Differentiable Manifolds §13. Bump Functions and Partitions of Unity

Sichuan University, Fall 2021

Reminder (Support of a function)

If $f: X \to \mathbb{R}$ is a (continuous) function on a topological space X, then its *support*, denoted $\operatorname{supp}(f)$, is the closure in X of the points at which f is non-zero. That is,

$$supp(f) = \overline{\{x \in X; \ f(x) \neq 0\}}.$$

We say that f is compactly supported when supp(f) is compact.

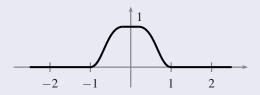
Remark

- The complement X \ supp(f) is the interior of the zero-set of
 f. That is, x ∉ supp(f) if and only if f = 0 near x.
- Thus, if f = 0 on an open set U, then $U \subset X \setminus \text{supp}(f)$, and hence $\text{supp}(f) \subset X \setminus U$.

Definition

Given a point q in a manifold M and an open neighborhood U of q in M a bump function at q supported in U is any continuous function $\rho: M \to \mathbb{R}$ such that:

$$0 \le \rho \le 1$$
, $\rho = 1$ near q , supp $(\rho) \subseteq U$.



We are more especially interested in *smooth* bump functions. Our aim is to establish the following result:

Proposition (Exercise 13.1)

For every point $q \in M$ and any neighborhood U of p in M, there exists a C^{∞} bump function at q supported in U.

Remark

We shall first construct a C^{∞} bump functions on \mathbb{R} , and then we are going to extend the construction to \mathbb{R}^n and manifolds.

Step 1 (Example 1.3 and Problem 1.2)

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by

$$f(t) = \begin{cases} e^{-1/t} & \text{for } t > 0, \\ 0 & \text{for } t \le 0. \end{cases}$$

By definition $0 \le f \le 1$ and f(t) = 0 if and only if $t \le 0$. It can also be shown that f is smooth (see Problem 1.2).

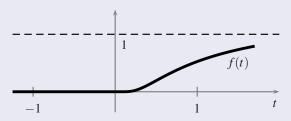


Fig. 13.3. The graph of f(t).

Step 2

Let $g: \mathbb{R} \to \mathbb{R}$ be given by

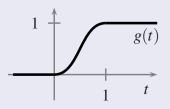
$$g(t) = rac{f(t)}{f(t) + f(1-t)}, \qquad t \in \mathbb{R}.$$

- Here g(t) is well defined, since f(t) + f(1-t) > 0. Indeed:
 - $f \ge 0$, and so $f(t) + f(1-t) \ge \max\{f(t), f(1-t)\}.$
 - f(t) > 0 for t > 0, and f(1-t) > 0 for 1-t > 0, i.e., t < 1.
 - Thus, f(t) + f(1-t) > 0 on $(0, \infty) \cup (-\infty, 1) = \mathbb{R}$.
- The function g is C^{∞} , since f is C^{∞} and f(t) + f(1-t) is C^{∞} and > 0.
- As $f \ge 0$, we have $0 \le g \le 1$. Furthermore:

$$g(t) = 0 \iff f(t) = 0 \iff t \le 0,$$

 $g(t) = 1 \iff f(1-t) = 0 \iff 1-t \le 0 \iff t \ge 1.$

Step 2



We have constructed a C^{∞} function $g: \mathbb{R} \to \mathbb{R}$ such that

$$0 \le g \le 1$$
,

$$g^{-1}(0) = (-\infty, 0], \qquad g^{-1}(1) = [1, \infty).$$

Step 3

Let 0 < a < b, and define $\rho : \mathbb{R} \to \mathbb{R}$ by

$$\rho(x) = 1 - g\left(\frac{x^2 - a^2}{b^2 - a^2}\right), \qquad x \in \mathbb{R}.$$

