rn×n → R is given by

det∗,I (X ) = tr(X ), X ∈ Rn×n.
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Tangent Space at the Identity of a Lie Group

Proposition (Tangent Space Criterion)

Let G be an embedded Lie subgroup of GL(n,R) and V a
subspace of Rn×n such that

dimV = dimG and eX ∈ G ∀X ∈ V .

Then TIG = V .

Proof.

Let X ∈ V . Then c(t) = etX , t ∈ R, is a smooth curve in
GL(n,R) with values in G such that c(0) = I and c ′(0) = X .

As G is a regular submanifold of GL(n,R), it follows that c(t)
is a smooth curve in G , and hence X = c ′(0) ∈ TIG .

Thus, V is a subspace of TIG . As dimV = dimG = dimTIG
it follows that TIG = V .

The result is proved.
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Tangent Space at the Identity of a Lie Group

Example (Tangent space of SL(n,R) at I ; Example 16.2)

Let X ∈ Rn×n. As det(eX ) = etr(X ), we have

eX ∈ SL(n,R)⇐⇒ det
(
eX ) = etr(X ) = 1⇐⇒ tr(X ) = 0.

Set V = {X ∈ Rn×n; tr(X ) = 0}. Then

eX ∈ SL(n,R) ∀X ∈ V and dimV = n2−1 = dim SL(n,R).

Thus,

TI SL(n,R) = V =
{
X ∈ Rn×n; tr(X ) = 0

}
.
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Tangent Space at the Identity of a Lie Group

Example (Tangent space of O(n) and SO(n) at I ; Example 16.4)

Let Kn be the space of skew-symmetric n × n matrices, i.e.,

Kn =
{
X ∈ Rn×n; XT = −X

}
.

If X ∈ Kn, then (eX )T = eX
T

= e−X = (eX )−1, and hence(
eX )T eX =

(
eX
)−1

eX = I .

Thus, eX ∈ O(n) for all X ∈ Kn.

As dimKn = 1
2n(n − 1) = dim O(n), we deduce that

TI O(n) = Kn.

As SO(n) is an open set in O(n), we have

TI SO(n) = TI O(n) = Kn.
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Tangent Space at the Identity of a Lie Group

Example (Tangent space of U(n) at I ; Problem 16.2)

Let Ln be the space of skew-Hermitian n × n matrices, i.e.,

Ln =
{
X ∈ Cn×n; X ∗ = −X

}
.

If X ∈ Ln, then (eX )∗ = eX
∗

= e−X = (eX )−1, and hence(
eX )∗eX =

(
eX
)−1

eX = I .

Thus, eX ∈ U(n) for all X ∈ Ln.

As dim Ln = n2 = dim U(n) (see Problem 16.1) we get

TI U(n) = Ln.
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Tangent Space at the Identity of a Lie Group

Example (Tangent space of SU(n) at I )

Define
L0n =

{
X ∈ Ln; tr(X ) = 0

}
.

If X ∈ L0n, then eX ∈ U(n), and

det
(
eX
)

= etr(X ) = e0 = 1.

Thus, eX ∈ SU(n) for all X ∈ L0n.

As dim L0n = n2 − 2 = dim SU(n), we deduce that

TI SU(n) = L0n =
{
X ∈ Cn×n;X ∗ = −X , tr(X ) = 0

}
.
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Left-Invariant Vector Fields on a Lie Group

Definition

A vector field X on a Lie group G is called left-invariant if

(`g )∗X = X ∀g ∈ G .

We denote by L(G ) the space of left-invariant vector fields on G .

Remark

Let X be a vector field on G . Given any g ∈ G , we have[
(`g )∗X

]
h

= (`g )∗,g−1h

(
Xg−1h

)
, h ∈ G .

Thus, X is left-invariant if and only if

(`g )∗,g−1h(Xg−1h) = Xh ∀g , h ∈ G .

