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Lie Groups and Lie Subgroups. Examples

Lie groups were defined in Section 6.

Definition (Lie Groups)

A Lie group is a group G equipped equipped with a differentiable
structure such that:

(i) The multiplication map µ : G × G → G , (x , y)→ xy is a C∞

map.

(ii) The inverse map ι : G → G , x → x−1 is a C∞ map.
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Lie Groups and Lie Subgroups. Examples

In Section 6 the following examples of Lie groups were mentioned.

Examples

1 The Euclidean spaces Rn and Cn are Lie groups under
addition.

2 The set of non-zero complex numbers C× := C \ 0 is a Lie
group under multiplication.

3 The unit circle S1 ⊂ C× is a Lie group under multiplication.

4 If G1 and G2 are Lie groups, then their Cartesian product
G1 × G2 is again a Lie group.

Example (Example 6.21)

The general linear group GL(n,R) is a is a Lie group,

GL(n,R) =
{
A ∈ Rn×n; detA 6= 0

}
.
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Definition (Left and right multiplication)

Let G be a Lie group

Given any a ∈ G , we denote by `a the left multiplication by a,
i.e., the map,

`a : G −→ G , `a(x) = ax .

We also denote by ra right multiplication by a, i.e.,

ra : G −→ G , ra(x) = xa.

Proposition (see Exercise 15.2)

For every a ∈ G, the maps `a : G → G and ra : G → G are both
diffeomorphisms of G with respective inverses `a−1 and ra−1 .
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Lie Groups and Lie Subgroups. Examples

Definition (Lie group homomorphisms)

Let G and H be Lie groups.

A map F : H → G is a Lie group homomorphism if F is both
a smooth map and a group homomorphism.

It is called a Lie group isomorphism if it is a Lie group
homomorphism and a diffeomorphism.
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Lie Groups and Lie Subgroups. Examples

Remarks

1 A map F : H → G is a group homomorphism if and only if

F (hx) = F (h)F (x) ∀h, x ∈ H.

As F (hx) = F ◦ `h(x) and F (h)F (x) = `F (h) ◦ F (x), the
above condition is equivalent to

F ◦ `h = `F (h) ◦ F ∀h ∈ H.

2 Denote by eH and eG the respective units of H and G . Taking
h = x = eH above gives

F (eH) = F (e2H) = F (eH)2 which implies that F (eH) = eG .

Thus, a group homomorphism always maps the identity to the
identity.
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Lie Groups and Lie Subgroups. Examples

Proposition (Theorem 7.5 of Lee’s book)

Any Lie group homomorphism F : H → G has constant rank.

Proof.

Let h ∈ H. Differentiating at x = eH the equality
F ◦ `h = `F (h) ◦ F gives

F∗,`h(eH) ◦ (`h)∗,eH = (`F (h))∗,F (eH) ◦ F∗,eH .

That is,
F∗,h ◦ (`h)∗,eH = (`F (h))∗,eG ◦ F∗,eH

As `h and `F (h) are diffeomorphisms, their differentials (`h)∗,eH
and (`F (h))∗,eG are isomorphisms.

It then follows that rkF∗,h = rkF∗,eH for all h ∈ H.

This proves the result.
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Lie Groups and Lie Subgroups. Examples

Definition (Lie subgroups)

A Lie subgroup of a group G is a subgroup H such that

1 H is an immersed submanifold of H.

2 The multiplication and inverse map of H are smooth maps.

Examples

1 Rn is a Lie subgroup of Cn under addition.

2 The circle S1 is a Lie subgroup of C× under multiplication.

3 Any open subgroup of a Lie group is a Lie subgroup.
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Lie Groups and Lie Subgroups. Examples

Reminder (see Chapter 11)

Let M and N be manifolds and S a regular submanifold in M.

1 If F : M → N is a smooth map, then the restriction
F|S : S → N is a smooth map (since the inclusion i : S → M
is a smooth map).

2 If F : N → M is a smooth map taking values in S , then it
induces a smooth F : N → S .

Consequence

Let F : N → M be a smooth map. Assume that S is a regular
submanifold of N and R is a regular submanifold of M such that
F (S) ⊂ R. Then F induces a smooth map F : S → R.
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Lie Groups and Lie Subgroups. Examples

Proposition (Proposition 15.11)

If H is a subgroup of a Lie group G and a regular submanifold, then
this is an embedded Lie subgroup. In particular, this is a Lie group.

Proof.

We only need to check that the multiplication and inverse maps of
H are smooth maps.

The multiplication H × H → H is induced from the
multiplication G × G → G .

As H and H × H are regular submanifolds, it follows from the
corollary on the previous slide that the multiplication of H is a
smooth map.

Likewise, the inverse map H → H is smooth, since it is
induced from the inverse map G → G .