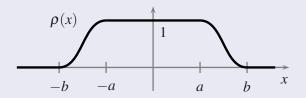
- $\rho(x)$ is a C^{∞} function, since g is C^{∞} .
- As $0 \le g \le 1$, and hence $0 \le 1 g \le 1$, we have $0 \le \rho \le 1$.
- We have

$$\begin{split} &\rho(x)=1 \Leftrightarrow g\left(\frac{x^2-a^2}{b^2-a^2}\right)=0 \Leftrightarrow \frac{x^2-a^2}{b^2-a^2} \leq 0 \Leftrightarrow x^2 \leq a^2, \\ &\rho(x)=0 \Leftrightarrow g\left(\frac{x^2-a^2}{b^2-a^2}\right)=1 \Leftrightarrow \frac{x^2-a^2}{b^2-a^2} \geq 1 \Leftrightarrow x^2 \geq b^2. \end{split}$$

Thus,

$$\rho(x) = 1 \Leftrightarrow |x| \le a, \qquad \rho(x) = 0 \Leftrightarrow |x| \ge b.$$

Step 3



We have constructed a C^{∞} function $\rho: \mathbb{R} \to \mathbb{R}$ such that

$$0 \le \rho \le 1$$
,

$$\rho^{-1}(1) = [-a, a], \qquad \rho^{-1}(0) = (-\infty, -b] \cup [b, \infty).$$

In particular, ρ is a C^{∞} bump function at the origin on \mathbb{R} .

Notation

If $q \in \mathbb{R}^n$ and r > 0, then B(q, r) is the open ball about q with radius r in \mathbb{R}^n and $\overline{B}(q, r)$ is its closure.

Step 4

Let $q \in \mathbb{R}^n$, and define $\sigma : \mathbb{R}^n \to \mathbb{R}$ by

$$\sigma(x) = \rho(\|x - q\|) = 1 - g\left(\frac{\|x - q\|^2 - a^2}{b^2 - a^2}\right), \qquad x \in \mathbb{R}^n.$$

- As g and $x \to ||x q||^2$ are C^{∞} functions, σ is C^{∞} as well.
- As $0 \le \rho \le 1$, we have $0 \le \sigma \le 1$.
- As $\rho^{-1}(1)=[-a,a]$ and $\rho^{-1}(0)=(-\infty,-b]\cup[b,\infty)$, we get $\sigma^{-1}(1)=\overline{B}(q,a), \qquad \sigma^{-1}(0)=\mathbb{R}^n\setminus B(q,b).$

Thus, σ is a C^{∞} bump function at q supported in $\overline{B}(q,b)$.

Step 5

Suppose that M is a manifold. Let U be an open set in M and $f:U\to\mathbb{R}$ a smooth function with compact support. Define $\tilde{f}:M\to\mathbb{R}$ by

$$\tilde{f} = f$$
 on U and $\tilde{f} = 0$ on $M \setminus U$.

- As $\tilde{f} = f$ on U, we see that \tilde{f} is C^{∞} on U.
- Set K = supp(f). This is a compact in U. As the inclusion of U into M is continuous, this is a compact in M as well.
- Here $\tilde{f}=0$ on $M\setminus U$ and $\tilde{f}=f=0$ on $U\setminus K$. Thus, $\tilde{f}=0$ on $(M\setminus U)\cup (U\setminus K)=M\setminus K$. In particular, \tilde{f} is C^{∞} on the open set $M\setminus K$.
- As \tilde{f} is C^{∞} on the open sets U and $M \setminus K$, it is C^{∞} on $U \cup (M \setminus K) = M$.

Step 5 (continued)

- As $\tilde{f} = 0$ on the open set $M \setminus K$, it follows that supp $\tilde{f} \subset K$ (cf. remark on slide 2).
- If $p \in K = \operatorname{supp}(f) \subset U$, then $\tilde{f} = f$ near p and p is not an interior point of $f^{-1}(0) = U \cap \tilde{f}^{-1}(0)$. Thus p is in the interior of $\tilde{f}^{-1}(0)$, and hence $p \in \operatorname{supp}(\tilde{f})$. Thus $K \subset \operatorname{supp}(\tilde{f})$
- It follows that $supp(\tilde{f}) = K$.

