

Differentiable Manifolds

§15. Lie Groups

Sichuan University, Fall 2021

Lie Groups and Lie Subgroups. Examples

Lie groups were defined in Section 6.

Definition (Lie Groups)

A *Lie group* is a group G equipped with a differentiable structure such that:

- (i) The multiplication map $\mu : G \times G \rightarrow G$, $(x, y) \rightarrow xy$ is a C^∞ map.
- (ii) The inverse map $\iota : G \rightarrow G$, $x \rightarrow x^{-1}$ is a C^∞ map.

Lie Groups and Lie Subgroups. Examples

In Section 6 the following examples of Lie groups were mentioned.

Examples

- ① The Euclidean spaces \mathbb{R}^n and \mathbb{C}^n are Lie groups under addition.
- ② The set of non-zero complex numbers $\mathbb{C}^\times := \mathbb{C} \setminus 0$ is a Lie group under multiplication.
- ③ The unit circle $\mathbb{S}^1 \subset \mathbb{C}^\times$ is a Lie group under multiplication.
- ④ If G_1 and G_2 are Lie groups, then their Cartesian product $G_1 \times G_2$ is again a Lie group.

Example (Example 6.21)

The general linear group $GL(n, \mathbb{R})$ is a Lie group,

$$GL(n, \mathbb{R}) = \{A \in \mathbb{R}^{n \times n}; \det A \neq 0\}.$$

Definition (Left and right multiplication)

Let G be a Lie group

- Given any $a \in G$, we denote by ℓ_a the *left multiplication by a* , i.e., the map,

$$\ell_a : G \longrightarrow G, \quad \ell_a(x) = ax.$$

- We also denote by r_a *right multiplication by a* , i.e.,

$$r_a : G \longrightarrow G, \quad r_a(x) = xa.$$

Proposition (see Exercise 15.2)

For every $a \in G$, the maps $\ell_a : G \rightarrow G$ and $r_a : G \rightarrow G$ are both diffeomorphisms of G with respective inverses $\ell_{a^{-1}}$ and $r_{a^{-1}}$.

Lie Groups and Lie Subgroups. Examples

Definition (Lie group homomorphisms)

Let G and H be Lie groups.

- A map $F : H \rightarrow G$ is a *Lie group homomorphism* if F is both a smooth map and a group homomorphism.
- It is called a *Lie group isomorphism* if it is a Lie group homomorphism and a diffeomorphism.

Lie Groups and Lie Subgroups. Examples

Remarks

① A map $F : H \rightarrow G$ is a group homomorphism if and only if

$$F(hx) = F(h)F(x) \quad \forall h, x \in H.$$

As $F(hx) = F \circ \ell_h(x)$ and $F(h)F(x) = \ell_{F(h)} \circ F(x)$, the above condition is equivalent to

$$F \circ \ell_h = \ell_{F(h)} \circ F \quad \forall h \in H.$$

② Denote by e_H and e_G the respective units of H and G . Taking $h = x = e_H$ above gives

$$F(e_H) = F(e_H^2) = F(e_H)^2 \quad \text{which implies that } F(e_H) = e_G.$$

Thus, a group homomorphism always maps the identity to the identity.

Lie Groups and Lie Subgroups. Examples

Proposition (Theorem 7.5 of Lee's book)

Any Lie group homomorphism $F : H \rightarrow G$ has constant rank.

Proof.

- Let $h \in H$. Differentiating at $x = e_H$ the equality $F \circ \ell_h = \ell_{F(h)} \circ F$ gives

$$F_{*, \ell_h(e_H)} \circ (\ell_h)_{*, e_H} = (\ell_{F(h)})_{*, F(e_H)} \circ F_{*, e_H}.$$

That is,

$$F_{*, h} \circ (\ell_h)_{*, e_H} = (\ell_{F(h)})_{*, e_G} \circ F_{*, e_H}$$

- As ℓ_h and $\ell_{F(h)}$ are diffeomorphisms, their differentials $(\ell_h)_{*, e_H}$ and $(\ell_{F(h)})_{*, e_G}$ are isomorphisms.
- It then follows that $\text{rk } F_{*, h} = \text{rk } F_{*, e_H}$ for all $h \in H$.

This proves the result. □

Lie Groups and Lie Subgroups. Examples

Definition (Lie subgroups)

A *Lie subgroup* of a group G is a subgroup H such that

- ① H is an immersed submanifold of G .
- ② The multiplication and inverse map of H are smooth maps.

Examples

- ① \mathbb{R}^n is a Lie subgroup of \mathbb{C}^n under addition.
- ② The circle \mathbb{S}^1 is a Lie subgroup of \mathbb{C}^\times under multiplication.
- ③ Any open subgroup of a Lie group is a Lie subgroup.