Equivalently,

(`g )∗,h(Xh) = Xgh ∀g , h ∈ G .
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Left-Invariant Vector Fields on a Lie Group

Remark

Let X be a left-invariant vector field. Then

(`g )∗,h(Xh) = Xgh ∀g , h ∈ G .

In particular, for h = e we get

Xg =
(
`g
)
∗,e(Xe) ∀g ∈ G .

Thus, X is uniquely determined by Xe .
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Left-Invariant Vector Fields on a Lie Group

Definition

For any tangent vector A ∈ TeG , we let Ã be the vector field on G
defined by

Ãg =
(
`g
)
∗,e(A) ∀g ∈ G .

Proposition

Let A ∈ TeG. Then Ã is a left-invariant vector field on G.

Proof.

Let g , h ∈ G . Then by the chain rule we have(
`g
)
∗,h(Ãh) =

(
`g
)
∗,h ◦

(
`h
)
∗,e(A) =

(
`gh
)
∗,e(A) = Ãgh.

It follows that Ã is left-invariant (cf. slide 10).
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Left-Invariant Vector Fields on a Lie Group

Remarks

We call Ã the left-invariant vector field generated by A.

As `e = 1G , and hence (`e)∗,e = 1TeG , we have

Ãe =
(
`e
)
∗,e(A) = 1TeG (A) = A.

Conversely, if A = Xe , where X is a left-invariant vector field,
then

Ãg =
(
`g
)
∗,e(Xe) = Xg .

That is, Ã = X .

Therefore, we obtain:

Proposition

The map X → Xe is a linear isomorphism from L(G ) onto TeG
with inverse A→ Ã.

13 / 38



Left-Invariant Vector Fields on a Lie Group

Reminder (see Problem 8.2)

Given any p ∈ Rn, we have TpRn = Rn under the
identification, ∑

ai
∂

∂x i

∣∣∣∣
p

←→ (a1, . . . , an).

If L : Rn → Rm is a linear map, then under the identifications
TpRn = Rn and TF (p)Rm = Rm, the differential L∗,p is a
linear map from Rn to Rm.

In fact (see Problem 8.2), we have

L∗,p = L ∀p ∈ Rn.
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Left-Invariant Vector Fields on a Lie Group

Example (Left-invariant vector fields on GL(n,R))

If g ∈ GL(n,R), then Tg GL(n,R) = TgRn×n = Rn×n under
the identification, ∑

i ,j

aij
∂

∂xij

∣∣∣∣
g

←→ [aij ].

If g ∈ GL(n,R), then the left-multiplication
`g : Rn×n → Rn×n, A→ gA is a linear map.

Under the identifications TI GL(n,R) = Tg GL(n,R) = Rn×n

we then have
(`g )∗,e = `g ∀g ∈ G .

Thus, if A = [aij ] ∈ Rn×n = TI GL(n,R), then

Ãg =
(
`g
)
∗,e

(∑
i ,j

aij
∂

∂xij

∣∣∣∣
e

)
=
∑
i ,j

(gA)ij
∂

∂xij

∣∣∣∣
g

.
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Left-Invariant Vector Fields on a Lie Group

Example (continued)

If we use the coordinates g = (xij), then (gA)ij =
∑

k xikakj ,
we get

Ãg =
∑
i ,j

(∑
k

xikakj

)
∂

∂xij

∣∣∣∣
g

.

In other words, the left-invariant vector field on GL(n,R)
generated by A is just

Ã =
∑
i ,j ,k

xikakj
∂

∂xij
.

All the left-invariant vector fields on GL(n,R) are of this form.
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Left-Invariant Vector Fields on a Lie Group

Reminder (Proposition 8.17 and Proposition 14.3)

A vector field X on a manifold M is smooth if and only if
Xf ∈ C∞(M) for all f ∈ C∞(M).

Let Xp ∈ TpM and c : (−ε, ε)→ M a smooth curve such that
c(0) = p and c ′(0) = X . Then

Xpf =
d

dt

∣∣∣∣
t=0

f ◦ c(t) ∀f ∈ C∞p (M).

