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Tangent Vectors in R”

Reminder

In Section 2 we saw two equivalent ways to describe a tangent
vector at a given point p € R":

(i) As an arrow emanating from p and represented by a column
vector,

(i) As a derivation at p of C3°, the algebra of germs of C*°
functions at p.




Tangent Vectors in R”

The correspondence between the two approaches is given by

Vl

o ;0
Vector v = | : | <— Derivation D, = Z v'

ox’

P

@ The derivation approach is easier to generalize to manifolds.

e We are going to use this approach to define tangent vectors
and the tangent space for manifolds.




The Tangent Space at a Point

o Let .#,(M) consist of pairs (U, f), where U is an open
neighborhood of p and f : U — R is a C* function.

e On .Z,(M) we define an equivalence relation by
(U,f) ~(V,g) <= f = g near p.

Thus, f ~ g means there is an open W C U N V such that
pe W and f =gon W.

Definition

@ The equivalence class of (U, f) is called the germ of f at p.

@ The quotient #,(M)/~ is denoted C5°(M); this is the set of
germs of C* functions at p.
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The Tangent Space at a Point

o C;°(M) is a vector space with respect to the scalar
multiplication and the addition given by

A-(germ at p of f) =germ at p of Af, A €R,
(germ at p of ) + (germ at p of g) = germ at p of f + g.

° C;;O(M) is also an algebra with respect to the multiplication
given by

(germ at p of 1) - (germ at p of g) = germ at p of fg.




The Tangent Space at a Point

Let U be an open set in M containing p.
e As .Z#,(U) C Zp(M) we get an inclusion,

Co(U) C G (M).

o As (V,f) e Zp(M) and (VN U, fiyny) are equivalent, we
actually have an equality. That is,

GO (U) = C°(M).
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The Tangent Space at a Point

A derivation at p is any linear map D : C;°(M) — R such that
D(fg) = (Df)g(p) + f(p)Ds-

© By abuse of notation, we use the same letter f or g to denote
a function and its germ at p.

© The set of all derivations at p is a subspace of the space of
linear maps C;° — R.

e The tangent space of M at p, denoted T,(M) or T,M, is the
vector space of all derivations at p.

@ An element of T,(M) is now called a tangent vector at p.




The Tangent Space at a Point

For M = R"” we recover the description of the tangent space
T5(R") in terms of derivations.

Example (see Remark 8.2)

@ Let U be an open in M containing p. As C;°(U) = C;°(M),
we see that

Tp(U) = Tp(M).
@ In particular, if M = R”, then

T,(U) = To(R") ~R".




The Tangent Space at a Point

Let (U,¢) = (U,x%,...,x") be a chart about p in M. Denote by

(r',...,r") the standard coordinates in R” (so that x' = r’ o ¢).
@ By definition, if f is C* at p, then
0 0
z = — f -1 R
8X’ 8r’ )( ° qb ) <
(fg 8X1| f +f( )8X1| g
° Iff:gnearp, then aX,’ r = 8X,| g.
6‘9, , induces a map,
0
—| :CX® R.
Ox! o P —

We obtain a derivation at p, i.e., a tangent vector at p.




The Tangent Space at a Point

@ We sometimes write 8‘1,- instead 8‘1; ’p when it is understood

that derivatives are evaluated at the point p.

@ When M has dimension 1 and t is a local coordinate, we write
d - 6]
7 instead of 5t

)

p7"')8Xn

o We will see later that {%

p} is a basis of T,(M).
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The Differential of a Map

Let F: M — N be a C* map, where M and N are manifolds.
® Given X € T,(M) define F.(X) : C&,,(N) — R by
F.(X)f = X(F o f), f € CE(p)(N).
e F.(X) is a linear map.

@ As X is a derivation at p, we have
F(X)(fg) = X[(f o F)(g o F)]
= X[(foF)l(goF)p)+(foF)p)XI[(goF)
= [F(X)f]g (F(p)) + f (F(p)) [F+(X)g].

