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Constant Rank Theorem

Let NV be a manifold of dimension n and M a manifold of
dimension m.

@ The rank at p € N of a smooth map f : N — M is the rank of
its differential £, , : T,N — Tf(p)M.

@ The rank is always < min(m, n).
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Constant Rank Theorem

Theorem (Constant Rank Theorem; Theorem B.4)

Let f: U — R™ be a C°° map, where U C R" is open. Assume
that f has constant rank k near p € U. Then there are:

e A diffeomorphism F from a neighborhood of p onto a
neighborhood of 0 € R" with F(p) =0,

e A diffeomorphism G from a neighborhood of f(p) onto a
neighborhood of 0 € R™ with G(f(p)) =0,

in such a way that

FofoGfl(rl,...,r”):(rl,...,rk,O,...,O).

If k = m, then
(Wofog™t)(rt,....r")=(rt,....r™).




Constant Rank Theorem

Theorem (Constant Rank Theorem for Manifolds; Theorem 11.1)

Suppose that M is a manifold of dimension m and N is a manifold
of dimension n. Let f : N — M be a smooth map that has
constant rank k near a point p € N. Then, there are a chart

(U, ¢) centered at p in N and a chart (V1)) centered at f(p) in
M such that, for all (r',...,r") € ¢(U), we have

(@Z;ofoqs_l)(rl,...,r”):(rl,...,rk,O,...,O).




Constant Rank Theorem

Proof of Theorem 11.1.

o Let (U, ¢) and (V,) be charts around p and g = f(p).

o Apply the constant rank theorem to 1) o f 05—1 to get
o A diffeomorphism F : W — W’ from a neighborhood W of

¢(p) onto a neighborhood of 0 € R"” with F(¢(p)) =0, B
o A diffeomorphism G : X — X’ from a neighborhood X of 4(q)

onto a neighborhood of 0 € R™ with G(¢(q)) =0,
in such a way that
(Fo)ofo(God) Hrt,...,r")=Fo (@o foafl) o GTY(rt, ... k)
:(rl,...,rk,O,...,O).
o Set U= (W)and V=1 "(X). Then (U, G o) and

(V, F o1)) are charts centered p and g with the required
property. n




Constant Rank Theorem

Suppose that (U, ¢) = (U,x,...,x") is a chart centered at p and
(V,¥) = (V,y',...,y™) is a chart centered at f(p) such that

(z/;ofo¢_1)(r1,...,r"):(rl,...,rk,O,...,O).
e For any g € U, we have ¢(q) = (x!(g),...,x"(g)) and
¥(F(q)) = (y' o f(q),....y™ o f(q)).
@ Thus,
(v o f(q),...,y" o f(q)) = ¥(f(q)) = (Vo fod™) (&(q)
= (¥ofog™) (x 1(q) - x"(a))
= (xl(q),...,x ,0)

@ Therefore, relative to the local coordinates (xl, e ,x") and
(y',...,y™) the map f is such that

(Xl,...,X”)—>(x1,...,xk,0,...,0).
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Constant Rank Theorem

A consequence of the constant rank theorem is the following
extension of the regular level set theorem (Theorem 9.9).

Theorem (Constant-Rank Level Set Theorem; Theorem 11.2)

Let N :— M be a smooth map and c € M. If f has constant rank
k in a neighborhood of the level set f~*(c) in N, then f~1(c) is a
regular submanifold of codimension k.

A neighborhood of a subset A C N is an open set containing A.




Constant Rank Theorem

Example (Orthogonal group O(n); Example 11.3)

The orthogonal group O(n) is the subgroup of GL(n,R) of
matrices A such that AT A = I, (identity matrix),

@ This is the level set f~1(/,), where f : GL(n,R) — GL(n,R),
A— ATA

@ It can be shown that 7 has constant rank (in fact it has rank
k = %n(n +1)).

@ Therefore, by the constant-rank level set theorem O(n) is a
regular submanifold of GL(n, R) (of codimension $n(n + 1)).




The Immersion and Submersion Theorems

Suppose that M is a manifold of dimension m and N is a manifold
of dimension n, and let f : N — M be a smooth map.

e fis an immersion at p if f, p 1 TpoN — T¢,)M is injective.

o fis a submersion at p if f. , : ToN — T¢,)M is surjective.

