

Differentiable Manifolds

§9. Submanifolds

Sichuan University, Fall 2021

Submanifolds

Definition (Regular Submanifold)

Given a manifold N of dimension n , a subset $S \subset N$ is called a *regular submanifold* of dimension k if, for every $p \in S$, there is a chart (U, x^1, \dots, x^n) about p in N such that

$$U \cap S = \left\{ q \in U; x^{k+1}(q) = \dots = x^n(q) = 0 \right\}.$$

Remarks

- ① A chart (U, x^1, \dots, x^n) as above is called an *adapted chart* relative to S .
- ② We call $n - k$ the *codimension* of S .
- ③ We always assume that S is equipped with the induced topology.
- ④ There are other types of submanifolds. By a submanifold we shall always mean a regular submanifold.

Submanifolds

Remark

Let $S \subset N$ be a regular submanifold of dimension k , and $(U, \phi) = (U, x^1, \dots, x^n)$ be an adapted chart relative to S .

- We have $\phi = (x^1, \dots, x^k, 0, \dots, 0)$ on $U \cap S$.
- Define $\phi_S : U \cap S \rightarrow \mathbb{R}^k$ by

$$\phi_S(q) = (x^1(q), \dots, x^k(q)), \quad q \in U \cap S.$$

Then ϕ_S is a homeomorphism from $U \cap S$ onto its image

- Let (r^1, \dots, r^n) be the coordinates in \mathbb{R}^n . We have

$$\phi_S(U \cap S) \times \{0\}^{n-k} = \phi(U \cap S) = \phi(U) \cap \{r^{k+1} = \dots = r^n = 0\}.$$

Thus, $\phi_S(U \cap S) \times \{0\}^{n-k}$ is open in $\mathbb{R}^k \times \{0\}^{n-k}$, and so $\phi_S(U \cap S)$ is an open in \mathbb{R}^k .

- It then follows that $(U \cap S, \phi_S)$ is a (continuous) chart for S .

Submanifolds

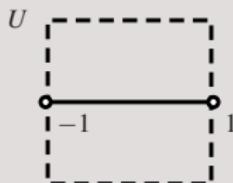
Example

Any open set $U \subset \mathbb{N}$ is a regular submanifold of codimension 0.

Example

- The open interval $S = (-1, 1)$ on the x -axis is a regular submanifold of dimension 1 of the xy -plane.
- An adapted chart is (U, x, y) , with $U = (-1, 1) \times (-1, 1)$, since

$$U \cap \{y = 0\} = (-1, 1) \times \{0\} = S.$$



Submanifolds

Facts

Let $(U, \phi) = (U, x^1, \dots, x^n)$ and $(V, \psi) = (V, y^1, \dots, y^n)$ be adapted charts relative to S about a point $p \in S$. Denote by (r^1, \dots, r^n) the coordinates in $\mathbb{R}^n = \mathbb{R}^k \times \mathbb{R}^{n-k}$.

- On $U \cap V \cap S$ we have

$$\begin{aligned}\phi &= (x^1, \dots, x^k, 0, \dots, 0) = (\phi_S, 0, \dots, 0), \\ \psi &= (y^1, \dots, y^k, 0, \dots, 0) = (\psi_S, 0, \dots, 0).\end{aligned}$$

- Thus, on $\phi(U \cap V \cap S) = \phi_S(U \cap V \cap S) \times \{0\}^{n-k}$ we have
 $\psi \circ \phi^{-1}(r^1, \dots, r^k, 0, \dots, 0) = (\psi_S \circ \phi_S^{-1}(r^1, \dots, r^k), 0, \dots, 0).$

- As $\psi \circ \phi^{-1} = (y^1 \circ \phi^{-1}, \dots, y^n \circ \phi^{-1})$, we get

$$\psi_S \circ \phi_S^{-1} = (z^1, \dots, z^k), \quad \text{where } z^i = y^i \circ \phi^{-1}(r^1, \dots, r^k, 0, \dots, 0).$$

In particular, the transition map $\psi_S \circ \phi_S^{-1}$ is smooth.