Therefore, we have proved the following result:

Lemma

Let U be an open set in M and $f:U\to\mathbb{R}$ a smooth function with compact support. Then f uniquely extends to a smooth function $\tilde{f}:M\to\mathbb{R}$ such that

$$\tilde{f} = 0$$
 on $M \setminus U$ and $supp(\tilde{f}) = supp(f)$.

Step 6

Let $p \in M$ and U an open in M containing p. Set $n = \dim M$.

- Let (V, ϕ) be chart near p. Possibly by replacing (V, ϕ) by $(V \cap U, \phi|_{V \cap U})$ we may assume that $V \subset U$.
- Set $q = \phi(p)$. Here $\phi : V \to \phi(V)$ is a homeomorphism. In particular, $\phi(V)$ is an open in \mathbb{R}^n containing q.
- Let 0 < a < b be such that $\overline{B}(q, b) \subset \phi(V)$. Define $\sigma : \mathbb{R}^n \to \mathbb{R}$ as in Step 4. Thus, σ is a C^{∞} function such that $0 \le \sigma \le 1$, $\sigma^{-1}(1) = \overline{B}(q, a)$ and $\sigma^{-1}(0) = \mathbb{R}^n \setminus B(0, b)$.
- Set $\psi = \sigma \circ \phi : V \to \mathbb{R}$. Then ψ is C^{∞} and $0 \le \psi \le 1$.
- We have

$$\psi^{-1}(1) = (\sigma \circ \phi)^{-1}(1) = \phi^{-1}(\sigma^{-1}(1)) = \phi^{-1}(\overline{B}(q, a)).$$

Thus, $\psi = 1$ on $\phi^{-1}(B(q, a))$, which is an open containing $\phi^{-1}(q) = p$. Hence $\psi = 1$ near p.

Step 6 (continued)

- The zero set $\psi^{-1}(0) = (\sigma \circ \phi)^{-1}(0)$ is equal to $\phi^{-1}(\sigma^{-1}(0)) = \phi^{-1}(\mathbb{R}^n \setminus B(q,b)) = V \setminus \phi^{-1}(B(q,b)).$
- Set $K = \phi^{-1}(\overline{B}(q, b))$. This is a compact subset of V since $\overline{B}(q, b)$ is compact and ϕ is a homeomorphism.
- As $V \setminus K \subset V \setminus \phi^{-1}(B(q,b)) = \psi^{-1}(0)$, we see that $\psi = 0$ on the open set $V \setminus K$, and hence $supp(\psi) \subset K$.
- By Step 5 we can extends ψ to a smooth function $\tilde{\psi}:M\to\mathbb{R}$ such that $\tilde{\psi}=0$ on $M\setminus V$ and $\mathrm{supp}(\tilde{\psi})=K$. In particular:

$$0 \leq \tilde{\psi} \leq 1, \quad \tilde{\psi} = \psi = 1 \text{ near } p, \quad \operatorname{supp}(\tilde{\psi}) \subset K \subset V \subset U.$$

Thus, $\tilde{\psi}$ is a C^{∞} bump function at p with support in U.

• Note also that $\tilde{\psi}$ has compact support, since $\operatorname{supp}(\tilde{\psi})$ is a closed subset of the compact K.

To sum up we have proved:

Proposition

Suppose that M is a smooth manifold. For any $p \in M$ and any open neighborhood U of p in M there exists a C^{∞} bump function at p with compact support in U.

Remark

Let $f: U \to \mathbb{R}$ be a C^{∞} function on an open U of a manifold M.

- If f is constant outside some compact set (or even some closed set in M contained in U), then in a similar way as in Step 5 we may extend f into a C^{∞} on the whole manifold M.
- In general this is not possible. However, we still have the following result:

Proposition (Proposition 13.2; Extension of smooth functions)

Let $p \in M$ and let U be an open neighborhood of p. Then, for every smooth function $f: U \to \mathbb{R}$, there exists a smooth function $\tilde{f}: M \to \mathbb{R}$ such that $\tilde{f} = f$ near p and $supp(\tilde{f}) \subset U$.