The proof is complete.
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Lie Groups and Lie Subgroups. Examples

Reminder (Constant Rank Level Set Theorem; see Theorem 11.2)

Let f : N → M be smooth map of constant rank k. For every
c ∈ f (N) the level set f −1(c) is a regular submanifold of
codimension k in N.
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Lie Groups and Lie Subgroups. Examples

Proposition

Let F : G → H be a Lie group homomorphism. Then F−1(eH) is
an embedded Lie subgroup of G.

Proof.

F−1(eH) is a subgroup of G .

By the proposition on slide 7 the homomorphism F has
constant rank, and so by the constant rank theorem the level
set F−1(eH) is a regular submanifold of G .

It then follows from Proposition 15.11 that F−1(eH) is an
embedded Lie subgroup of G .

The proof is complete.
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Lie Groups and Lie Subgroups. Examples

Example (Special linear group; see also Example 9.13)

The special linear group is

SL(n,R) = {A ∈ GL(n,R); detA = 1} .

As det : GL(n,R)→ R× is a smooth map and a group
homomorphism, this is a Lie group homomorphism.

It then follows that SL(n,R) = det−1(1) is an embedded Lie
subgroup of GL(n,R), and hence is a Lie group.

Here the determinant map has constant rank 1, and so
SL(n,R) has codimension 1 in GL(n,R).
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Lie Groups and Lie Subgroups. Examples

Example (Orthogonal group; Example 15.6)

The orthogonal group is

O(n) =
{
A ∈ GL(n,R); ATA = I

}
.

This is a subgroup of GL(n,R).

Let Sn be the linear subspace of Rn×n of symmetric matrices
XT = X . This is vector space, and so this is a manifold.

Define f : GL(n,R)→ Sn by f (A) = ATA. This is a smooth
map such that O(n) = f −1(I ).

It can be shown that f is a submersion (see Tu’s book). Thus,
O(n) = f −1(I ) is a regular submanifold.

It then follows that O(n) is an embedded Lie subgroup of
GL(n,R), and hence is a Lie group.
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Lie Groups and Lie Subgroups. Examples

Remark

Set k = dimSn. As f is a submersion, it has constant rank k ,
and hence O(n) has codimension k in GL(n,R).

As k = dimSn = 1
2n(n + 1) and dim GL(n,R) = n2, we get

dim O(n) = n2 − 1

2
n(n + 1) =

1

2
n(n − 1)
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Lie Groups and Lie Subgroups. Examples

Example (Special Orthogonal Group; see also Problem 15.11)

The special orthogonal group is

SO(n) =
{
A ∈ O(n); detA = 1

}
= O(n) ∩ SL(n,R).

If A ∈ O(n), then ATA = I , and so

1 = det(I ) = det(ATA) = det(AT ) det(A) = det(A)2.

Thus, detA = ±1.

It follows that SO(n) = (det|O(n))
−1(1) = (det|O(n))

−1(R×+),
and so SO(n) is an open set in O(n).

Here SO(n) is an open subgroup of O(n), and hence this is a
Lie subgroup of O(n) and GL(n,R).
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Lie Groups and Lie Subgroups. Examples

Remark (Complex Linear Groups)

The complex versions of GL(n,R) and SL(n,R) are Lie groups as
well. There are the following groups:

The complex general linear group,

GL(n,C) =
{
A ∈ Cn×n; detA 6= 0

}
.

The complex special linear group,

SL(n,C) =
{
A ∈ GL(n,C); detA = 1

}
.

Here SL(n,C) is an embedded Lie subgroup of GL(n,C) of
codimension 2.
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Lie Groups and Lie Subgroups. Examples

Remark (Unitary Groups; see also Problems 15.12 & 15.13)

The complex analogues of O(n) and SO(n) are the following
groups:

The unitary group,

U(n) =
{
A ∈ GL(n,C); A∗A = I

}
.

The special unitary group,

SU(n) =
{
A ∈ U(n); detA = 1

}
= U(n) ∩ SL(n,C).

There are both (embedded) Lie subgroups of GL(n,C).

Here U(n) has codimension n2 in GL(n,C) and SU(n) has
codimension 1 in U(n).
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The Matrix Exponential

Definition (Matrix Exponential)

If A is an n × n matrix with entries in K = R or C, then its
exponential, denoted eA or exp(A), is

∞∑
k=0

1

k!
Ak = I + A +

1

2!
A2 + · · · ,

where the series converges in Kn×n.

Remark

If A has real entries, then exp(A) has real entries as well.
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The Matrix Exponential

Example (Exponentials of diagonal matrices)

Let D be a diagonal matrix,

D =

λ1 0
. . .

0 λn

 .
Then its exponential is diagonal,

exp(D) =

e
λ1 0

. . .