Submanifolds

Proposition (Proposition 9.4)

Let S be a regular submanifold of dimension k in a manifold N of dimension n . Let $\{(U, \phi)\}$ be a collection of adapted charts relative to S that covers S . Then:

- 1 The collection $\{(U \cap S, \phi_S)\}$ is a C^∞ atlas for S .
- 2 S is a manifold of dimension k .

Remark

It can be shown that the differentiable structure on S defined above is unique, i.e., it does not depend on the choice of the collection $\{(U, \phi)\}$.

Level Sets of a Function

Definition

- Given $F : N \rightarrow M$ and $c \in M$, the preimage $F^{-1}(c)$ is called a *level set* of level c .
- When $M = \mathbb{R}^m$ we call $F^{-1}(0)$ the *zero set* of F and denote it by $Z(F)$.

Reminder

If $F : N \rightarrow M$ is a smooth map, then we say that c is a regular value when, either $c \notin F(M)$, or for every point $p \in F^{-1}(c)$ the differential $F_{*,p} : T_p M \rightarrow T_c N$ is onto.

Level Sets of a Function

Definition

Let $F : N \rightarrow M$ be a smooth map, and let $c \in M$.

- If c is a regular value, then $F^{-1}(c)$ is called a *regular level set*.
- If $M = \mathbb{R}^m$ and 0 is a regular value, then we say that $Z(F)$ is a *regular zero set*.

Remark

Let $f : N \rightarrow \mathbb{R}$ be a smooth function.

- If $p \in N$, then $f_{*,p} : T_p M \rightarrow T_{f(p)} \mathbb{R} \simeq \mathbb{R}$ is onto if and only if it is non-zero.
- If $c \in f(N)$, then $f^{-1}(c)$ is a regular level set if and only if $f_{*,p} \neq 0$ for all $p \in f^{-1}(c)$.

Level Sets of a Function

Example (Example 9.6; the 2-sphere in \mathbb{R}^3)

- The unit sphere $\mathbb{S}^2 \subset \mathbb{R}^3$ is the zero set of the function,

$$f(x, y, z) = x^2 + y^2 + z^2 - 1.$$

- For every $p = (x, y, z) \in \mathbb{S}^2$ we have

$$\left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p), \frac{\partial f}{\partial z}(p) \right) = (2x, 2y, 2z) \neq (0, 0, 0).$$

Therefore, \mathbb{S}^2 is a regular zero set.

Level Sets of a Function

Example (The 2-sphere in \mathbb{R}^3 ; continued)

- Suppose that $p = (x(p), y(p), z(p))$ is such that $x(p) \neq 0$.
- The Jacobian matrix of $F(x, y, z) = (f(x, y, z), y, z)$ is

$$J(F) = \begin{bmatrix} \partial f / \partial x & \partial f / \partial y & \partial f / \partial z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2x & 2y & 2z \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

- $J(F)(p)$ is invertible, since $x(p) \neq 0$.
- By Corollary 6.27 there is an open U about p such that $(U, F|_U) = (U, f|_U, y|_U, z|_U)$ is a chart about p in \mathbb{R}^3 .

Level Sets of a Function

Example (The 2-sphere in \mathbb{R}^3 ; continued)

- Set $u^1 = y|_U$, $u^2 = z|_U$, and $u^3 = f|_U$. Then (U, u^1, u^2, u^3) is a chart about p in \mathbb{R}^3 , and we have

$$\{u^3 = 0\} = \{f|_U = 0\} = U \cap \{f = 0\} = U \cap \mathbb{S}^2.$$

Thus, (U, u^1, u^2, u^3) is an adapted chart relative to \mathbb{S}^2 .

