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Smoothness of a Vector Field

Reminder (The Tangent bundle; see Section 12)

Suppose that M is a smooth manifold of dimension n.

o The tangent bundle TM = | |\, T,M is a smooth vector
bundle of rank n over M with projection © : TM — M such
that .

m(p,v)=p if ve T,M, pe M.

o Any chart (U, ¢) for M defines a chart (TU, ¢) for TM, where

¢ : TU — ¢(U) x R" is given by

e . 0
¢(pav):(¢(p)vvla""vn)a V:Z\/Iax," ETPM’ pG/\//
p

o This also defines a trivialization (TU, ) of TM over TU,
where 1) = (¢! x Ign) o ¢ : TU — U x R" is given by

;0
¢(pav):(pvvl’~'-7vn)a V:Z‘/Iaxi‘ 6Tl3l\/lvpel\/l'
p




Smoothness of a Vector Field

Reminder (Sections and frames of a vector bundle; see Section 12)

Suppose E 5> M is a smooth vector bundle or rank r over M and
U is an open set of M.

@ A section of E over U is any map s : U — TM such that
mos =1y, i.e., s(p) € E, forall pe U.

@ A smooth frame of E over U is given by smooth sections
Si,...,s, over U such that {si(p),...,s/(p)} is a basis of the
fiber E, for every p € U.

Reminder (Proposition 12.2)

Let {s1,...,s,} bea C® frame of E over U. A sections = c's;
of E over U is smooth if and only if c*,...,c" are smooth
functions on U.




Smoothness of a Vector Field

Definition (Vector field)

A vector field is a section X : M — TM. That is, it assigns to each
p € M a tangent vector X, € T,M.

Lemma (see slides on Section 12)

If (U,x,...,x") is a chart for M, then {%, cel %} is a
smooth frame of TM over U.

Specializing Proposition 12.12 to the smooth frame {a%, ey 0?("}
then gives:

Lemma (Lemma 14.1)

Let (U,x,...,x") be a chart for M. A vector field X =" a'-2

Ox'
on U is smooth if and only if the coefficients a', ..., a" are smooth

functions on U.




Smoothness of a Vector Field

Let X be a vector field on M. TFAE:
(i) X is a smooth vector field.
(ii) There is a C> atlas of M such that, for each chart

(U,x1,...,x") of the atlas, the coefficients a' of
X=>a 6‘1,- relative to the frame {02,} are C*° functions.
(iii) For every chart (U,x,...,x") of M, the coefficients a' of
X=>a aa,- relative to the frame { d,} are C*° functions.
be ox

Remarks
@ It is immediate that (iii) = (ii).
@ The implications (ii) = (i) and (i) = (iii) follow from the
previous lemma.

© The equivalence (i) < (ii) holds for any C* atlas of M. In
the case of the maximal C* atlas of M we obtain (i) < (iii).




Smoothness of a Vector Field

Suppose that X is a vector field on M.

o Let p € M. By definition T,M is the space of point-derivation
on the space of germs C.°.

@ Thus, the tangent vector X, € T is a linear map C;° — R
such that

Xp(fg) = Xp(f)g(p) + f(p)Xp(g), f,g € C°.
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Smoothness of a Vector Field

Definition

If X is a vector field on M and f € C*°(M), we define the function
Xf: M — R by

(XF)(p) = Xp(f),  pe M.

RENEILS

X,(f) depends only on the germ of f at p. Thus,
f=gnear p = Xp(f) = Xp(g).
It follows that
f=gonanopen V — X(f)= X(g)on V.

~
N
)



Smoothness of a Vector Field

Let (U,¢) = (U,x*,...,x") be a chart for M. Denote by

(r',...,r") the coordinates on R”, so that x' = r' o ¢.
@ Let f € C*°(U). For all p € U, we have
of 0 9 (F o)
()= 2| F=2| (Foot)=222 ).
ox! (p) ox' » aor' ¢(P)( °¢ ) or' [¢(P)]
° Thatis of _9(foo™t) op onU
ox’ ori ;

It then follows that Of /Ox' is C> on U.
@ For instance, for f = x/ = 1 o ¢ we get
Ox B orl

op=¢
ox' _8r"o¢ -




Smoothness of a Vector Field

Let (U,x%,...,x") be a chart for M and let X =Y a'0/0x’ be a
vector field on U.

o Let f € C®°(U). Then
; Of
T oxi
@ We know from the previous example that 9f /9x' € C=(U).