Lie Groups and Lie Subgroups. Examples

Reminder (see Chapter 11)

Let M and N be manifolds and S a regular submanifold in M .

- ① If $F : M \rightarrow N$ is a smooth map, then the restriction $F|_S : S \rightarrow N$ is a smooth map (since the inclusion $i : S \rightarrow M$ is a smooth map).
- ② If $F : N \rightarrow M$ is a smooth map taking values in S , then it induces a smooth $F : N \rightarrow S$.

Consequence

Let $F : N \rightarrow M$ be a smooth map. Assume that S is a regular submanifold of N and R is a regular submanifold of M such that $F(S) \subset R$. Then F induces a smooth map $\bar{F} : S \rightarrow R$.

Lie Groups and Lie Subgroups. Examples

Proposition (Proposition 15.11)

If H is a subgroup of a Lie group G and a regular submanifold, then this is an embedded Lie subgroup. In particular, this is a Lie group.

Proof.

We only need to check that the multiplication and inverse maps of H are smooth maps.

- The multiplication $H \times H \rightarrow H$ is induced from the multiplication $G \times G \rightarrow G$.
- As H and $H \times H$ are regular submanifolds, it follows from the corollary on the previous slide that the multiplication of H is a smooth map.
- Likewise, the inverse map $H \rightarrow H$ is smooth, since it is induced from the inverse map $G \rightarrow G$.

The proof is complete. □

Lie Groups and Lie Subgroups. Examples

Reminder (Constant Rank Level Set Theorem; see Theorem 11.2)

Let $f : N \rightarrow M$ be smooth map of constant rank k . For every $c \in f(N)$ the level set $f^{-1}(c)$ is a regular submanifold of codimension k in N .

Lie Groups and Lie Subgroups. Examples

Proposition

Let $F : G \rightarrow H$ be a Lie group homomorphism. Then $F^{-1}(e_H)$ is an embedded Lie subgroup of G .

Proof.

- $F^{-1}(e_H)$ is a subgroup of G .
- By the proposition on slide 7 the homomorphism F has constant rank, and so by the constant rank theorem the level set $F^{-1}(e_H)$ is a regular submanifold of G .
- It then follows from Proposition 15.11 that $F^{-1}(e_H)$ is an embedded Lie subgroup of G .

The proof is complete. □

Lie Groups and Lie Subgroups. Examples

Example (Special linear group; see also Example 9.13)

The special linear group is

$$\mathrm{SL}(n, \mathbb{R}) = \{A \in \mathrm{GL}(n, \mathbb{R}); \det A = 1\}.$$

- As $\det : \mathrm{GL}(n, \mathbb{R}) \rightarrow \mathbb{R}^\times$ is a smooth map and a group homomorphism, this is a Lie group homomorphism.
- It then follows that $\mathrm{SL}(n, \mathbb{R}) = \det^{-1}(1)$ is an embedded Lie subgroup of $\mathrm{GL}(n, \mathbb{R})$, and hence is a Lie group.
- Here the determinant map has constant rank 1, and so $\mathrm{SL}(n, \mathbb{R})$ has codimension 1 in $\mathrm{GL}(n, \mathbb{R})$.

Lie Groups and Lie Subgroups. Examples

Example (Orthogonal group; Example 15.6)

The orthogonal group is

$$O(n) = \left\{ A \in GL(n, \mathbb{R}); A^T A = I \right\}.$$

- This is a subgroup of $GL(n, \mathbb{R})$.
- Let S_n be the linear subspace of $\mathbb{R}^{n \times n}$ of symmetric matrices $X^T = X$. This is a vector space, and so this is a manifold.
- Define $f : GL(n, \mathbb{R}) \rightarrow S_n$ by $f(A) = A^T A$. This is a smooth map such that $O(n) = f^{-1}(I)$.
- It can be shown that f is a submersion (see Tu's book). Thus, $O(n) = f^{-1}(I)$ is a regular submanifold.
- It then follows that $O(n)$ is an embedded Lie subgroup of $GL(n, \mathbb{R})$, and hence is a Lie group.

Remark

- Set $k = \dim S_n$. As f is a submersion, it has constant rank k , and hence $O(n)$ has codimension k in $GL(n, \mathbb{R})$.
- As $k = \dim S_n = \frac{1}{2}n(n+1)$ and $\dim GL(n, \mathbb{R}) = n^2$, we get

$$\dim O(n) = n^2 - \frac{1}{2}n(n+1) = \frac{1}{2}n(n-1)$$

Lie Groups and Lie Subgroups. Examples

Example (Special Orthogonal Group; see also Problem 15.11)

The *special orthogonal group* is

$$SO(n) = \{A \in O(n); \det A = 1\} = O(n) \cap SL(n, \mathbb{R}).$$

- If $A \in O(n)$, then $A^T A = I$, and so

$$1 = \det(I) = \det(A^T A) = \det(A^T) \det(A) = \det(A)^2.$$

Thus, $\det A = \pm 1$.

