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Lie Groups and Lie Subgroups. Examples

Lie groups were defined in Section 6.

Definition (Lie Groups)
A Lie group is a group G equipped equipped with a differentiable
structure such that:
(i) The multiplication map p: G x G — G, (x,y) — xy isa C*®
map.

(i) Theinverse mapt: G — G, x — x 1

is a C* map.




Lie Groups and Lie Subgroups. Examples

In Section 6 the following examples of Lie groups were mentioned.

Examples

© The Euclidean spaces R” and C” are Lie groups under
addition.

@ The set of non-zero complex numbers C* := C\ 0 is a Lie
group under multiplication.

© The unit circle S ¢ C* is a Lie group under multiplication.

@ If G; and G are Lie groups, then their Cartesian product
G1 x Gy is again a Lie group.

Example (Example 6.21)

The general linear group GL(n,R) is a is a Lie group,
GL(n,R) = {A € R™"; detA#£0}.

3/30



Definition (Left and right multiplication)

Let G be a Lie group

e Given any a € G, we denote by ¢, the left multiplication by a,
i.e., the map,

ly: G — G, [Ly(x)=ax.
@ We also denote by r, right multiplication by a, i.e.,

r;:G— G, ry(x)=xa

Proposition (see Exercise 15.2)

For every a € G, the maps ¥, : G — G and r;: G — G are both
diffeomorphisms of G with respective inverses {,—1 and r,—1.
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Lie Groups and Lie Subgroups. Examples

Definition (Lie group homomorphisms)

Let G and H be Lie groups.

@ Amap F: H— G is a Lie group homomorphism if F is both
a smooth map and a group homomorphism.

@ It is called a Lie group isomorphism if it is a Lie group
homomorphism and a diffeomorphism.




Lie Groups and Lie Subgroups. Examples

©® Amap F: H— G is a group homomorphism if and only if
F(hx) = F(h)F(x) Vh,x € H.
As F(hx) = F o lp(x) and F(h)F(x) = Lr(n) o F(x), the
above condition is equivalent to
Foéh:&:(h)oF Vh e H.
© Denote by ey and eg the respective units of H and G. Taking
h = x = ey above gives
F(ey) = F(e?) = F(ey)? which implies that F(ey) = eg.

Thus, a group homomorphism always maps the identity to the
identity.

v

6
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Lie Groups and Lie Subgroups. Examples

Proposition (Theorem 7.5 of Lee's book)

Any Lie group homomorphism F : H — G has constant rank.

@ Let h € H. Differentiating at x = ey the equality
Fo gh = EF(h) oF gives

Fetn(en) © (Ch)ren = (CE(h))w Fen) © Froen-

That is,
F*,h © (gh)*,e,., = (EF(h))*,eG o F*,eH

® As (p, and L4y are diffeomorphisms, their differentials (£5). e,
and (¢£(p))«,eq are isomorphisms.
@ It then follows that rk F, j = rk F, ¢, for all h € H.

This proves the result. []




Lie Groups and Lie Subgroups. Examples

Definition (Lie subgroups)

A Lie subgroup of a group G is a subgroup H such that
@ H is an immersed submanifold of H.

@ The multiplication and inverse map of H are smooth maps.

@ R" is a Lie subgroup of C" under addition.
@ The circle St is a Lie subgroup of C* under multiplication.
© Any open subgroup of a Lie group is a Lie subgroup.




Lie Groups and Lie Subgroups. Examples

Reminder (see Chapter 11)
Let M and N be manifolds and S a regular submanifold in M.

Q If F: M — N is a smooth map, then the restriction
Fis : S — N is a smooth map (since the inclusion i : S — M
is a smooth map).

Q@ If F: N — M is a smooth map taking values in S, then it
induces a smooth F: N — S.

Consequence

Let F: N — M be a smooth map. Assume that S is a regular
submanifold of N -and R is a regular submanifold of M such that
F(S) C R. Then F induces a smooth map F: S — R.




Lie Groups and Lie Subgroups. Examples

Proposition (Proposition 15.11)

If H is a subgroup of a Lie group G and a regular submanifold, then
this is an embedded Lie subgroup. In particular, this is a Lie group.

Proof.

We only need to check that the multiplication and inverse maps of
H are smooth maps.

@ The multiplication H x H — H is induced from the
multiplication G x G — G.

