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Differential 1-Forms and the Differential of a Function

Definition (Cotangent Space)

The cotangent space to R" at p, denoted by T;(]R”) or T;R", is
the dual space T,(R")" of the tangent space T,(R").

Remark

In other words an element of T;(IR") is just a covector or linear
form on T,(R").

Definition (Differential 1-Forms)

A differential 1-form (or covector field, or simply I-form) on an
open subset U C R” is a function w that assigns to each p € U a
covector w, € T (R"),

w:U— | TZ®RT),  p— w, e THR.
peU




Differential 1-Forms and the Differential of a Function

Definition (Differential of a Function)
The differential of a C*° function f : U — R is the 1-form df
defined by

(df)p(v) = D, f forall pe U and v € T,(R").

Remarks
@ If X =" a2 is any vector field on U, then

(df)p(Xp) = Xof = ( => a(p) 8XJ

© We also denote by df‘p the value of df at p.




Differential 1-Forms and the Differential of a Function

e If x!,...,x" are the coordinate functions, then

. . )
(dx')p(v) = V' for any v = Z VJ@L in T,(R").
@ In particular, we have

@a(5a],) =81 ¢ Tl 2t

Proposition (Proposition 4.1)

{(dx")p,...,(dx"),} is a basis of the cotangent space T;(R").
This is the dual basis of the basis {% veoy o]} of the

x1 | p x" | p
tangent space T,(R").




Differential 1-Forms and the Differential of a Function

O If wis a 1-form on U, then, for every p € U, we have a unique
decomposition,

wo =Y ailp)(d)p,  ailp) ER

Q@ We write .
w = Z ajdx’,

where the coefficients a' now are functions on U.

Definition

We say that the 1-form w is C*° when all the coefficient functions
ai,...,an are all C* on U.

A\




Differential 1-Forms and the Differential of a Function

Proposition (Proposition 4.2; the differential in coordinates)
Iff: U— Risa C*> function, then

df =

If f is a C*° function on U, then its differential df is a C* I-form.

The definition of dx?!, ..., dx" as 1-forms gives a rigorous meaning
to this notation in elementary calculus.
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Differential k-Forms

Definition

A differential form of degree k (or a k-form) is a function w that
assigns to each p € U an alternating k-linear form on the tangent
space T,(R"), i.e., wp € Ac(Tp(R")).

@ As Ai(Tp(R")) = T;(R,), this generalizes the notion of
1-form.

@ As Ag(Tp(R")) =R, a 0-form is just a function on U.

© There are no non-zero forms of degree k > n, since
dim T,(R") = n, and hence A, (Tp(R")) = {0} for k > n.
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Differential k-Forms

If I = (i,...,i) is an ascending k-index i1 < ... < ik the k-form
dx' is defined by

(dxl)p:dxg/\~~/\dxl’;k, peU.

Reminder (see Proposition 3.29)

At each point p the k-covectors dxlg form a basis of Ai(T,(R")).




Differential k-Forms

Q If wis a k-form, then, at each point p, we have a unique
decomposition,

Wp = Z al(p)dX/.I)a a/(p) € R7

where the summation goes over all ascending k-indices.

Q@ We write
w = Z adx!,

where the coefficients a; now are functions on U.

Definition

We say that the k-form is C°° on U when the coefficient functions
a; are all C*° on U.




Differential k-Forms

Definition
QK(U) is the vector space of all C* k-forms on U.

QO(U) = C*>°(U), since 0-forms are functions.
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Differential k-Forms

Definition (Wedge Product)

Given a k-form w and an /-form 7, their wedge product is defined
pointwise,

(WAT), =wpATp, peU.

p

© If we write w = ajdx! and 7 = 3 bydx”?, then

WAT = Za,dexl A dx”.
1,J

@ If / and J are not disjoints, then dx’ A dx? = 0. Thus,

WAT = Z arbydx! A dx”.
1,J disjoint
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Differential k-Forms

@ The wedge product is a bilinear map,
A QK(U) x QYU) — Q).

@ This bilinear map is anticommutative and associative (cf.
Proposition 3.21 and Proposition 3.25).

o As Q°(U) = C>(U), for k = 0 the wedge product reduces to
the pointwise multiplication of differential forms by functions,

(f Aw)p = f(p) Awp = f(pP)wp.