Proof of Proposition 13.2.

Let $\psi: M \to \mathbb{R}$ be a C^{∞} bump function at p whose support is compact and contained in U. Then:

- The product ψf is a smooth function on U whose support is contained in $\operatorname{supp}(\psi)$, and hence is compact.
- By Step 5 it extends to a smooth function $\tilde{f}:M\to\mathbb{R}$ such that $\operatorname{supp}(\tilde{f})=\operatorname{supp}(\psi f)\subset U.$
- As $\tilde{f} = \psi f$ on $U \ni p$ and $\psi = 1$ near p, it follows that $\tilde{f} = \psi f = f$ near p.

This proves the result.

Definition

A family of subsets $(Y_{\alpha})_{\alpha \in A}$ of a topological space X is called *locally finite* when, for every $p \in X$, there is a neighborhood V of p such that meets at most finitely many of the Y_{α} , i.e., the index subset $\{\alpha \in A; Y_{\alpha} \cap V \neq \emptyset\}$ is finite.

Lemma (see Problem 13.7)

Let $(Y_{\alpha})_{\alpha \in A}$ be a locally finite family in a topological space X. Then

$$\overline{\bigcup Y_{\alpha}} \subset \bigcup \overline{Y_{\alpha}}.$$

Facts

Let $(f_{\alpha})_{\alpha \in A}$ be a family of smooth (real-valued) functions on a manifold M such that the family of supports $(\sup(f_{\alpha}))_{\alpha \in A}$ is locally finite.

- Let $p \in M$ and V an open neighborhood of p such that $J := \{\alpha; V \cap \text{supp}(f_{\alpha}) \neq \emptyset\}$ is finite.
- Then $J(p) := \{\alpha; p \in \text{supp}(f_{\alpha})\} \subset J$ is finite. In particular, $f_{\alpha}(p) = 0$ for $\alpha \notin J(p)$.
- We then set

$$\sum_{\alpha\in A} f_{\alpha}(p) := \sum_{\alpha\in J(p)} f_{\alpha}(p).$$

This defines a function $\sum_{\alpha \in A} f_{\alpha} : M \to \mathbb{R}$. Such a function is called a *locally finite sum*.

Facts (continued)

• If $q \in V$, then $J(q) \subset J$ and $f_{\alpha}(q) = 0$ if $\alpha \in J \setminus J(q)$. Thus,

$$\sum_{\alpha \in A} f_{\alpha}(q) = \sum_{\alpha \in J(q)} f_{\alpha}(q) = \sum_{\alpha \in J} f_{\alpha}(q).$$

That is, $\sum_{\alpha \in A} f_{\alpha} = \sum_{\alpha \in I} f_{\alpha}$ on V.

- As $\sum_{\alpha \in J} f_{\alpha}$ is a finite sum of C^{∞} function, we deduce that $\sum_{\alpha \in A} f_{\alpha}$ is C^{∞} on V, and hence is C^{∞} near p.
- As this is true for every $p \in M$, it follows that $\sum_{\alpha \in A} f_{\alpha}$ is C^{∞} function on M.

Lemma (see also Lemma 13.5)

Let $\sum f_{\alpha}$ be a locally finite sum of C^{∞} functions on M. Then $\operatorname{supp}\left(\sum f_{\alpha}\right)\subset\bigcup\operatorname{supp}(f_{\alpha}).$

Proof of the lemma.

Set $f = \sum f_{\alpha}$. Recall that supp $(f) = \overline{f^{-1}(\mathbb{R} \setminus 0)}$.