@ As H and H x H are regular submanifolds, it follows from the
corollary on the previous slide that the multiplication of H is a
smooth map.

o Likewise, the inverse map H — H is smooth, since it is
induced from the inverse map G — G.

The proof is complete. O
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Lie Groups and Lie Subgroups. Examples

Reminder (Constant Rank Level Set Theorem; see Theorem 11.2)

Let f : N — M be smooth map of constant rank k. For every
c € f(N) the level set f~1(c) is a regular submanifold of
codimension k in V.
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Lie Groups and Lie Subgroups. Examples

Let F: G — H be a Lie group homomorphism. Then F~'(ey) is
an embedded Lie subgroup of G.

Proof.
o F~(ey) is a subgroup of G.
@ By the proposition on slide 7 the homomorphism F has

constant rank, and so by the constant rank theorem the level
set F~1(ey) is a regular submanifold of G.

@ It then follows from Proposition 15.11 that F~1(ey) is an
embedded Lie subgroup of G.

The proof is complete. O
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Lie Groups and Lie Subgroups. Examples

Example (Special linear group; see also Example 9.13)

The special linear group is
SL(n,R) = {A € GL(n,R); detA=1}.
@ As det: GL(n,R) — R* is a smooth map and a group
homomorphism, this is a Lie group homomorphism.

@ It then follows that SL(n,R) = det (1) is an embedded Lie
subgroup of GL(n,R), and hence is a Lie group.

@ Here the determinant map has constant rank 1, and so
SL(n,R) has codimension 1 in GL(n, R).
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Lie Groups and Lie Subgroups. Examples

Example (Orthogonal group; Example 15.6)

The orthogonal group is
O(n) = {A € GL(n,R); ATA= /}.

@ This is a subgroup of GL(n, R).

@ Let S, be the linear subspace of R"*" of symmetric matrices
XT = X. This is vector space, and so this is a manifold.

e Define f : GL(n,R) — S, by f(A) = AT A. This is a smooth
map such that O(n) = F=1(/).

@ It can be shown that f is a submersion (see Tu's book). Thus,
O(n) = f~1(1) is a regular submanifold.

@ It then follows that O(n) is an embedded Lie subgroup of
GL(n,R), and hence is a Lie group.
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Lie Groups and Lie Subgroups. Examples

@ Set k =dim S,,. As f is a submersion, it has constant rank k,
and hence O(n) has codimension k in GL(n, R).

® As k =dimS, = 2n(n+ 1) and dim GL(n,R) = n?, we get

. 1 1
dimO(n) = n® — En(n +1)= En(n —1)
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Lie Groups and Lie Subgroups. Examples

Example (Special Orthogonal Group; see also Problem 15.11)

The special orthogonal group is

SO(n) = {A € O(n); detA =1} =0O(n)NSL(n,R).

e If Ac O(n), then ATA =1, and so
1 =det(/) = det(AT A) = det(AT) det(A) = det(A)>.
Thus, det A = £1.

e It follows that SO(n) = (det| g(,)) (1) = (det| o(n)) *(RY),
and so SO(n) is an open set in O(n).

@ Here SO(n) is an open subgroup of O(n), and hence this is a
Lie subgroup of O(n) and GL(n, R).
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Lie Groups and Lie Subgroups. Examples

Remark (Complex Linear Groups)

The complex versions of GL(n,R) and SL(n,R) are Lie groups as
well. There are the following groups:

@ The complex general linear group,

GL(n,C) = {A € C™"; detA+#0}.
@ The complex special linear group,
SL(n,C) = {A € GL(n,C); detA = 1}.

@ Here SL(n, C) is an embedded Lie subgroup of GL(n, C) of
codimension 2.
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Lie Groups and Lie Subgroups. Examples

Remark (Unitary Groups; see also Problems 15.12 & 15.13)

The complex analogues of O(n) and SO(n) are the following
groups:

e The unitary group,
{A € GL(n,C); I}

@ The special unitary group,
SU(n) = {A € U(n); detA=1} =U(n)NSL(n,C).

@ There are both (embedded) Lie subgroups of GL(n,C).

@ Here U(n) has codimension n? in GL(n,C) and SU(n) has
codimension 1 in U(n).
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The Matrix Exponential

Definition (Matrix Exponential)

If Ais an n x n matrix with entries in K = R or C, then its
exponential, denoted e” or exp(A), is

Zk|A"_/+A+ Ly ,

where the series converges in K"*".