Thus, if X is a C> vector field, then the coefficients a’ are
C®°-functions on U, and hence Xf is C* on U.

o For f = x/ we get
i ian isj j
X(XJ):ZaaXi:Zaéi:af.
1<i<n 1<i<n

@ Thus, if Xf € C*°(U) for all f € C*°(U), then the coefficients
2 = X(x/) are C*, and hence the vector field X is C> on U.

Xf =




Smoothness of a Vector Field

To sum up we have proved:

Let (U, ¢) be a chart for M and X a vector field on U. TFAE:
(i) X is a smooth vector field on U.
(i) Xf e C>®(U) for all f € C>(U).

More generally, we have:

Proposition (Proposition 14.3)
Let X be a vector field on M. TFAE:

(i) X is a smooth vector field.
(i) Xf € C®(M) for all f € C=(M).
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Smoothness of a Vector Field

Proof of Proposition 4.3.
e If X is a smooth vector field and f € C*°(M), then Xf is C*
on every domain of chart, and hence is C* on M.

° Conversely, suppose that Xf € C>°(M) for all f € C*°(M).
Let (U, x* x") be a chart for M. Thus, X = 3" a'0/0x’
on U W|th o = X(x’).

o Let p € U. By Proposition 13.2 there is % e C>°(M) such
that X' = x’ near p, and then a’ = X(x') = X(X') near p.

o As X(%') € C*°(M), it follows that the coefficients a’ are C*°
near every p € U, and hence are C*° on U.

@ As this is true for every chart (U, ¢) it follows from
Proposition 14.2 that X is a smooth vector field on M.

The proof is complete. O
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Smoothness of a Vector Field

Reminder (Derivations of an algebra; see Section 2)

Let A be an algebra over a field K. A derivation of A is any linear
map D : A — A such that

D(ab) = (Da)b + a(Db) for all a,b € A.

Corollary

Let X is a smooth vector field on M. Then f — Xf is a derivation
of the algebra C*>°(M).

Remarks
e Conversely, it can be shown that every derivation of C*>°(M)
arises from a smooth vector field (see Problem 19.12).

e We often identify a C*° vector field X with the derivation
f— Xf.
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Smoothness of a Vector Field

Proof of the corollary.

@ As X is a smooth vector field Xf € C*>°(M) for all
f € C®(M). As Xf depends linearly on f, it follows that
f — Xf is a linear map from C>°(M) to itself.

e Given f,g € C*(M) and p € M, as X, is a point-derivation
on C°, we have

X(fg)(p) = Xp(fg) = Xp(F)g(p) + f(p)Xp(g)
= X(f)(p)g(p) + f(p)X(g)(p)-

Thus, X(fg) = (Xf)g + f(Xg), and so f — Xf is a derivation
of C(M).

The proof is complete. O
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Smoothness of a Vector Field

Reminder (Proposition 12.9)

If E is smooth vector bundle over E, then the set of C* sections
I'(E) is a module over C°°(M) with respect to the scalar
multiplication,

(5)(p) = F(p)s(p), € C®(M), s € T(E), pe M.

Consequence

Let 27(M) be the space of C* vector fields on M. Then 2 (M)
is a module over C>*(M). If f € C*° and X € Z°(M), then
X € Z(M) is given by

(X)(p) = F(p)Xp, P EM.
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Smoothness of a Vector Field

Proposition (Proposition 14.4)

Let X be a smooth vector field on an open U in M. Given any
p € U, there is a smooth vector field X on M such that

X =X nearp.

15 /42



Smoothness of a Vector Field

Proof of Proposition 14.4.

Let p: M — R be a C* bump function at p supported in U, and
define X : M — M by

X=pX onlU, X=0 onM\U.

This defines a smooth section of TM over M. Namely:
o X agrees with the C* vector field pX on U, and hence it is
C*>® on U.
@ X =0o0n M\ U and U\ supp(p), and hence is C> on the
open set M \ supp(p).
Thus, X is C* on UU (M \ supp(p)) = M. In addition, as p = 1

near p, we have ~
X =pX =X near p.