0 eλn

 .
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The Matrix Exponential

Proposition (Main algebraic properties)

The following holds:

exp(0) = I ,
(
eA
)−1

= e−A,

eA+B = eAeB = eBeA if AB = BA,

exp
(
P−1AP

)
= P−1 exp(A)P ∀P ∈ GL(n,C).
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The Matrix Exponential

Example (Exponentials of diagonalizable matrices)

Let A be a diagonalizable matrix,

A = P−1DP, D =

λ1 0
. . .

0 λn

 .
Then

exp(A) = P−1 exp(D)P = P−1

e
λ1 0

. . .

0 eλn

P.

In particular, eλ1 , . . . , eλn are the eigenvalues of eA.
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The Matrix Exponential

Proposition (Proposition 15.17)

Let A ∈ Rn×n. Then R 3 t → exp(tA) is a smooth curve in
GL(n,R) such that

d

dt
exp(tA) = A exp(tA) = exp(tA)A, t ∈ R.

Remark

It can be shown that A→ exp(A) is a C∞ map from Rn×n to
GL(n,R).
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The Matrix Exponential

Remark

Let A = [aij ] ∈ Rn×n.

The map R× Rn 3 (t, p)→ exp(tA)p ∈ Rn is the flow of the
vector field,

X =
∑
i ,j

aijx
j ∂

∂x i
on Rn.

Indeed, if x(t) = (x1(t), . . . , xn(t)), then

dx

dt
= Xx(t) ⇐⇒ ẋ i (t) =

∑
j

aijx
j(t), i = 1, . . . , n,

⇐⇒ ẋ(t) = Ax(t),

⇐⇒ x(t) = etAx(0).

Thus, if x(0) = p, then R 3 t → etAp is the (maximal) line
integral of X that starts at p.
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The Differential of the Determinant at the Identity

Reminder (Trace of a Matrix)

If A = [aij ] ∈ Cn×n, then its trace is

tr(A) = a11 + · · ·+ ann,

= λ1 + · · ·+ λn,

where λ1, . . . , λn are the eigenvalues of A counted with
multiplicity.

We have

tr(AB) = tr(BA),

tr
(
P−1AP

)
= tr(A) ∀P ∈ GL(n,C).
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The Differential of the Determinant at the Identity

Proposition (Proposition 15.20)

Let A ∈ Cn×n. Then

det
[
eA
]

= etr(A).

Remark

Let A be diagonalizable and have eigenvalues λ1, . . . , λn.

By the example of slide 22 the matrix eA has eigenvalues
eλ1 , . . . , eλn .

Thus,

det
[
eA
]

= eλ1 · · · eλn = eλ1+···+λn = etr(A).
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The Differential of the Determinant at the Identity

Facts

The determinant is a C∞ map det : Rn×n → R.

The tangent space of the vector space Rn×n at I is
TI (Rn×n) = Rn×n.

The tangent space of R at 1 is T1(R) = R.

Thus, the differential det∗,I is a linear map Rn×n → R.

For every X ∈ Rn×n the curve c(t) = etX is a smooth curve
such that c(0) = I whose velocity at t = 0 is c ′(0) = X .

27 / 30



The Differential of the Determinant at the Identity

Reminder (Proposition 8.18)

Let F : N → M be a smooth map. Given p ∈ N and X ∈ TpN, for
any smooth curve c : I → N starting at p and with velocity vector
X at p, we have

F∗(X ) = (F ◦ c)′ (0).
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The Differential of the Determinant at the Identity

Proposition (Proposition 15.21)

We have
det∗,I (X ) = tr(X ) ∀X ∈ Rn×n

Proof.

Set c(t) = etX . This is a C∞ curve in Rn×n such that
c(0) = I and c ′(0) = X .Thus,

det∗,I (X ) =
d

dt

∣∣∣∣
t=0

det
(
c(t)

)
=

d

dt

∣∣∣∣
t=0

det
(
etX
)
.

As det(etX ) = et tr(X ), we get

det∗,I (X ) =
d

dt

∣∣∣∣
t=0

et tr(X ) = tr(X ).

The result is proved.
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Final Remark

Remark

Let V be a vector space of dimension n.

V is a smooth manifold of dimension n.

If p ∈ V , then we have natural map V → TpV , v → Dp,v ,
where Dp,v ∈ TpV is defined by

Dp,v f =
d

dt

∣∣∣∣
t=0

f (p + tv), f ∈ C∞p (V ).

In the same way as with Rn (cf. Chapter 2) it can be shown
that the map v → Dp,v yields an isomorphism,

Tp(V ) ' V .

It can be also shown that V × V 3 (p, v)→ Dp,v ∈ TV is a
trivialization of V . Thus,

TV ' V × V as C∞ vector bundles.
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