That is, F.(X) is a derivation at F(p), i.e., F.(X) € Tr(,)(N).
o We thus get a map F. : To(M) — Tr(p)(N), X — Fu(X).
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The Differential of a Map

The map F.: Tp(M) — Tg(p)(N) is linear, since we have
F.(AX)f = AX(f o F) = AF.(X)f,
FA(X+Y)f =X(foF)+ Y(foF)=F.(X)f + F.(Y)f.

The linear map F. : Tp(M) — Tg(p)(N) is called the differential of
F at p.

@ To emphasize the dependence on the point p we sometimes
write F, , for F,.

@ There are various notations for the differential. For instance,
it also denoted d,F, dF(p), DpF or even F'(p).

12 /37



The Differential of a Map

Example
Let F:R” — R™ be a C* map. Denote by (x!,...,x") the
coordinates on R” and by (y!,...,y™) the coordinates on R™. Set

F=(F,....,F™).
@ Let p € R". Then {% >

} is a basis of T,(R").

e
@ Likewise, {%‘F
@ Given any f € C°° (R™), we have

F(p)
0 0
F<8XJ )f o,

This means that F, (8XJ ) =3 %(P if‘,:

e ayim|F(p)} is a basis of Tr(,)(R™).

T OF! 9

(For) =3 2 () 2
7 OX 0y ()

f.

In other words, the matrix of F, relative to the bases 157 j{ }

and {87,-|,__(p)} is precisely the Jacobian matrix [g%(p)]
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The Chain Rule

Let F: N — Mand G: M — P be C* maps. Given any p € N
the differentials F, , and G*’F(p) are linear maps,

) G*,Fp

F,
To(N) =3 Trp)(M " Te(ro)) (P)-

Theorem (Theorem 8.5; Chain Rule)

IfF:N— Mand G: M — P are C>* maps, then, for every
p € N, we have

(G o F)*,p = G*J:(p) O F*7p.
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The Chain Rule

RENEILS

Let 1y : M — M be the identity, and let p € m. Given
X € Tp(M) and f € C;°, we have

(L) (X)f = X(f o Ly) = XF.

Thus, (1y).«(X) = X, and so the differential (1), is the identity
map L7 vy Tp(M) — Tp(M).

Corollary (Corollary 8.6)

If F: N — M is a diffeomorphism, then, for every p € N, the
differential F. , : ToN — TgpyM is an isomorphism of vector
spaces.

Corollary (Corollary 8.7; Invariance of Dimension)

If an open U C R" is diffeomorphic to an open V C R™, then we
must have n = m.
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Bases for the Tangent Space at a Point

Let (U, ) = (U,x*,...,x") be a chart about p in M. Denote by
(r',...,r") the coordinates in R". Then:

@ The map ¢: U — ¢(U) C R" is a diffeomorphism.

@ The differential F, , is an isomorphism from T,(U) = T,(M)
to T¢( )(U) = T¢( )R"

o {2 ‘qﬁ(p)""’ar” )} is @ basis of Ty()(R").

@ By definition of ¢, and %}p, if fe Cgfp)( ™), then
0 0 0 0

@( ,. )f: (oo =g [Fodroo™) =g 7
Gy O 'l o(p) g
Thus
' 0 0
X p " lo(p)

16
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Bases for the Tangent Space at a Point

To sum up:
o The differential ¢y p: T,M — T¢( yR™ is an isomorphism.

@ It maps the family {881‘ } in T,M to the basis

o ax"
d
{57 ooy > 9l } Of TotmR
We deduce from this the following result:

Proposition (Proposition 8.9)

If (U,x,...,x") is a chart about p in M, then {%}p, ooy A
is a basis of T,M. In particular, T,M has dimension n.

Corollary (Invariance of Dimension)

If M and N are diffeomorphic manifolds, then dim M = dim N.
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Bases for the Tangent Space at a Point

Proposition (Proposition 8.10)

Let (U,x%,...,x") and (V,y, ...

Then, on UN V we have

a n
50 = 2

,¥") be charts around p in M.
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Bases for the Tangent Space at a Point

© There are alternative definitions of the tangent space T,M.
© What is important to keep in mind is the following:

e The tangent space T,M is a vector space that has basis
p}, where (x1,...,x") are local coordinates.