- Similarly, if $y(p) \neq 0$ or $z(p) \neq 0$, then there is an adapted chart about p .
- Therefore, $\mathbb{S}^2 \subset \mathbb{R}^3$ is a regular submanifold of codimension 1.

Level Sets of a Function

More generally, we have the following result:

Theorem (Theorem 9.8)

Let $g : N \rightarrow \mathbb{R}$ be a smooth function. Any non-empty regular level set $g^{-1}(c)$ is a regular submanifold of codimension 1.

Remark

A codimension 1 submanifold is called a *hypersurface*.

Level Sets of a Function

Example (Example 9.11)

Let S be the solution set of $x^3 + y^3 + z^3 = 1$ in \mathbb{R}^3 .

- S is the zero set of $f(x, y, z) = x^3 + y^3 + z^3 - 1$.
- If $p = (x, y, z) \in S$, then

$$\left(\frac{\partial f}{\partial x}(p), \frac{\partial f}{\partial y}(p), \frac{\partial f}{\partial z}(p) \right) = (3x^2, 3y^2, 3z^2) \neq 0.$$

Thus, every $p \in S$ is a regular point.

- Therefore, S is a regular zero set, and so this is a regular hypersurface.

Level Sets of a Function

Example (Example 9.13; Special Linear Group)

- Let $\mathbb{R}^{n \times n}$ be the vector space of $n \times n$ matrices with real entries. The general linear group is

$$\mathrm{GL}(n, \mathbb{R}) = \{A \in \mathbb{R}^{n \times n}; \det A \neq 0\}.$$

This is an open set in $\mathbb{R}^{n \times n}$, and so this is a manifold of dimension n^2 .

- The *special linear group* is

$$\mathrm{SL}(n, \mathbb{R}) = \{A \in \mathrm{GL}(n, \mathbb{R}); \det A = 1\}.$$

This is the level set $f^{-1}(1)$ of the function $f(A) = \det A$.

Level Sets of a Function

Example (Special Linear Group, continued)

- If $A = [a_{ij}] \in \mathrm{GL}(n, \mathbb{R})$ and $m_{ij} = \det S_{ij}$ is the (i, j) -minor, then

$$\frac{\partial f}{\partial a_{ij}} = (-1)^{i+j} m_{ij}.$$

- If $A \in \mathrm{GL}(n, \mathbb{R})$, then at least one minor is non-zero, and so A is a regular point of f .
- In particular, every $A \in \mathrm{SL}(n, \mathbb{R})$ is a regular point.
- Therefore, $\mathrm{SL}(n, \mathbb{R})$ is a regular level set, and so this is a regular hypersurface in $\mathrm{GL}(n, \mathbb{R})$.

The Regular Level Set Theorem

Even more generally we have:

Theorem (Regular Level Set Theorem; Theorem 9.9)

Let $F : N \rightarrow M$ be a C^∞ map. Any non-empty regular level set $F^{-1}(c)$ is a regular submanifold of codimension equal to $\dim M$.

The Regular Level Set Theorem

Example (Example 9.12)

Let S be the solution set in \mathbb{R}^3 of the polynomial equations,

$$x^3 + y^3 + z^3 = 1, \quad x + y + z = 0.$$

- By definition S is the level set $F^{-1}(1, 0)$, where $F : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ is the smooth function given by

$$F(x, y, z) = (x^3 + y^3 + z^3, x + y + z).$$

- The Jacobian matrix of F is

$$J(F) = \begin{bmatrix} 3x^2 & 3y^2 & 3z^2 \\ 1 & 1 & 1 \end{bmatrix}.$$

It has rank 2 unless $x^2 = y^2 = z^2$, i.e., $x = \pm y = \pm z$.

- For such a point $F(x, y, z) = \lambda(x^3, x) \neq (1, 0)$, so all the points of S are regular points.
- Thus, S is a regular level set of F , and so this is a regular submanifold of codimension 2.