This proves the result. O
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The Lie Bracket

Suppose that X and Y are smooth vector fields on M.
o If f € C°°(M), then Yf and X(Yf) are C* functions on M.

o If f = g near p, then Yf = Yg near p. Thus, the germ of Yf
at p depends only on the germ of f at p. We then have

X(YF)(p) = Xo(YF).
o It follows we get a linear map,

C’of — Xp(Yf) eR

17 /42



The Lie Bracket

Definition
If X and Y are smooth vector fields on M, then their Lie bracket
at a point p € M is the linear map [X, Y], : C;° — R defined by

[X, Y]of = Xo(YF) = Yo(XF),  feCP.

[X,Y]p € ToM, ie, [X, Y], is a derivation at p.

Definition
If X and Y are smooth vector fields on M, then their Lie bracket is
the vector field,

[X.Y]:M—TM,  p—[X,Y],
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The Lie Bracket

Remark
If f € C*°(M) and p € M, then
(X, YIF)(p) = [X, Y]o(f) = Xp(YF) — Y,(XF)
= X(YF)(p) — Y(XF)(p)-
Thus,

[X, Y]f = X(Yf) = Y(Xf) € C(M).

As this is true for all f € C*°(M), we obtain:

Proposition (Proposition 14.10)

If X and Y are smooth vector fields on M, then [X, Y] is a smooth
vector field on M as well.

Remark
If we regard X, Y and [X, Y] are derivations on C*°(M), then

[X,Y]=XoY—YoX.
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The Lie Bracket

Definition (Lie algebras)

A Lie algebra over a field K is a vector space g over K together
with an alternating bilinear map [-, ] : g x g — K satisfying
Jacobi's identity,

(X,1Y,Z]] + [Y,[Z,X]] + [Z,[X, Y]] =0 forall X,Y,Z € g.

In general, a Lie algebra (g, [,]) need not be an algebra, since the
bracket [, -] may fail to be associative.




The Lie Bracket

Any vector space V over K is a Lie algebra with respect to the
zero bracket [x, y|] = 0. Such a Lie algebra is called an Abelian Lie
algebra.

Any algebra A over K is a Lie algebra with respect to the bracket,

[x,y] = xy — yx, X,y €.




The Lie Bracket

Proposition (see Exercise 14.11)

The space 2°(M) of smooth vector fields on M is a Lie algebra
over R with respect to the Lie bracket of vector fields.

RENEILS

Let A be an algebra over K. Denote by Der(A) the space of
derivations of A.

@ If Dy and D, are derivations of A, then

[D1, D3] := Dy oDy — Dyo Dy

is again a derivation of A.
e (Der(A),[-,]) is a Lie algebra.




The Lie Bracket

Definition (Derivation of a Lie algebra)

A derivation of a Lie algebra g is a linear map D : g — g such that

D(IX,Y]) = [DX, Y] +[X,DY]  forall X,Y €g.

Example
Given X, define adx : g — g by
adx Y = [X, Y], Y eg.

Then adx is a derivation of the Lie algebra g, called the adjoint
endomorphism of X.

RENEILS

In fact, Jacobi's identity is equivalent to adx being a derivation for
every X € g.




Pushforwards and Related Vector Fields

Definition (Pushforward of tangent vector)

Let F: N — M be a C* map between smooth manifolds. Given
p € N and X, € T,N, the tangent vector F.(Xp) € Tr(p,)M is
called the pushforward of X by F at p.

Remarks
© By the very definition of the differential F.: ToN — Tg, )N
we have

F.(Xp)g = Xp(g o F) for all g € CZ(,)(M)the.

© In general, if X is a vector field on N there need not exist a
vector field X on M such that F, (Xp) = X,:( ) forall pe N.

© However, this is possible when F is a diffeomorphism, since

F*,p(Xp) = )?F(p) Vpe N «— i = Fx F-1(q) (prl(q)) Vg € M.
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Pushforwards and Related Vector Fields

Definition (Pushforward of a vector field)

Suppose that F : N — M is a diffeomorphism. The pushforward by
F of a vector field X on N is the vector field F.X on M defined by

(FX)q = For-1(9) (Xe-1(q)) qge M.
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Pushforwards and Related Vector Fields

If g € C>(M), then (F.X)g(q) = (FiX)qg is equal to
FrFi(q)(Xe-1(q))& = Xp-1q)(g © F) = X(g © F)(F*(q))-

Thus,
(F.X)g = [X(goF)]o F1.