RENEILS

Equivalently,
f is an immersion at p <—- (n <mand rkf, , = n),
f is a submersion at p <— (n > mand rkf, , = m).
As we always have rk f, , < min(m, n), we see that

f is an immersion/submersion at p <= f. p has maximal rank.




The Immersion and Submersion Theorems

Set k = min(m, n), and denote by RX" the set of m x n matrices
A € R™*" of maximal rank.

@ An m X n-matrix has maximal rank if and only if it has a
non-zero k X k-minor.

@ The minors are polynomials in the coefficients of matrices,
and hence are continuous functions.

@ Thus, if a matrix A has a non-zero k x k-minor, then this
minor is non-zero for any matrix that is sufficiently close to A,
and so those matrices have maximal rank.

o It follows that R7X" is a neighbourhood of each of its

elements, and hence is an open set in R7*".
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The Immersion and Submersion Theorems

Facts

Suppose that f : N — M is a smooth map. Let (U,x!,...,x") be
chart about p in M and (V,y!,...,y™) a chart about f(p) in M.
Set Umax = {q € U; f, 4 has maximal rank}.
o If g€ U, then £, 4 : TgM — T¢(q) is represented by the
matrix J(q) := [0f'/0x/(q)], with f' = y' o f, and hence
rk fqg = rk J(q). Thus,
Unax = {q € U; J(q) € RIS = JH(RAS).-

@ It can be shown that g — J(F)(q) is C*°, and hence is
continuous.

o As R7X" is open, it follows that Umax is open as well.

@ In particular, if f, has maximal rank at p, then it has maximal

rank near p.
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The Immersion and Submersion Theorems

As a consequence we obtain:

Proposition (Proposition 11.4)

If a smooth map f : N — M is a immersion (resp., a submersion)
at a point p € N, then it is an immersion (resp., submersion) near
p. In particular, it has constant rank near p.
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The Immersion and Submersion Theorems

Combining the previous proposition with the Constant Rank
Theorem gives the following result.

Theorem (Theorem 11.5)

Let f : N — M be a smooth map.

© Immersion Theorem. If f is an immersion at p, then there
are a chart (U, ¢) centered at p in N and a chart (V)
centered at f(p) in M such that near ¢(p) we have

(Yofop b)(rt,....r") = (rY...,r",0,...,0).

© Submersion Theorem. If f is a submersion at p, then there
are a chart (U, ¢) centered at p in N and a chart (V1))
centered at f(p) in M such that near ¢(p) we have

(Yofod ) (rt, ... orm rm )y = (.. ™).

13 /32



The Immersion and Submersion Theorems

@ The immersion theorem implies that if f : N — M is an
immersion then, for every p € N, there are a chart
(U,x',...,x") centered at pin N and a chart (V,y!,...,y™)
centered at f(p) in M relative to which f is such that

(%) (xl,...,x”)—>(x1,...,x”,O,...,0).
e Conversely, If f satisfies (), then, setting f' = y’ o f, we have
i H 0xi/8xf ln
[0 /650] = [ ol ] _ [om_n} .

In particular, [8fi/8xj] has maximal rank, which implies that
f is an immersion near p.
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The Immersion and Submersion Theorems

@ The submersion theorem implies that if f : N — M is a
submersion then, for every p € N, there are a chart
(U,x',...,x") centered at p in N and a chart (V,y!,...,y™)
centered at f(p) in M relative to which f is such that

(xl,...,xm,xm+1,...,xn) — (Xl,...,xm).

@ The projection (x!,...,x™ xm™t1 . ,x”) — (xt, .., x™) s
an open map (see Problem A.7). This implies that f maps
any neighborhood of p onto a neighborhood of f(p).

@ As this is true for every p € N, we see that f is an open map.
Therefore, we obtain:

Corollary (Corollary 11.6)

Every submersion f : N — M is an open map.




Images of Smooth Maps

Let us look at some examples of smooth maps f : R — R?.

Example (Example 11.7)

Let f(t) = (£, t3).
@ This is a one-to-one map, since t — t3 is one-to-one.
e As f/(0) = (0,0) the differential f, g is zero, and so f is not an

immersion at 0.