Thus, if £ € C®(U) and w € Q(U), then f Aw = fw.
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Differential k-Forms

Let x, y, z be the coordinates in R3.
@ The C™ 1-forms on R3 are

fdx + gdy + hdz, f,g, he C®(R3).
@ The C*™ 2-forms on R3 are
fdx A dy + gdx A dz + hdy A dz, f,g, he C(R3).
@ The C> 3-forms on R? are

fdx A dy A dz, f € C®(R3).
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Differential k-Forms

Define

n

Q*(U) = éﬂk(U) =P k).
k=0

k=0

@ With the wedge product as multiplication and the degree of a
form as grading, Q*(U) is an anticommutative graded algebra.

@ With respect to the pointwise multiplication of functions, this
is also a module over the ring C>(U).
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Differential Forms as Multilinear Functions on Vector Fields

If wis C*° 1-form and X is a C* vector field on an open subset
U C R", the function w(X) on U is defined by

w(X)p = wp(Xp), pe U.

o In coordinates, if w = > a;dx’ and X = 5 b"% with
ai, b/ € C>(U), then

w(X) = ab'.

@ This shows that w(X) is a C*> function on U.
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Differential Forms as Multilinear Functions on Vector Fields

Let w be a C*° 1-form on U.

@ Given any function f € C*°(U) and any vector field
X € Z'(U), we have

o Set .Z(U) = C>°(U). Then the 1-form w defines an
Z (U)-linear map,

Z'(U)> X — w(X) € Z(V).
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Differential Forms as Multilinear Functions on Vector Fields

Fact
Similarly, any C* k-form w on U defines a k-linear map over
7 (U),

%(U) X oooo X %(U)—)y(U), (Xl,...,Xk)—)w(Xl,...,Xk),

k times

WXt XK = wp (X)ps - (Xe)p),  peEU.
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Exterior Derivative

Definition (Exterior Derivative)

The exterior derivative of a C*° k-form on U is defined as follows:

@ For k = 0 the exterior derivative of a O-form (i.e., a C*
function) f on U is its differential,

of
ox!

o For k > 1, the exterior derivative of w = 3" a;dx’ € QK(U) is

dw:Zda,/\dx’:Z Z@df A dx!.

o If w e QK(U), then dw € QKL(U).
e In particular, dw = 0 for all w € Q" (V).

df = dx’.
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Exterior Derivative

Let w = fdx + gdy be a 1-form on R2, where f,g € C®(R?). Set
f, = 0f /Ox and f, = Of /Oy. Then

dw = df A dx + dg A dy
= (fedx + f,dy) A dx + (gxdx + gy, dy) A dy
= f,dy N dx + gydx A dy
= (gx — f,)dx A dy.
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Exterior Derivative

Definition (Antiderivation of a Graded Algebra)

Let A= @®5°  AX be a graded algebra over a field K.
@ An antiderivation of A is any linear map D : A — A such that

D(ab) = (Da)b + (—1)kaDb  for all a € A* and b € A.

o We say that D has degree m when D(AK) ¢ AK*m for all k.

@ We can extend the grading to negative integers by setting
Ak = {0} for k < 0.

@ This allows the degree m to be negative.
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Exterior Derivative

Reminder

Q*(U) = ®QK(U) is a graded algebra over R.

Proposition (Proposition 4.7)
The exterior derivative d : Q*(U) — Q*(U) has the following
properties:

(i) It is an antiderivation of degree 1, i.e., it is a linear map such

that
? d(w A7) = (dw) AT+ (—1)%8% A dr.

(i) d®> =0, i.e., d(dw) =0 for all w € Q*(V).
(i) IFf € C(U) and X € 2°(U), then (df)(X) = XF.

Proposition (Proposition 4.8)

The exterior derivative is the unique map D : Q*(U) — Q*(U)
with the properties (i)—(iii) above.
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Closed and Exact Forms

Let w € Qk(V).
© We say that w is closed when dw = 0.

@ We say that w is a exact when there is 7 € Q¥"1(U) such
that w = dr.

RENEIS

@ As d(d7) = 0 any exact k-form on U is closed. The converse
may or may not hold depending on U.

© We have
w is closed <= w € kerd,

w is exact <= w € rand.




Closed and Exact Forms

Example
If fis a C* function on U, then

of of
ZidX 0 <~ %——8)(”—0

Thus, df = 0 if and only if f is constant on each connected
component of U.
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Closed and Exact Forms

Example (see Exercise 4.9)

Consider the following 1-form on R2 \ 0,
-y

= d dy.
X2+ y2 X+X2+y2 Y

Then w is closed, but it is not exact.

Remark
e If f € C>°(R?\0) is such that df = w, then it can be checked
that if(cos t,sint) = 1.
@ This implies that fzﬂ 4 f(cost,sint)dt = 21 # 0.