{i’ 0

X lpr- 7 9xn

e We keep the same vector space upon changing local
coordinates.
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Local Expression for the Differential

Let F: N — Mbea C®mapandpc N. Let (U,x%,...,x") be a
chart around p in N and (V,y!,...,y™) a chart around F p) in M

o As {%‘p} and {aiy,-‘,__(p)} are bases of T,N and Tg(,yM,

there are constants a’-‘ such that

) n, 0
F*<. ) K j=1,...,n.
0xI 1, kzjay F(p)
@ Set F/ =y’ o F. We have
o) ) , _OF!
F(af )y‘axfp(””—axj(")'
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Local Expression for the Differential

e As g—;’i = &} (see Proposition 6.22), we get
IEEIIN IS WL A WL B
9 9 J 7k Jr
<k 1 oy* Oy* F(p) k=1
@ This shows that a = 5 J( ). Thus,
0 = OF' 0
F* < > - -\P A ) J = 17 . ) N
O p) i 0V R
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Local Expression for the Differential

Therefore, we have obtained the following result:

Proposition (Proposition 8.11)

Let F: N — M bea C>® mapandp e N. Let (U,x,...,x") be a
chart around p in N and (V,y,...,y™) a chart around F(p) in

g 0 0
M. Then, relative lto the tfases {W’p} and {W’F(p)} of T,N
and Tg,)M, the differential F. p : ToN — Tp,)M has matrix

[apf

o (p) i where F' = y' o F.

1<j<n




Local Expression for the Differential

Remark (Remark 8.12)

@ The inverse function theorem for manifolds (Theorem 6.26)
asserts that F is locally invertible at p if and only if

det [g—g(p)] # 0.

@ Therefore, we obtain the following coordinate-free description
of this result:

Theorem (Inverse Function Theorem)
Let F: N — M bea C* map and p € N. TFAE:
@ F is locally invertible at p.

@ The differential F, : T,N — TF(p)M is an isomorphism.
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Curves in a Manifold

@ In classical differential geometry (i.e., differential geometry of
surfaces) the tangent plane at a point p of surface S € R3 is
defined in terms of tangent vectors of curves in S through p.

@ We shall now see an analogous description of the tangent
space for general manifolds.
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Curves in a Manifold

Definition

@ A smooth curve in manifold M is any smooth map c: | — M,
where [ is some open interval in R.

@ We say that a smooth curve ¢ : | — M starts at a given point
p € M when 0 € | and ¢(0) = p.

Definition (Velocity Vector)

Let c: | — M be a smooth curve and ty € /. Its velocity vector
(or velocity) at t = ty is

d
"(to) := ¢ | —
¢ (to) C<dtt0

@ We also say that ¢/(tp) is the velocity vector at c(tp).

) S Tc(to) M.

@ The velocity vector c/(to) is also denoted %(to) and %‘toc.
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Curves in a Manifold

Suppose that M = R" with coordinates (x!,...,x"). Let
c : | — R” be a smooth curve, and set c(t) = (ci(t),...,c"(t)).

e Giventpe I, if f C(t)( "), then

d d
/ _ 9 _ 9
Cc (to)f = C*< o t0>f = .

@ Thus n .
' dc’ 0
() =) —(to)s—| -
C( 0) Iz:; dt ( 0)8XI (1)
e That is, c/(tp) is the derivation at c(ty) defined by the vector,

dct dc" dc n

Therefore, we recover the usual notion of velocity vector from
calculus and classical differential geometry.

n

() = 3 2 (t0) 2L (c(ta).
i=1

26
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Curves in a Manifold

Proposition (Proposition 8.16; see Tu's book)

For any point p € M and any tangent vector X € T,M, there is a
curve ¢ : (—e,€) — M starting at p with initial velocity c’(0) = X.

Corollary

For every p € M, we have

TpoM = {c'(0); c¢: 1 — M smooth curve starting at p} .