If (U, x1, . . . , xn) is a chart for M and f ∈ C∞(M), then the
partial derivatives ∂f /∂x1, . . . , ∂f /∂xn are smooth functions
on U (see §§6.6).
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Left-Invariant Vector Fields on a Lie Group

Proposition (Proposition 16.8)

Every left-invariant vector field X on G is smooth.

The following result is proved in Lee’s book:

Proposition

Every left-invariant vector field on G is complete, i.e., its flow is
defined on all R×M.
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The Lie algebra of a Lie group

Reminder (Lie algebras; see Section 14)

A Lie algebra over a field K is a vector space g over K together
with an alternating bilinear map [·, ·] : g× g→ K satisfying
Jacobi’s identity,[
X , [Y ,Z ]

]
+
[
Y , [Z ,X ]

]
+
[
Z , [X ,Y ]

]
= 0 for all X ,Y ,Z ∈ g.

Definition

A Lie subalgebra of a Lie algebra (g, [·, ·]) is a vector subspace h
which closed under the Lie bracket [·, ·], i.e.,

[X ,Y ] ∈ h ∀X ,Y ∈ h.

Remark

Any Lie subalgebra is a Lie algebra with respect to the original
bracket [·, ·].

19 / 38



The Lie algebra of a Lie group

Definition

Let h and g be Lie algebras.

A Lie algebra homomorphism f : h→ g is a linear map such
that

f
(
[X ,Y ]

)
=
[
f (X ), f (Y )

]
∀X ,Y ∈ h.

A Lie algebra isomorphism f : h→ g is a Lie algebra
homomorphism which is a bijection.

Remark

If f : h→ g is a Lie algebra isomorphism, then f −1 : g→ h is
automatically a Lie algebra homomorphism.
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The Lie Algebra of a Lie Group

Reminder (see Section 14)

Let M be a smooth manifold.

The space X (M) of smooth vector fields is a Lie algebra
under the Lie bracket of vector fields.

If F : M → N is a diffeomorphism and X and Y are smooth
vector fields on M, then

F∗([X ,Y ]) = [F∗X ,F∗Y ].
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The Lie Algebra of a Lie Group

Proposition (see Proposition 16.9)

If X and Y are left-invariant vector fields, then their Lie bracket
[X ,Y ] is left-invariant as well.

Proof.

Let g ∈ G . As `g : G → G is a diffeomorphism, we have

(`g )∗
(
[X ,Y ]) =

[
(`g )∗X , (`g )∗Y

]
= [X ,Y ].

Thus, the vector field [X ,Y ] is left-invariant.

Corollary

The space L(G ) of left-invariant vector fields on G is a Lie
subalgebra of X (G ). In particular, this is a Lie algebra under the
Lie bracket of vector fields.
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The Lie Algebra of a Lie Group

Remarks

We know that A→ Ã is a vector space isomorphism from
TeG onto L(G ).

We can use this isomorphism to pullback the Lie algebra
structure of L(G ) to TeG .

Definition

If A,B ∈ TeG , then their Lie bracket [A,B] ∈ TeG is defined by

[A,B] =
[
Ã, B̃

]
e
.
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The Lie Algebra of a Lie Group

Proposition (see Proposition 16.10)

(TeG , [·, ·]) is a Lie algebra which is isomorphic to L(G ) as a Lie
algebra. In particular,

[̃A,B] =
[
Ã, B̃

]
∀A,B ∈ TeG .

Definition

(TeG , [·, ·]) is called the Lie algebra of G and is often denoted g.

Remarks

For instance, the Lie algebras of GL(n,R), SL(n,R), SO(n),
U(n), SU(n) are denoted gl(n,R), sl(n,R), so(n), u(n),
su(n), etc..

Some authors defines the Lie algebra of G to be the Lie
algebra L(G ).