• If $f_{\alpha}(p) = 0$ for all α , then $f(p) = \sum f_{\alpha}(p) = 0$. Thus, if $f(p) \neq 0$, then $f_{\alpha}(p) \neq 0$ for some α . That is,

$$f^{-1}(\mathbb{R}\setminus 0)\subset\bigcup f_{\alpha}^{-1}(\mathbb{R}\setminus 0).$$

- By assumption the family of subsets $\{\sup(f_{\alpha})\}$ is locally finite in M, and so $\{f_{\alpha}^{-1}(\mathbb{R}\setminus 0)\}$ is locally finite as well.
- Thus, by the lemma of slide 18 we have

$$\overline{f^{-1}(\mathbb{R}\setminus 0)}\subset \overline{\bigcup f_\alpha^{-1}(\mathbb{R}\setminus 0)}\subset \overline{f_\alpha^{-1}(\mathbb{R}\setminus 0)}.$$

That is,

$$supp(f) \subset \bigcup supp(f_{\alpha})$$

This proves the lemma.

Reminder

An open cover of M is a family of open sets $(U_{\alpha})_{\alpha \in A}$ such that $M = \bigcup_{\alpha \in A} U_{\alpha}$.

Definition

A C^{∞} partition of unity on M is a family $(\rho_{\alpha})_{\alpha \in A}$ of real-valued functions on M such that

- (i) $\rho_{\alpha} \geq 0$ for all $\alpha \in A$.
- (ii) The family of supports $\{\sup(\rho_{\alpha})\}_{{\alpha}\in A}$ is locally finite.
- (iii) $\sum \rho_{\alpha} = 1$ on M.

If $(U_{\alpha})_{\alpha \in A}$ is an open cover of M such that $\operatorname{supp}(\rho_{\alpha}) \subset U_{\alpha}$, then we say that the partition of unity is *subordinate to* $(U_{\alpha})_{\alpha \in A}$.

Proposition (Proposition 13.6)

Suppose that M is a compact manifold, and let $(U_{\alpha})_{\alpha \in A}$ be an open cover of M. Then there exists a (finite) C^{∞} partition of unity $(\rho_{\alpha})_{\alpha \in A}$ subordinate to $(U_{\alpha})_{\alpha \in A}$.

Proof of Proposition 13.6 (Part 1)

- Given $q \in M$, let $\alpha \in A$ be such that $q \in U_{\alpha}$. Let ψ_q be a C^{∞} bump function at q supported in U_{α} . In particular, $0 \le \psi_q \le 1$ and $\psi_q = 1$ near q.
- For each $q \in M$ set $W_q = \{\psi_q > 0\}$. Then W_q is an open neighborhood of q, and we have $M = \bigcup_{q \in M} W_q$.
- As M is compact there are q_1, \ldots, q_m in M such that $M = \bigcup_{i=1}^m W_{q_i}$.
- Set $\psi = \sum_{i=1}^m \psi_{q_i}$. This is a C^{∞} function on M.
- If $q \in M$, then there i such that $q \in W_{q_i} = \{\psi_{q_i} > 0\}$. Thus,

$$\psi(q) = \sum \psi_{q_j}(q) \ge \psi_{q_i}(q) > 0.$$

Hence $\psi > 0$ on M.

Proof of Proposition 13.6 (Part 1, continued)

• For $i = 1, \ldots, m$, set

$$\varphi_i = \frac{\psi_{q_i}}{\psi} = \frac{\psi_{q_i}}{\sum_{j=1}^m \psi_{q_j}}.$$

This is a well defined C^{∞} function on M since $\psi > 0$.

• We have $\varphi_i \geq 0$, and

$$\sum_{1 < i < m} \varphi_i = \frac{\sum_{i=1}^m \psi_{q_i}}{\sum_{j=1}^m \psi_{q_j}} = 1.$$

• For each i there is $\tau(i) \in A$ such supp $\psi_{q_i} \subset U_{\tau(i)}$, and hence

$$\operatorname{supp}(\varphi_i) \subset \operatorname{supp}(\psi_{q_i}) \subset U_{\tau(i)}.$$

Thus, $(\varphi_i)_{i=1}^m$ is a (finite) C^{∞} partition of unity such that, for each i there is $\alpha = \tau(i)$ in A so that supp $\varphi_i \subset U_{\alpha}$.