- It follows that $SO(n) = (\det|_{O(n)})^{-1}(1) = (\det|_{O(n)})^{-1}(\mathbb{R}_+^\times)$, and so $SO(n)$ is an open set in $O(n)$.
- Here $SO(n)$ is an open subgroup of $O(n)$, and hence this is a Lie subgroup of $O(n)$ and $GL(n, \mathbb{R})$.

Lie Groups and Lie Subgroups. Examples

Remark (Complex Linear Groups)

The complex versions of $GL(n, \mathbb{R})$ and $SL(n, \mathbb{R})$ are Lie groups as well. There are the following groups:

- The *complex general linear group*,

$$GL(n, \mathbb{C}) = \{A \in \mathbb{C}^{n \times n}; \det A \neq 0\}.$$

- The *complex special linear group*,

$$SL(n, \mathbb{C}) = \{A \in GL(n, \mathbb{C}); \det A = 1\}.$$

- Here $SL(n, \mathbb{C})$ is an embedded Lie subgroup of $GL(n, \mathbb{C})$ of codimension 2.

Lie Groups and Lie Subgroups. Examples

Remark (Unitary Groups; see also Problems 15.12 & 15.13)

The complex analogues of $O(n)$ and $SO(n)$ are the following groups:

- The *unitary group*,

$$U(n) = \{A \in GL(n, \mathbb{C}); A^*A = I\}.$$

- The *special unitary group*,

$$SU(n) = \{A \in U(n); \det A = 1\} = U(n) \cap SL(n, \mathbb{C}).$$

- There are both (embedded) Lie subgroups of $GL(n, \mathbb{C})$.
- Here $U(n)$ has codimension n^2 in $GL(n, \mathbb{C})$ and $SU(n)$ has codimension 1 in $U(n)$.

The Matrix Exponential

Definition (Matrix Exponential)

If A is an $n \times n$ matrix with entries in $\mathbb{K} = \mathbb{R}$ or \mathbb{C} , then its *exponential*, denoted e^A or $\exp(A)$, is

$$\sum_{k=0}^{\infty} \frac{1}{k!} A^k = I + A + \frac{1}{2!} A^2 + \cdots,$$

where the series converges in $\mathbb{K}^{n \times n}$.

Remark

If A has real entries, then $\exp(A)$ has real entries as well.

The Matrix Exponential

Example (Exponentials of diagonal matrices)

Let D be a diagonal matrix,

$$D = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}.$$

Then its exponential is diagonal,

$$\exp(D) = \begin{bmatrix} e^{\lambda_1} & & 0 \\ & \ddots & \\ 0 & & e^{\lambda_n} \end{bmatrix}.$$

The Matrix Exponential

Proposition (Main algebraic properties)

The following holds:

$$\begin{aligned}\exp(0) &= I, & (\exp(A))^{-1} &= \exp(-A), \\ \exp(A+B) &= \exp(A)\exp(B) = \exp(B)\exp(A) & \text{if } AB = BA, \\ \exp(P^{-1}AP) &= P^{-1}\exp(A)P & \forall P \in \text{GL}(n, \mathbb{C}).\end{aligned}$$

The Matrix Exponential

Example (Exponentials of diagonalizable matrices)

Let A be a diagonalizable matrix,

$$A = P^{-1}DP, \quad D = \begin{bmatrix} \lambda_1 & & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix}.$$

Then

$$\exp(A) = P^{-1} \exp(D) P = P^{-1} \begin{bmatrix} e^{\lambda_1} & & 0 \\ & \ddots & \\ 0 & & e^{\lambda_n} \end{bmatrix} P.$$

In particular, $e^{\lambda_1}, \dots, e^{\lambda_n}$ are the eigenvalues of e^A .

The Matrix Exponential

Proposition (Proposition 15.17)

Let $A \in \mathbb{R}^{n \times n}$. Then $\mathbb{R} \ni t \mapsto \exp(tA)$ is a smooth curve in $\mathrm{GL}(n, \mathbb{R})$ such that

$$\frac{d}{dt} \exp(tA) = A \exp(tA) = \exp(tA)A, \quad t \in \mathbb{R}.$$

Remark

It can be shown that $A \mapsto \exp(A)$ is a C^∞ map from $\mathbb{R}^{n \times n}$ to $\mathrm{GL}(n, \mathbb{R})$.

The Matrix Exponential

Remark

Let $A = [a_{ij}] \in \mathbb{R}^{n \times n}$.