If A has real entries, then exp(A) has real entries as well.
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The Matrix Exponential

Example (Exponentials of diagonal matrices)

Let D be a diagonal matrix,
A1 0
D= .
0 An
Then its exponential is diagonal,

eM 0
exp(D) =
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The Matrix Exponential

Proposition (Main algebraic properties)
The following holds:
exp(0) =/, (e"‘)_1 =e A,
B = efeB = eBe?  if AB = BA,

e =
exp (P 'AP) = P~1exp(A)P VP € GL(n,C).
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The Matrix Exponential

Example (Exponentials of diagonalizable matrices)

Let A be a diagonalizable matrix,
A1 0
A=P'DP, D=

Then

exp(A) = P lexp(D)P = P* P.

0 e

A1
e

In particular, e , e are the eigenvalues of e”.
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The Matrix Exponential

Proposition (Proposition 15.17)

Let A€ R"™". Then R > t — exp(tA) is a smooth curve in
GL(n,R) such that

d
o exp(tA) = Aexp(tA) = exp(tA)A, t e R.

It can be shown that A — exp(A) is a C* map from R"*" to
GL(n,R).
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The Matrix Exponential

Let A = [a;] € R™*".
@ The map R x R" 5 (t, p) — exp(tA)p € R" is the flow of the

vector field, .8
X = Z a,'J'XJW on Rn.
ij

e Indeed, if x(t) = (x}(t),...,x"(t)), then
dx .
pri X (1) <:>x Zauxf(t i=1,...,n,

— x(t) = Ax(t)7
— x(t) = e”*x(0).

@ Thus, if x(0) = p, then R 5 t — e”p is the (maximal) line
integral of X that starts at p.
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The Differential of the Determinant at the ldentity

Reminder (Trace of a Matrix)

o If A=[aj] € C"", then its trace is

tr(A) = a11 + -+ + anmn,

= A+ + )\m
where A1,..., A, are the eigenvalues of A counted with
multiplicity.
o We have

tr(AB) = tr(BA),
tr (P~*AP) =tr(A) VP € GL(n,C).
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The Differential of the Determinant at the ldentity

Proposition (Proposition 15.20)
Let A€ C™". Then

det [eA] — otm(4)

Let A be diagonalizable and have eigenvalues Aq, ..., Ap.
@ By the example of slide 22 the matrix e” has eigenvalues
eM, ... et
e Thus,

det [eA] =S e)‘l e e>‘n _ e)\1+"-+/\n _ etr(A)'
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The Differential of the Determinant at the ldentity

@ The determinant is a C* map det : R"*" — R.

@ The tangent space of the vector space R"™*" at [ is
TI(RHXH) — RHXI‘I.
@ The tangent space of R at 1 is T3(R) = R.

@ Thus, the differential det, ; is a linear map R"*" — R.

o For every X € R™" the curve c(t) = eX is a smooth curve

such that ¢(0) = / whose velocity at t = 0 is ¢/(0) = X.
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The Differential of the Determinant at the ldentity

Reminder (Proposition 8.18)

Let F: N — M be a smooth map. Given p € N and X € T,N, for
any smooth curve c : | — N starting at p and with velocity vector

X at p, we have

F.(X) = (F o c) (0).
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The Differential of the Determinant at the ldentity

Proposition (Proposition 15.21)
We have

det, /(X)) =tr(X) VX eR™"

o Set c(t) = e™X. Thisis a C* curve in R™" such that
c(0) =1 and ¢’(0) = X.Thus,

det (c(t)) a

=0 dt

det (etx).
t=0

d
det*7[(X) = a

o As det(e®X) = et"(X) we get

d

det*J(X) = E

t=0

The result is proved. O
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Final Remark

Let V be a vector space of dimension n.

@ V is a smooth manifold of dimension n.

e If p € V, then we have natural map V — T,V, v — D, ,,
where D, , € T,V is defined by

d
D, il = e t:Of(p+ tv), fe (V).
@ In the same way as with R” (cf. Chapter 2) it can be shown
that the map v — D, , yields an isomorphism,
Tp(V) > V.
@ It can be also shown that V x V = (p,v) = D,, € TV is a
trivialization of V. Thus,

TV ~V xV as C* vector bundles.
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