@ The image of f is the cuspidal cubic y? = x3.
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Images of Smooth Maps

Example (Example 11.8)
Let f(t) = (t2 —1,t3 —t).
e As f'(t) = (2t,3t> — 1) # (0,0) the differential f, is
one-to-one everywhere, and hence f is an immersion.
@ However, f is not one-one since (1) = f(—1) = (0,0).

@ The image of f is the nodal cubic y? = x?(x + 1) (see Tu's
book).




Image of Smooth Maps

Example (The Figure-eight; Example 11.12)

Set | = (—m/2,37/2), and let f : | — R?, t — (cos t,sin2t).
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e f'(t) = (—sint,2cos2t) # (0,0), and so f is an immersion.
@ f is one-to-one, and so f is a bijection onto its image (/).
@ The inverse map =1 : f(/) — [ is not continuous: if
t — (37/2)7, then f(t) — (0,0) = f(7/2), but
fAf(t) =t —3n/2¢ 1.

In particular, f : | — f(/) is not a homeomorphism.




Image of Smooth Maps

Summary

As the previous examples show:
@ A one-to-one smooth map need not be an immersion.
@ An immersion need not be one-to-one.

@ A one-to-one immersion need not be a homeomorphism onto
its image.

Definition

A smooth map f : N — M is called an embedding if f is an
immersion and a homeomorphism onto its image (/) with respect
to the subspace topology.

RENEILS

A one-to-one immersion f : N — M is an embedding if and only if
it is an open map.
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Image of Smooth Maps

The importance of embeddings stems from the following result.

Theorem (Theorem 11.13)

If f : N — M is an embedding, then its image f(N) is a regular
submanifold in M.
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Image of Smooth Maps

Proof of Theorem 11.13.

As f is an immersion, by the immersion theorem, for any

p € N, there are a chart (U, x!,...,x") centered at p in N
and a chart (V,y!,...,y™) centered at f(p) relative to which
f is such that (xl,...,x") — (xl,...,x",O,...,O). Thus,

fF(U)y={qe Viy"(q)=---=y™(q) =0}

As f: N — f(N) is a homeomorphism, f(U) is an open set in
f(N) with respect to the subspace topology. That is, there is
an open V' in M such that f(U) = V' N f(N).

Thus,

VAV nf(N)=VnfU)=fU)={y"=-..=y™=0}.
Thatis, (VN V/,y ..., y™) is an adapted chart relative to
f(N) near f(p) in M.

This shows that f(N) is a regular submanifold.
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Image of Smooth Maps

We have the following converse of the previous theorem.

Theorem (Theorem 11.14)

If N is a regular submanifold in M, then the inclusion i : N — M is
an embedding.




Image of Smooth Maps

Proof of Theorem 11.14.

Let N be a regular submanifold in M.
@ As N has the subspace topology, the inclusion i : N — M is a
homeomorphism onto its image.
@ As N is a regular submanifold, near every p € N, there is an

adapted chart (U, x,...,x™) near p in M such that
(UNN,xt ... x") is a chart in N near p and

UNN={x""l =... = xm=0}.
@ Therefore, relative to the charts (UN N, x, ..., x") and
(U,x!,...,x™) the inclusion i : N — M is such that
(xl,...,x”) — (xl,...,x”,O,...,O).

@ By a previous remark, it follows that the map i : N — M is an

immersion near p. ]




Image of Smooth Maps

RENEIS

© The images of smooth embeddings are called embedded
submanifolds.

@ The previous two results show that the regular submanifolds
and embedded submanifolds are the same objects.

© The images of one-to-one immersions are called immersed
submanifolds.

The figure-eight is an immersed submanifold in R? (but this is not
a regular submanifold).
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Smooth Maps into a Submanifold

Suppose that f : N — M is smooth map such that f(N) is
contained in a given subset S C M. If S is manifold, then is the
induced map f : N — S smooth as well?

Theorem (Theorem 11.15)

Suppose that f : N — M is a smooth map whose image is
contained in a regular submanifold S in M. Then the induced map
f:N— S is smooth.

© The above result does not hold if S is only an immersed
submanifold (see Tu's book).

© The converse holds. As S is a regular submanifold, the
inclusion i : S — M is smooth. Thus, if f : N — S is a
smooth map, then jof : N — M is a C* map that induces f.




Smooth Maps into a Submanifold

Proof of Theorem 11.15.