Proof of Proposition 13.6 (Part 2)

• Set $I = \{1, ..., m\}$. We have a map $\tau : i \to \tau(i)$ from I to A such that supp $\varphi_i \subset U_{\tau(i)}$. If $\alpha \in \tau(I)$, set

$$\rho_{\alpha} = \sum_{i=1,\ldots,n} \varphi_{i}.$$

Otherwise, set $\rho_{\alpha}=0$. In any case $\rho_{\alpha}\in C^{\infty}(M)$ and $\rho_{\alpha}\geq 0$.

- Here supp $\rho_{\alpha} \neq \emptyset \Leftrightarrow \rho_{\alpha} \neq 0 \Leftrightarrow \alpha \in \tau(I)$. As $\tau(I)$ is finite, this means that all but finitely of the supports supp ρ_{α} are empty, and so the family $\{\text{supp } \rho_{\alpha}\}_{\alpha \in A}$ is locally finite.
- As $I = \bigcup_{\alpha \in \tau(I)} \tau^{-1}(\alpha)$ and $\rho_{\alpha} = 0$ if $\alpha \notin \tau(I)$, we have

$$\sum_{\alpha \in A} \rho_{\alpha} = \sum_{\alpha \in \tau(I)} \rho_{\alpha} = \sum_{\alpha \in \tau(I)} \sum_{i \in \tau^{-1}(\alpha)} \varphi_i = \sum_{1 \le i \le m} \varphi_i = 1.$$

Proof of Proposition 13.6 (Part 2, continued).

- If $\alpha \notin \tau(I)$, then $\rho_{\alpha} = 0$, and hence supp $\rho_{\alpha} = \emptyset \subset U_{\alpha}$.
- If $\alpha \in \tau(I)$ and $i \in \tau^{-1}(i)$, then supp $\varphi_i \subset U_{\tau(i)} = U_{\alpha}$. Thus, by using the lemma of slide 21 we get

$$\operatorname{supp} \rho_\alpha = \operatorname{supp} \big(\sum_{i \in \tau^{-1}(\alpha)} \varphi_i \big) \subset \bigcup_{i \in \tau^{-1}(\alpha)} \operatorname{supp} (\varphi_i) = U_\alpha.$$

Therefore, $\{\rho_{\alpha}\}_{{\alpha}\in A}$ is a C^{∞} -partition of the unity subordinate to $\{U_{\alpha}\}_{{\alpha}\in A}$. The proof is complete.

In general, we have the following result (see Appendix C of Tu's book for a proof).

Theorem (Theorem 13.7; Existence of C^{∞} partition of unity)

Let $\{U\}_{\alpha \in A}$ be an open cover of M.

- (i) There is a C^{∞} partition of unity $(\varphi_k)_{k\geq 1}$ such that, for each integer $k\geq 1$, the support of φ_k is compact and contained in some U_{Ω} .
- (ii) If we do not require compact support, then there is a C^{∞} -partition of the unity $\{\rho_{\alpha}\}_{{\alpha}\in A}$ subordinate to $\{U_{\alpha}\}_{{\alpha}\in A}$.

Remarks

- Part (i) is the substitute for Part 1 of the proof of Proposition 13.6 in the noncompact case.
- We deduce part (ii) from part (i) in a similar way as in Part 2 of Proposition 13.6 by using locally finite sums instead of finite sums.

We shall use partitions of unity throughout the rest of the course. Here is a couple of direct applications.

Proposition (Smooth Urysohn Lemma; Problem 13.3(a))

If A and B are disjoint closed sets in M, then there is $f \in C^{\infty}(M)$ such that f = 1 on A and f = 0 on B.

Theorem

Every closed set in M is the zero set of some non-negative smooth function on M.

Remark

A proof of the above theorem can be found in Chapter 2 of J.M. Lee's book "Introduction to Smooth Manifolds".