24 / 38



The Lie Bracket of gl(n,R)

Proposition (Proposition 16.4; see Tu’s book)

Under the identification gl(n,R) = TI GL(n,R) ' Rn×n the Lie
bracket of gl(n,R) is given by

[A,B] = AB − BA, A,B ∈ Rn×n.

Reminder (Problem 14.2)

If X =
∑

ai (x)∂/∂x i and X =
∑

bi (x)∂/∂x i are smooth vector
fields on Rn, then

[X ,Y ] =
∑
i

c i (x)
∂

∂x i
, where c i =

∑
j

(
aj
∂bi

∂x j
− bj

∂ai

∂x j

)
.
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Pushforward of Left-Invariant Vector Fields

Reminder (see Section 14)

Let F : N → M be a smooth map. A smooth vector field X
on N and a smooth vector field X̃ on M are F -related when

F∗,p(Xp) = X̃F (p) ∀p ∈ N.

If F is a diffeomorphism, then F∗X is unique vector field on M
which is F -related to X .

In general we cannot define the pushforward F∗X if F is not a
diffeomorphism.
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Pushforward of Left-Invariant Vector Fields

Definition

Let F : H → G be a Lie group homomorphism and X a
left-invariant vector field on H. The pushforward F∗X is the
left-invariant vector field on G generated by F∗,e(Xe). That is,

F∗X = F∗,e(Xe)∼

Proposition (Proposition 16.12)

Let F : H → G be a Lie group homomorphism and X a
left-invariant vector field on H. Then F∗X is F -related to X .
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Pushforward of Left-Invariant Vector Fields

Proof of Proposition 16.12.

As F∗X is the left-invariant vector field generated by F∗,e(Xe),

(F∗X )g = (`g )∗,e
(
F∗,e(Xe)

)
∀g ∈ G .

Here F (e) = e, so the chain rule gives

(F∗X )g = (`g )∗,F (e) ◦ F∗,e(Xe) = (`g ◦ F )∗,e(Xe).

As F is a Lie group homomorphism, `F (h) ◦ F = F ◦ `h. Thus,
for g = F (h) we get

(F∗X )F (h) =
(
F ◦ `h

)
∗,e(Xe) = F∗,`h(e) ◦ (`h)∗,e(Xe).

As X is left-invariant, (`h)∗,e(Xe) = Xh. Thus,

(F∗X )F (h) = F∗,h(Xh) ∀h ∈ H.

This shows that F∗X is F -related to X .
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Pushforward of Left-Invariant Vector Fields

Remark

F∗X is the unique left-invariant vector field on G which is
F -related to X .

Proof.

Let X̃ be a left-invariant vector field on G which is F -related to X .

As X̃ and F∗X are left-invariant, their uniquely determined by
X̃e and F∗(X )e = F∗,e(Xe). Thus, to show that X̃ = F∗X we
only need to show that X̃e = F∗,e(Xe).

As X̃ is F -related to X , we have X̃e = F∗,e(Xe), and hence
X̃ = F∗X .

This prove the result.
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The Differential as a Lie Algebra Homomorphism

Reminder (Proposition 14.17)

Suppose that F : N → M is a smooth map. Let X and Y be
smooth vector fields on N which are F -related to smooth vector
fields X̃ and Ỹ on M. Then [X ,Y ] is F -related to [X̃ , Ỹ ].
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The Differential as a Lie Algebra Homomorphism

Proposition

Let F : H → G be a Lie group homomorphism, and let X and Y
be left-invariant vector fields on H. Then

F∗
(
[X ,Y ]

)
=
[
F∗X ,F∗Y ].

Proof.

As F∗X and F∗Y are F -related to X and Y , their Lie bracket
[F∗X ,F∗Y ] is F -related to [X ,Y ].

As F∗X and F∗Y are left-invariant, [F∗X ,F∗Y ] is
left-invariant.