Set m=dimM and s =dim S, and let p € .

@ As S is a regular submanifold and f(p) € S, there is an
adapted chart (V, 1) = (V,y%,...,y™) near f(p) in M. Then
(VNS,¥s)=(VNS,yt,...,y°) is a chart near f(p) in S.

@ As f is a C>®-map, the functions y’ o f are C* on
U := f~1(V) (which is an open neighbourhood of p in N
since f is continuous).

e On f1(V) we have tpsof = (y*of,...,y*of), and so
Ysof: f~H(V)— RS is a smooth map.

@ As (VN S,1s) is chart for S, it follows from Proposition 6.15
that the induced map f : f (V) — S is smooth, and hence
is smooth near p. N
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Smooth Maps into a Submanifold

Example (Multiplication map of SL(n,R); Example 11.16)

SL(n,R) is the subgroup of GL(n,R) of matrices of determinant 1.

@ This is a regular submanifold in GL(n,R) (Example 9.11), and
so the inclusion ¢ : SL(n,R) < GL(n,R) is a smooth map.

e By Example 6.21 we have a smooth multiplication map,
w: GL(n,R) x GL(n,R) — GL(n,R).
@ We thus get a smooth map,
o (¢ x¢):Sk(n,R) x SL(n,R) — GL(n,R).

@ As it takes values in SL(n,R), and SL(n,R) is a regular
submanifold in GL(n,R), we get a smooth multiplication map,

SL(n,R) x SL(n,R) — SL(n,R).




Smooth Maps into a Submanifold

Theorem 11.5 and its converse are especially useful when M = R".
In this case we have:

Corollary

Let S be a regular submanifold in R™ and f : N — R™ a map such
that f(N) C S. Set f = (f%,...,f™). Then TFAE:

(i) f is smooth as a map from N to S.
(ii) f is smooth as a map from N to R™.

(ii) The components f1,... f™ are smooth functions on N.




The Tangent Space to a Submanifold in R™

Let f : R™1 — R be a smooth function with no critical points on
its zero set N = £—1(0).

@ By the regular level set theorem N is a regular submanifold in
R of dimension n.

@ Then the inclusion i : N — R"*1 is an embedding, and so, for
every p € N, the differential i, : T,N — T,,]R”Jrl is injective.

@ We thus can identify the tangent space T,/ with a subspace
of TPR"+1 ~ R"T1. More precisely, we regard it as a subspace
of R™ through p.

o Thus, any v € T,N, is identified with a vector (v, ...v™1),
which is then identified with the point x = p + (v!,..., v"1).

TN

29 /32



The Tangent Space to a Submanifold in R™

@ Set p=(pt,...,p" 1) and x = (x},...,x""1). Let
c : (—¢,€) — R™1 be a smooth curve such that c(0) = p,
c/(0) =v, and c(t) € N, i.e,, f(c(t)) =0. Then

: of - Of
0= 5| F(e(0) = oY) 55 (c0) = v (o).
o As v/ = x — p’, we see that (x!,...,x"T!) satisfies,
() TP —p) =0,

@ As p is a regular point, gx,(p) = 0 for some /, and so the

solution set of (%) has dimension n.
@ As dim N = n, the tangent space T,N has dimension n, and
so it is identified with the full solution set of (x).
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Therefore, we obtain the following result:

Proposition

Let f : R"1 — R be a smooth function with no critical points on
its zero set N = f~1(0). If p= (p*,...,p" ") is a point in N,
then the tangent space T,N is defined by the equation,

() YO —p) =0

RENEILS

| \

Equivalently, T,N is identified with the hyperplane through p that
is normal to the gradient vector (Of /Ox*(p),...,0f JOx"T1(p)).
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The Tangent Space to a Submanifold in R™

Example (Tangent plane to a sphere)

The sphere S C R? is the zero set of

f(x,y,z) =x>+y?>+ 22— 1.

o We have
oF L of o,
ax 0 dy Yo 5z T
@ Thus, at p = (a, b, c) € S? the tangent plane has equation,
of of of
S P x =2+ 5Py = B)+ 5_(P)z =) =0,

< a(x—a)+ by —b)+c(z—c¢c)=0,
> ax+ by + cz = a® + b* + ¢,
< ax+ by +cz=1.
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