In particular, if X is a smooth vector field, then (F.X)g € C*(M)
for all g € C*°(M), and so F.X is a smooth vector field.

Therefore, we have obtained:

Proposition

If F: N — M is a diffeomorphism and X is a smooth vector field
on N, then the pushforward F.X is a smooth smooth vector field
on M.
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Pushforwards and Related Vector Fields

Definition (Related vector fields)

Let F: N — M be a smooth map. We say that a vector field X on
N and a vector field X on M are F-related if

F*,p(Xp) = )~<F(p) Vp e N.

@ If F is a diffeomorphism, then X and F, X are F-related.

@ In fact, F,. X is the unique vector field on M that is F-related
to X.




Pushforwards and Related Vector Fields

Let X be a vector field on N and X a vector field on M.
e X and X are F-related if and only if

Fup(X)g = Xr(n)(8) Vg € C*(M) Vp e N.
e We have
F.p(X)g = Xp(g o F) = X(g o F)(p),
Xr(p)(&) = Xg(F(p)) = (Xg) o F(p).
@ Thus, X and X are F-related if and only if
X(g o F)(p) = (Xg) o F(p) Vge C®(M)Vpe N.
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Pushforwards and Related Vector Fields

From the previous remark we have the following result.

Proposition (Proposition 14.16)

Let F: N — I\{l be a smooth map. Then a vector field X on N and
a vector field X on M are F-related if and only if

X(goF)=(Xg)oF Yge C®(M).

As an application of Proposition 14.16, we shall get:

Proposition (Proposition 14.17)

Let F : N — M be a smooth map. Suppose that X and Y are C*°
vector fields on N that are F-related to smooth vector fields X and
Y on M, respectively. Then the Lie bracket [X, Y] is F-related to
[X,Y].




Pushforwards and Related Vector Fields

Proof of Proposition 14.17.

The proof is a consequence of Proposition 14.16.

o Let g € C>(M). As X and Y are F-related to X and Y, by
Proposition 14.16 we have

Y(goF)= (?g)oF,
X(Y(goF)) =X((Ye)oF) = (X(Yg)) o F = (XYg) o F.
o Likewise, Y(X(goF)) = (?)?g) o F. Thus,
[X,Yl(go F) =X (Y(goF)) - Y(X(goF))
:()??g)oF—(\N/)?g)oF
= ([)~(7 ?]g)ol-_.

As this holds for all g € C>°(M)), it follows from
Proposition 14.16 that [X, Y] and [X, Y] are F-related.

The proof is complete. O




Pushforwards and Related Vector Fields

Corollary (see Problem 14.4)

Let F: N — M be a diffeormorphism. Given any smooth vector
field X and Y on N we have

F.([X,Y]) = [F*X, [P Y}.

o F.([X,Y]) is the unique vector field on M that is F-related to
[X, Y] (see slide 27).

@ As F,.X and F.Y are F-related to X and Y,
Proposition 14.17 ensures us that [F. X, F. Y] is F-related to
[X, Y], and hence it agrees with F.([X, Y]).

The proof is complete. [
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Integral Curves and Flows

Suppose that X is a smooth vector field on M.
@ An integral curve of X is any smooth curve ¢ : (a, b) - M
satisfying the equation,

d
ac(t) = Xe(t) t € (a,b).

o If the interval (a, b) contains 0 and ¢(0) = p, then we say
that curve starts at p and p is its initial point.

@ We say that an integral curve is maximal if it cannot be
extended to an integral curve defined on a larger interval.

RENEILS

In other words, an integral curve is a curve that is tangent to X at
every point.
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Integral Curves and Flows

Let (U,¢) = (U,x*,...,x") be a chart for Mand c:/ — U a C®
curve in U. Set ¢ o c(t) = (c*(t),...,c"(t)), with ¢/ = x' o c.
@ As X is a C* vector field, X = > a’d/0x" on U with
a' € C®(U). In particular,

i 0
XC(t) :Za (C(t))&, tel
@ It is shown in Section 8 (see Propositions 8.11 and 8.15) that

dC of 6
Ezzc(t)axf ., tel

c(t)

e Thus,
dc
dt

In other words the line integral equation for X on U reduces
to an ODE system for the components cl(t),..., c"(t).