By the previous slide F∗[X ,Y ] is the unique left-invariant
vector field on G which is F -related to [X ,Y ].

It follows that [F∗X ,F∗Y ] = F∗([X ,Y ]).

The proof is complete.
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The Differential as a Lie Algebra Homomorphism

Corollary

Let F : H → G be a Lie group homomorphism. Then the
pushforward of left-invariant vector field gives rise to a Lie algebra
homomorphism,

F∗ : L(H) −→ L(G ), X −→ F∗X .

Corollary (Proposition 16.14)

If F : H → G is a Lie group homomorphism, then its differential at
the identity is a Lie algebra homomorphism,

F∗,e : TeH −→ TeG , F∗,e
(
[A,B]

)
=
[
F∗,eA,F∗,eB

]
.
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The Differential as a Lie Algebra Homomorphism

Proof of Proposition 16.14.

We have a commutative diagram,

L(H) L(G )

TeH TeG .

o

F∗

o
F∗,e

The upper horizontal arrow is a Lie algebra homomorphism.

The vertical arrows are Lie algebra isomorphisms.

Therefore, the lower horizontal arrow is a Lie algebra
homomorphism.

The proof is complete.
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The Differential as a Lie Algebra Homomorphism

Reminder (see Section 15)

A subgroup H of a Lie group G is called a Lie subgroup if

H is an immersed submanifold in G .

The multiplication and inversion maps of H are smooth.

Remark

Let H be a Lie subgroup of a Lie group G .

As H is an immersed submanifold, the inclusion ι : H → G is
an immersion.

Thus, the differential ι∗,e : TeH → TeG is injective.

This allows us to identify TeH with a subspace of TeG .
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The Differential as a Lie Algebra Homomorphism

Proposition

Let H be a Lie subgroup of a Lie group G. Then the Lie bracket of
its Lie algebra TeH agrees with the Lie bracket of TeG on its
domain.

Proof.

The inclusion ι : H → G is a Lie group homomorphism, since
it is a smooth map and a group homomorphism.

Thus, the differential ι∗,e : TeH → TeG is a Lie group
homomorphism.

This implies that the Lie bracket of its Lie algebra TeH agrees
with the Lie bracket of TeG .

The result is proved.
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The Differential as a Lie Algebra Homomorphism

Corollary

Let H be a Lie subgroup of a Lie group G. Let g = TeG be the Lie
algebra of G. Then the Lie algebra h = TeH of H is a Lie
subalgebra of g.

Remark (see Tu’s book)

Conversely, it can be shown that every subalgebra h of g is the
Lie algebra of a unique connected Lie subgroup of G .

This gives a one-to-one correspondence between Lie
subalgebras of g and (connected) Lie subgroups H of G .

In particular, under this correspondence a Lie subalgebra may
correspond to a non-embedded Lie subgroup.
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The Differential as a Lie Algebra Homomorphism

Example

The Lie algebra of GL(n,R) is gl(n,R) = Rn×n equipped with
the matrix Lie bracket,

[A,B] = AB − BA, A,B ∈ Rn×n.

The following are Lie subalgebras of gl(n,R):

sl(n,R) =
{
A ∈ Rn×n; tr(A) = 0

}
,

o(n) = so(n) =
{
A ∈ Rn×n; AT = −A

}
.

There are the respective Lie algebras of SL(n,R), O(n), and
SO(n).
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The Differential as a Lie Algebra Homomorphism

Example

The Lie algebra of GL(n,C) is gl(n,C) = Cn×n equipped with
the matrix Lie bracket.

The following are Lie subalgebras of gl(n,C):

sl(n,C) =
{
A ∈ Cn×n; tr(A) = 0

}
,

u(n) =
{
A ∈ Cn×n; A∗ = −A

}
,

su(n) =
{
A ∈ Cn×n; A∗ = −A, tr(A) = 0

}
.

There are the respective Lie algebras of SL(n,C), U(n), and
SU(n).

38 / 38