@ This is impossible, since

f027r 9 f(cost,sin t)dt = f(cost,sin t)|¢—or — f(cost,sin t)|¢—o = O.
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Closed and Exact Forms

Theorem (Poincaré Lemma; see Corollary 27.13)

If U is star-shaped about a point and k > 1, then every closed
form w € QX(U) is exact.

RENES

@ In particular, any closed k-form on R” or an open ball with
k > 1 is exact.

@ Poincaré Lemma is a special case of a more general result for
“contractible manifolds” (see Section 27 of Tu's book).

© A direct proof of Poincaré Lemma can be found in the book
Introduction to Smooth Manifolds by John M. Lee.
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Applications to Vector Calculus

A vector valued function on an open subset U C R3 is a function,

F=(P,Q,R): U—R>.

Remark
A vector valued function assigns to each p € U a vector

F, € R® >~ T,(R3)

Therefore, a vector valued function on U can also be thought of as
a vector field on U. |
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Applications to Vector Calculus

Reminder

Gradient, curl and divergence are operators on scalar-valued

functions and vector-valued functions,

d | di
{scal. func.} =5 {vect. func.} =5 {vect. func.} =% {scal. func.},

0/0x [ £,
gradf = [0/oy| f = |f,|,
f

0/0z

Z

I Ry_QZ
— _(RX_PZ) ;
[ & —Py




Applications to Vector Calculus

© We identify 1-forms and vector fields on U via

P
Pdx + Qdy + Rdz +— {Q] .
R

@ Under this identification, for any f € C*°(U), we have

fx
df = fudx + f,dy + f,dz +— {fy] = gradf.
f,
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Applications to Vector Calculus

@ We also identify 2-forms with vector fields,

P
Pdy A dz+ Qdz A dx + Rdx A dy +— | Q
R

@ For any 1-form w = Pdx + Qdy + Rdz, we have

dw = (R, — Q;)dy Ndz— (R« — P,)dz A dx + (Qx — P, )dx A dy.

R, — Q P
dw<+— |—(R« — P;)| =curl | Q] .
Qx— Py R

Thus,
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Applications to Vector Calculus

@ We identify 3-forms with functions

fdx Ndy N dz «— f

@ For any 2-form w = Pdy A dz + Qdz A dx + Rdx A dy we have
dw = (Px+ Q, + R;)dx A dy A dz.

Thus, P

dw — Py + Q, + R, =div | Q
R
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Applications to Vector Calculus

Summary

If U is an open subset of R3, then, under the identification of
differential forms with functions and vector fields, the exterior
derivative corresponds to the operators grad, curl and div:

QO(U) —2— QNU) — Q2(U) —% Q3(V)
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Applications to Vector Calculus

Consequence

If U is an open subset of R3, then the equality d o d = 0 on Q°(U)
and Q(U) translates into the following:

Proposition (Proposition A)

For every function f € C*°(U), we have

curl(grad f) =

o O O

Proposition (Proposition B)
For every vector field F € 2 (U), we have

div(curl F) = 0.
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Applications to Vector Calculus

Consequence

@ If U is an open subset of R3, then a C vector field
F=(P,Q,R) on U is the gradient of a function f € C*(U)
if and only the corresponding 1-form Pdx + Qdy + Rdz is df.

@ Therefore, Poincaré Lemma for 1-forms translates into:

Proposition (Proposition C)

Assume that U is a star shaped open subset of R3. Then a C*
vector field F on U is the gradient of a function f € C*°(U) if and
only if curl F = 0.

V.
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Convention on Subscripts and Superscripts

Convention (Covectors)

o Coordinates x!, ..., x" and multicovectors/forms w', . .. )"

are indexed by superscripts.

@ The coordinates of k-forms with respect to the basis {dx’}
are index by subscripts,

w = a;dx’ w= adx’.
Z i ; Z )

@ The subscripts in a; and a; “cancel out” the superscripts in
dx’ and dx’.
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Convention on Subscripts and Superscripts

Convention (Vectors)

0 0

Coordinate vector fields 577, ..., 5.7 are considered to have
subscripts, since the index i in 8?(,- is in the lower half of the
fraction.

Vectors vi, ..., vx and vector fields Xi, ..., Xy are indexed by
subscripts.

Coordinates of a vector v in a given basis {e;} or a vector

field in the basis {a‘i,} are indexed by superscripts,

v:Zvie;, X:ZXia(zi'

The superscripts in v/ and X’ “cancel out” the subscripts in

. 0
e and 7.
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