=Xy = ¢'(t)=a(c(t)) fori=1,...,n.
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Integral Curves and Flows

Let X = —yd/0x + x0/0y on R2.

o If c(t) = (x(t),y(t)), then
dc

7= (x(t), y(1)), Xe(r) = —y(t)9/0x + x(t)/dy.

@ Thus,
de _ (8)= —y(6), _ [*(B)] _[0 —1] [x(2)
gr = et ©{ y(6)=x(0). 7 [Y(t)] - [1 0} L’(f)]

@ The solution of the ODE system is

x(t)|  [cost —sint| [xo
y(t)|  |sint cost | |yo|’
@ The line integrals are circles about the origin.




Integral Curves and Flows

Example (continued)

The integral curves of X = —yd/0x + xd/dy.
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Integral Curves and Flows

Using ODE theory we obtain the following existence and
uniqueness theorem:

Theorem (see Theorem 4.7)

Let X be a smooth vector field on M. Given any p € M, there is a
unique maximal integral curve for X that starts at p.

@ In particular, any integral curve starting at p extends to a
unique maximal integral curve.

@ This implies that two integral curves with same initial point
agree on their joint domain.
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Integral Curves and Flows

The following result is established in J.M. Lee’s book.

Theorem (Fundamental Theorem on Flows)
Suppose that X is a smooth vector field on M. Define

Q= U 1P) 5 {p} CR x M,

peEM

where I(P) js the open interval around 0 on which is defined the
maximal integral curve of X starting at p. Then:
(i) Q is an open set in R x M containing {0} x M.
(ii) There is a smooth map F : Q — M, (t,p) — F(p) (called

the flow of X ) such that, for every p € M, the curve
I(P) 5t — Fi(p) € M is the maximal integral curve of X

starting at p.
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Integral Curves and Flows

Let p e M.
o We have /P = {t € R; (t,p) € Q}.
@ As F;(p) is an integral curve for X starting at p, we have

d
EFt(P) = XFu(p) = Xro(p) = Xp-
t=0 t=0

Thus, we recover the vector field X from its flow.
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Integral Curves and Flows

@ For t € R, the set My = {p € M; (t,p) € Q} is open in M,
since Q is an open set. Thus, we may regard F; as a smooth
map p — F¢(p) from M; to M.

@ Here My = M and Fy(p) = p for all p € M. Thus, Fop = 1.

o If s € I(P) then t — Fi(Fs(p)) and t — F;,s(p) are maximal

integral curves for X starting at Fs(p), and so they agree. It
follows that /(Fs(P)) — j(P) _ s, and

FioFs=Fiys  on Mey: N Mg = F7Y (M) N M.
@ For s = —t we get F{l(l\/l_t) N My = My N My = Mg, so that
F7Y (M) = M;, and F_; 0 F; = Fg = 1y on M.

(] LikeWise, Ft o Fft = ]lM on Mft. -I_hl,lsv Ft . Mt’ — Mft is a
diffeomorphism with inverse F_; : M_; — M;.
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Integral Curves and Flows

We say that X is a complete vector field when its the flow F is
defined on all R x M. In this case we call F a global flow.

RENEIS

e If F is a global flow defined on R, then M; = M and F; is a
smooth map from M to itself for all t € R.

@ We then have

FOZRM, FSOFt:Ft+S on M VS,tGR

@ Fors=—tweget FtoF;=F;oF_; =1, and hence
F: : M — M is a diffeomorphism with inverse F_;.

@ Let Diff(M) be the group of diffeomorphisms of M. Then
t — F; is a morphism from the additive group R to Diff(M).
It is called a one-parameter group of diffeomorphisms.
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Integral Curves and Flows

Example (see Tu's book)
Let X be the vector field —yd/dx + x0/dy on R?.

&

It has a global flow F : R x R?> — R? given by

cost —sint| |x X
Ft(p)_[sint cost}{y]’ p_[y}’ FELL

That is, F; : R> — R? is the rotation of angle t about the origin.

Note that

¢ = S[]=[7]- sl

dt
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Integral Curves and Flows

Remark (see Lee's book)

@ It can be shown that every compactly supported smooth
vector field is complete.

@ In particular, every smooth vector field on a compact manifold
is complete.

We will see in Section 16 that every left-invariant vector field on a
Lie group is complete.