- The map $\mathbb{R} \times \mathbb{R}^n \ni (t, p) \rightarrow \exp(tA)p \in \mathbb{R}^n$ is the flow of the vector field,

$$X = \sum_{i,j} a_{ij} x^j \frac{\partial}{\partial x^i} \quad \text{on } \mathbb{R}^n.$$

- Indeed, if $x(t) = (x^1(t), \dots, x^n(t))$, then

$$\frac{dx}{dt} = X_{x(t)} \iff \dot{x}^i(t) = \sum_j a_{ij} x^j(t), \quad i = 1, \dots, n,$$

$$\iff \dot{x}(t) = Ax(t),$$

$$\iff x(t) = e^{tA}x(0).$$

- Thus, if $x(0) = p$, then $\mathbb{R} \ni t \rightarrow e^{tA}p$ is the (maximal) line integral of X that starts at p .

The Differential of the Determinant at the Identity

Reminder (Trace of a Matrix)

- If $A = [a_{ij}] \in \mathbb{C}^{n \times n}$, then its *trace* is

$$\begin{aligned}\text{tr}(A) &= a_{11} + \cdots + a_{nn}, \\ &= \lambda_1 + \cdots + \lambda_n,\end{aligned}$$

where $\lambda_1, \dots, \lambda_n$ are the eigenvalues of A counted with multiplicity.

- We have

$$\begin{aligned}\text{tr}(AB) &= \text{tr}(BA), \\ \text{tr}(P^{-1}AP) &= \text{tr}(A) \quad \forall P \in \text{GL}(n, \mathbb{C}).\end{aligned}$$

The Differential of the Determinant at the Identity

Proposition (Proposition 15.20)

Let $A \in \mathbb{C}^{n \times n}$. Then

$$\det [e^A] = e^{\text{tr}(A)}.$$

Remark

Let A be diagonalizable and have eigenvalues $\lambda_1, \dots, \lambda_n$.

- By the example of slide 22 the matrix e^A has eigenvalues $e^{\lambda_1}, \dots, e^{\lambda_n}$.
- Thus,

$$\det [e^A] = e^{\lambda_1} \cdots e^{\lambda_n} = e^{\lambda_1 + \cdots + \lambda_n} = e^{\text{tr}(A)}.$$

The Differential of the Determinant at the Identity

Facts

- The determinant is a C^∞ map $\det : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$.
- The tangent space of the vector space $\mathbb{R}^{n \times n}$ at I is $T_I(\mathbb{R}^{n \times n}) = \mathbb{R}^{n \times n}$.
- The tangent space of \mathbb{R} at 1 is $T_1(\mathbb{R}) = \mathbb{R}$.
- Thus, the differential $\det_{*,I}$ is a linear map $\mathbb{R}^{n \times n} \rightarrow \mathbb{R}$.
- For every $X \in \mathbb{R}^{n \times n}$ the curve $c(t) = e^{tX}$ is a smooth curve such that $c(0) = I$ whose velocity at $t = 0$ is $c'(0) = X$.

The Differential of the Determinant at the Identity

Reminder (Proposition 8.18)

Let $F : N \rightarrow M$ be a smooth map. Given $p \in N$ and $X \in T_p N$, for any smooth curve $c : I \rightarrow N$ starting at p and with velocity vector X at p , we have

$$F_*(X) = (F \circ c)'(0).$$

The Differential of the Determinant at the Identity

Proposition (Proposition 15.21)

We have

$$\det_{*,I}(X) = \text{tr}(X) \quad \forall X \in \mathbb{R}^{n \times n}$$

Proof.

- Set $c(t) = e^{tX}$. This is a C^∞ curve in $\mathbb{R}^{n \times n}$ such that $c(0) = I$ and $c'(0) = X$. Thus,

$$\det_{*,I}(X) = \frac{d}{dt} \bigg|_{t=0} \det(c(t)) = \frac{d}{dt} \bigg|_{t=0} \det(e^{tX}).$$

- As $\det(e^{tX}) = e^{t\text{tr}(X)}$, we get

$$\det_{*,I}(X) = \frac{d}{dt} \bigg|_{t=0} e^{t\text{tr}(X)} = \text{tr}(X).$$

The result is proved. □

Final Remark

Remark

Let V be a vector space of dimension n .

- V is a smooth manifold of dimension n .
- If $p \in V$, then we have natural map $V \rightarrow T_p V$, $v \mapsto D_{p,v}$, where $D_{p,v} \in T_p V$ is defined by

$$D_{p,v} f = \frac{d}{dt} \bigg|_{t=0} f(p + tv), \quad f \in C_p^\infty(V).$$

- In the same way as with \mathbb{R}^n (cf. Chapter 2) it can be shown that the map $v \mapsto D_{p,v}$ yields an isomorphism,

$$T_p(V) \simeq V.$$

- It can be also shown that $V \times V \ni (p, v) \mapsto D_{p,v} \in TV$ is a trivialization of TV . Thus,

$$TV \simeq V \times V \quad \text{as } C^\infty \text{ vector bundles.}$$