RENEILS

This interpretation of the tangent space is the analogue for smooth
manifolds of the description of the tangent plane of surfaces in
classical differential geometry in terms of tangent vectors of curves.
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Curves in a Manifold

Remark (see Proposition 8.17)

Given p € M and X € T,M, let ¢ : | — M is a smooth curve
starting at p such that ¢’(0) = X. Then, for every f € C°(M), we

have ;
Xf = c(0)f = c. (

= (f o c)(2)-

t=0

)=
o dt

This provides us a more geometric description of tangent vectors
as directional derivatives.
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Computing the Differential Using Curves

Facts

Let F: N — M be a smooth map. Given p € N and X € T,N let
c: 1 — N be a smooth curve such that ¢(0) = p and ¢’(0) = X.

@ Foc: | — Mis asmooth curve in M starting at
F(c(0)) = F(p)-

o By the Chain Rule (F oc).0= F, ) ©¢0= Fipocup

@ Therefore, the velocity vector of Focatt =0 is

d d
= F * o
0) ,p[c ’O<dt

(Foo/ @ =(Foo), (5

e As c’(0) = X, we get
(Foc) (0) = Fu(X).

)] = Fee el
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Computing the Differential Using Curves

Proposition (Proposition 8.18)

Let F: N — M be a smooth map. Given p € N and X € T,N, for
any smooth curve c : | — N starting at p and with velocity vector
X at p, we have

F.(X) = (Foc) (0).

That is, F.(X) is the velocity vector at F(p) of the curve
Foc:l— M.

This description of the differential of a smooth map is the
analogue of the definition of the differential in terms of curves in
Classical Differential Geometry.
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Submersions and Immersions

Definition (Immersion)

Let F: N — M be a smooth map.

© We say that F is an immersion at a point p € N when the
differential F : ToN — TF(,)M is injective.

@ We say that F is an immersion when it is an immersion at
every point p € .

If Fis an immersion at p, then dim N < dim M.

If n < m, then the inclusion of R” into R™

(x, ..., x") — (x},...,x",0,...,0)

is an immersion.
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Submersions and Immersions

Definition (Submersion)

Let F: N — M be a smooth map.

© We say that F is a submersion at a point p € N when the
differential F. : ToN — TF(,)M is surjective.

@ We say that F is a submersion when it is a submersion at
every point p € .

If F is a submersion at p, then dim N > dim M.

If n > m, then the projection of R"” into R™

(XM o™ x™) — (XL x™)

is a submersion.
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Submersions and Immersions

@ If U is an open in R", the inclusion of U into R” is both an
immersion and submersion.

@ This example shows that a submersion need not be onto.

A more detailed account on immersions and submersions will be
given in Section 11.
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Rank, Critical and Regular Points

Definition (Rank of a Smooth Map)

If F: N — M is a smooth map and p € N, then the rank of the
differential F. : T,N — TF(,)M is called the rank of F at p and is
denoted by rk F(p).

| A

Remark

We have
F is an immersion at p <= rk F(p) = dim IV,
F is a submersion at p <= rk F(p) = dim M.
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Rank, Critical and Regular Points

Definition (Critical and Regular Points)
Let F : N — M be a smooth map, and let p € N.

o We say that p is a critical point of F when the differential
Fi: ToN — Tr(p)M is not surjective.

@ Otherwise we say that F is a regular point of F.

We have
p is a regular point <= F is a submersion at p
<= rk F(p) = dim M.
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Rank, Critical and Regular Points

Definition (Critical and Regular Points)
Let F: N — M be a smooth map, and c € M.

@ We say that c is a critical value of F when it is the image of a
critical point, i.e., the preimage F~1(c) contains a critical
point.

@ Otherwise we say that c is a regular value of F.

RENEIS

© If c is a critical value, then its preimage may contain regular
points, but it contains at least one critical points.

@ Any point of M\ F(N) is a regular value.

© If c € F(M), then c is a regular value if and only if every
point of F~1(c) is a regular point.
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Rank, Critical and Regular Points

Let f : M — R be a smooth function, and p € M.

o The differential f. , is a linear map from T,M to Tf(p)R ~ R.
o Therefore, it is either onto or zero.

Proposition (Proposition 8.23)
Let f : M — R be a smooth function. Given any p € M, TFAE:

© p is a critical point of f.
@ The differential f, ,, is zero.
© There is a chart (U,x*,...,x") about p in M such that

of
ox!

(p)=0 fori=1,...,n.
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